zig/lib/std/packed_int_array.zig

655 lines
26 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std");
const builtin = @import("builtin");
const debug = std.debug;
const testing = std.testing;
pub fn PackedIntIo(comptime Int: type, comptime endian: builtin.Endian) type {
//The general technique employed here is to cast bytes in the array to a container
// integer (having bits % 8 == 0) large enough to contain the number of bits we want,
// then we can retrieve or store the new value with a relative minimum of masking
// and shifting. In this worst case, this means that we'll need an integer that's
// actually 1 byte larger than the minimum required to store the bits, because it
// is possible that the bits start at the end of the first byte, continue through
// zero or more, then end in the beginning of the last. But, if we try to access
// a value in the very last byte of memory with that integer size, that extra byte
// will be out of bounds. Depending on the circumstances of the memory, that might
// mean the OS fatally kills the program. Thus, we use a larger container (MaxIo)
// most of the time, but a smaller container (MinIo) when touching the last byte
// of the memory.
const int_bits = comptime std.meta.bitCount(Int);
//in the best case, this is the number of bytes we need to touch
// to read or write a value, as bits
const min_io_bits = ((int_bits + 7) / 8) * 8;
//in the worst case, this is the number of bytes we need to touch
// to read or write a value, as bits
const max_io_bits = switch (int_bits) {
0 => 0,
1 => 8,
2...9 => 16,
10...65535 => ((int_bits / 8) + 2) * 8,
else => unreachable,
};
//we bitcast the desired Int type to an unsigned version of itself
// to avoid issues with shifting signed ints.
const UnInt = std.meta.Int(.unsigned, int_bits);
//The maximum container int type
const MinIo = std.meta.Int(.unsigned, min_io_bits);
//The minimum container int type
const MaxIo = std.meta.Int(.unsigned, max_io_bits);
return struct {
pub fn get(bytes: []const u8, index: usize, bit_offset: u7) Int {
if (int_bits == 0) return 0;
const bit_index = (index * int_bits) + bit_offset;
const max_end_byte = (bit_index + max_io_bits) / 8;
//Using the larger container size will potentially read out of bounds
if (max_end_byte > bytes.len) return getBits(bytes, MinIo, bit_index);
return getBits(bytes, MaxIo, bit_index);
}
fn getBits(bytes: []const u8, comptime Container: type, bit_index: usize) Int {
const container_bits = comptime std.meta.bitCount(Container);
const Shift = std.math.Log2Int(Container);
const start_byte = bit_index / 8;
const head_keep_bits = bit_index - (start_byte * 8);
const tail_keep_bits = container_bits - (int_bits + head_keep_bits);
//read bytes as container
const value_ptr = @ptrCast(*align(1) const Container, &bytes[start_byte]);
var value = value_ptr.*;
if (endian != builtin.endian) value = @byteSwap(Container, value);
switch (endian) {
.Big => {
value <<= @intCast(Shift, head_keep_bits);
value >>= @intCast(Shift, head_keep_bits);
value >>= @intCast(Shift, tail_keep_bits);
},
.Little => {
value <<= @intCast(Shift, tail_keep_bits);
value >>= @intCast(Shift, tail_keep_bits);
value >>= @intCast(Shift, head_keep_bits);
},
}
return @bitCast(Int, @truncate(UnInt, value));
}
pub fn set(bytes: []u8, index: usize, bit_offset: u3, int: Int) void {
if (int_bits == 0) return;
const bit_index = (index * int_bits) + bit_offset;
const max_end_byte = (bit_index + max_io_bits) / 8;
//Using the larger container size will potentially write out of bounds
if (max_end_byte > bytes.len) return setBits(bytes, MinIo, bit_index, int);
setBits(bytes, MaxIo, bit_index, int);
}
fn setBits(bytes: []u8, comptime Container: type, bit_index: usize, int: Int) void {
const container_bits = comptime std.meta.bitCount(Container);
const Shift = std.math.Log2Int(Container);
const start_byte = bit_index / 8;
const head_keep_bits = bit_index - (start_byte * 8);
const tail_keep_bits = container_bits - (int_bits + head_keep_bits);
const keep_shift = switch (endian) {
.Big => @intCast(Shift, tail_keep_bits),
.Little => @intCast(Shift, head_keep_bits),
};
//position the bits where they need to be in the container
const value = @intCast(Container, @bitCast(UnInt, int)) << keep_shift;
//read existing bytes
const target_ptr = @ptrCast(*align(1) Container, &bytes[start_byte]);
var target = target_ptr.*;
if (endian != builtin.endian) target = @byteSwap(Container, target);
//zero the bits we want to replace in the existing bytes
const inv_mask = @intCast(Container, std.math.maxInt(UnInt)) << keep_shift;
const mask = ~inv_mask;
target &= mask;
//merge the new value
target |= value;
if (endian != builtin.endian) target = @byteSwap(Container, target);
//save it back
target_ptr.* = target;
}
fn slice(bytes: []u8, bit_offset: u3, start: usize, end: usize) PackedIntSliceEndian(Int, endian) {
debug.assert(end >= start);
const length = end - start;
const bit_index = (start * int_bits) + bit_offset;
const start_byte = bit_index / 8;
const end_byte = (bit_index + (length * int_bits) + 7) / 8;
const new_bytes = bytes[start_byte..end_byte];
if (length == 0) return PackedIntSliceEndian(Int, endian).init(new_bytes[0..0], 0);
var new_slice = PackedIntSliceEndian(Int, endian).init(new_bytes, length);
new_slice.bit_offset = @intCast(u3, (bit_index - (start_byte * 8)));
return new_slice;
}
fn sliceCast(bytes: []u8, comptime NewInt: type, comptime new_endian: builtin.Endian, bit_offset: u3, old_len: usize) PackedIntSliceEndian(NewInt, new_endian) {
const new_int_bits = comptime std.meta.bitCount(NewInt);
const New = PackedIntSliceEndian(NewInt, new_endian);
const total_bits = (old_len * int_bits);
const new_int_count = total_bits / new_int_bits;
debug.assert(total_bits == new_int_count * new_int_bits);
var new = New.init(bytes, new_int_count);
new.bit_offset = bit_offset;
return new;
}
};
}
///Creates a bit-packed array of integers of type Int. Bits
/// are packed using native endianess and without storing any meta
/// data. PackedIntArray(i3, 8) will occupy exactly 3 bytes of memory.
pub fn PackedIntArray(comptime Int: type, comptime int_count: usize) type {
return PackedIntArrayEndian(Int, builtin.endian, int_count);
}
///Creates a bit-packed array of integers of type Int. Bits
/// are packed using specified endianess and without storing any meta
/// data.
pub fn PackedIntArrayEndian(comptime Int: type, comptime endian: builtin.Endian, comptime int_count: usize) type {
const int_bits = comptime std.meta.bitCount(Int);
const total_bits = int_bits * int_count;
const total_bytes = (total_bits + 7) / 8;
const Io = PackedIntIo(Int, endian);
return struct {
const Self = @This();
bytes: [total_bytes]u8,
///Returns the number of elements in the packed array
pub fn len(self: Self) usize {
return int_count;
}
///Initialize a packed array using an unpacked array
/// or, more likely, an array literal.
pub fn init(ints: [int_count]Int) Self {
var self = @as(Self, undefined);
for (ints) |int, i| self.set(i, int);
return self;
}
///Return the Int stored at index
pub fn get(self: Self, index: usize) Int {
debug.assert(index < int_count);
return Io.get(&self.bytes, index, 0);
}
///Copy int into the array at index
pub fn set(self: *Self, index: usize, int: Int) void {
debug.assert(index < int_count);
return Io.set(&self.bytes, index, 0, int);
}
///Create a PackedIntSlice of the array from given start to given end
pub fn slice(self: *Self, start: usize, end: usize) PackedIntSliceEndian(Int, endian) {
debug.assert(start < int_count);
debug.assert(end <= int_count);
return Io.slice(&self.bytes, 0, start, end);
}
///Create a PackedIntSlice of the array using NewInt as the bit width integer.
/// NewInt's bit width must fit evenly within the array's Int's total bits.
pub fn sliceCast(self: *Self, comptime NewInt: type) PackedIntSlice(NewInt) {
return self.sliceCastEndian(NewInt, endian);
}
///Create a PackedIntSlice of the array using NewInt as the bit width integer
/// and new_endian as the new endianess. NewInt's bit width must fit evenly within
/// the array's Int's total bits.
pub fn sliceCastEndian(self: *Self, comptime NewInt: type, comptime new_endian: builtin.Endian) PackedIntSliceEndian(NewInt, new_endian) {
return Io.sliceCast(&self.bytes, NewInt, new_endian, 0, int_count);
}
};
}
///Uses a slice as a bit-packed block of int_count integers of type Int.
/// Bits are packed using native endianess and without storing any meta
/// data.
pub fn PackedIntSlice(comptime Int: type) type {
return PackedIntSliceEndian(Int, builtin.endian);
}
///Uses a slice as a bit-packed block of int_count integers of type Int.
/// Bits are packed using specified endianess and without storing any meta
/// data.
pub fn PackedIntSliceEndian(comptime Int: type, comptime endian: builtin.Endian) type {
const int_bits = comptime std.meta.bitCount(Int);
const Io = PackedIntIo(Int, endian);
return struct {
const Self = @This();
bytes: []u8,
int_count: usize,
bit_offset: u3,
///Returns the number of elements in the packed slice
pub fn len(self: Self) usize {
return self.int_count;
}
///Calculates the number of bytes required to store a desired count
/// of Ints
pub fn bytesRequired(int_count: usize) usize {
const total_bits = int_bits * int_count;
const total_bytes = (total_bits + 7) / 8;
return total_bytes;
}
///Initialize a packed slice using the memory at bytes, with int_count
/// elements. bytes must be large enough to accomodate the requested
/// count.
pub fn init(bytes: []u8, int_count: usize) Self {
debug.assert(bytes.len >= bytesRequired(int_count));
return Self{
.bytes = bytes,
.int_count = int_count,
.bit_offset = 0,
};
}
///Return the Int stored at index
pub fn get(self: Self, index: usize) Int {
debug.assert(index < self.int_count);
return Io.get(self.bytes, index, self.bit_offset);
}
///Copy int into the array at index
pub fn set(self: *Self, index: usize, int: Int) void {
debug.assert(index < self.int_count);
return Io.set(self.bytes, index, self.bit_offset, int);
}
///Create a PackedIntSlice of this slice from given start to given end
pub fn slice(self: Self, start: usize, end: usize) PackedIntSliceEndian(Int, endian) {
debug.assert(start < self.int_count);
debug.assert(end <= self.int_count);
return Io.slice(self.bytes, self.bit_offset, start, end);
}
///Create a PackedIntSlice of this slice using NewInt as the bit width integer.
/// NewInt's bit width must fit evenly within this slice's Int's total bits.
pub fn sliceCast(self: Self, comptime NewInt: type) PackedIntSliceEndian(NewInt, endian) {
return self.sliceCastEndian(NewInt, endian);
}
///Create a PackedIntSlice of this slice using NewInt as the bit width integer
/// and new_endian as the new endianess. NewInt's bit width must fit evenly within
/// this slice's Int's total bits.
pub fn sliceCastEndian(self: Self, comptime NewInt: type, comptime new_endian: builtin.Endian) PackedIntSliceEndian(NewInt, new_endian) {
return Io.sliceCast(self.bytes, NewInt, new_endian, self.bit_offset, self.int_count);
}
};
}
const we_are_testing_this_with_stage1_which_leaks_comptime_memory = true;
test "PackedIntArray" {
// TODO @setEvalBranchQuota generates panics in wasm32. Investigate.
if (builtin.arch == .wasm32) return error.SkipZigTest;
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
@setEvalBranchQuota(10000);
const max_bits = 256;
const int_count = 19;
comptime var bits = 0;
inline while (bits <= max_bits) : (bits += 1) {
//alternate unsigned and signed
const sign: builtin.Signedness = if (bits % 2 == 0) .signed else .unsigned;
const I = std.meta.Int(sign, bits);
const PackedArray = PackedIntArray(I, int_count);
const expected_bytes = ((bits * int_count) + 7) / 8;
testing.expect(@sizeOf(PackedArray) == expected_bytes);
var data = @as(PackedArray, undefined);
//write values, counting up
var i = @as(usize, 0);
var count = @as(I, 0);
while (i < data.len()) : (i += 1) {
data.set(i, count);
if (bits > 0) count +%= 1;
}
//read and verify values
i = 0;
count = 0;
while (i < data.len()) : (i += 1) {
const val = data.get(i);
testing.expect(val == count);
if (bits > 0) count +%= 1;
}
}
}
test "PackedIntArray init" {
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
const PackedArray = PackedIntArray(u3, 8);
var packed_array = PackedArray.init([_]u3{ 0, 1, 2, 3, 4, 5, 6, 7 });
var i = @as(usize, 0);
while (i < packed_array.len()) : (i += 1) testing.expect(packed_array.get(i) == i);
}
test "PackedIntSlice" {
// TODO @setEvalBranchQuota generates panics in wasm32. Investigate.
if (builtin.arch == .wasm32) return error.SkipZigTest;
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
@setEvalBranchQuota(10000);
const max_bits = 256;
const int_count = 19;
const total_bits = max_bits * int_count;
const total_bytes = (total_bits + 7) / 8;
var buffer: [total_bytes]u8 = undefined;
comptime var bits = 0;
inline while (bits <= max_bits) : (bits += 1) {
//alternate unsigned and signed
const sign: builtin.Signedness = if (bits % 2 == 0) .signed else .unsigned;
const I = std.meta.Int(sign, bits);
const P = PackedIntSlice(I);
var data = P.init(&buffer, int_count);
//write values, counting up
var i = @as(usize, 0);
var count = @as(I, 0);
while (i < data.len()) : (i += 1) {
data.set(i, count);
if (bits > 0) count +%= 1;
}
//read and verify values
i = 0;
count = 0;
while (i < data.len()) : (i += 1) {
const val = data.get(i);
testing.expect(val == count);
if (bits > 0) count +%= 1;
}
}
}
test "PackedIntSlice of PackedInt(Array/Slice)" {
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
const max_bits = 16;
const int_count = 19;
comptime var bits = 0;
inline while (bits <= max_bits) : (bits += 1) {
const Int = std.meta.Int(.unsigned, bits);
const PackedArray = PackedIntArray(Int, int_count);
var packed_array = @as(PackedArray, undefined);
const limit = (1 << bits);
var i = @as(usize, 0);
while (i < packed_array.len()) : (i += 1) {
packed_array.set(i, @intCast(Int, i % limit));
}
//slice of array
var packed_slice = packed_array.slice(2, 5);
testing.expect(packed_slice.len() == 3);
const ps_bit_count = (bits * packed_slice.len()) + packed_slice.bit_offset;
const ps_expected_bytes = (ps_bit_count + 7) / 8;
testing.expect(packed_slice.bytes.len == ps_expected_bytes);
testing.expect(packed_slice.get(0) == 2 % limit);
testing.expect(packed_slice.get(1) == 3 % limit);
testing.expect(packed_slice.get(2) == 4 % limit);
packed_slice.set(1, 7 % limit);
testing.expect(packed_slice.get(1) == 7 % limit);
//write through slice
testing.expect(packed_array.get(3) == 7 % limit);
//slice of a slice
const packed_slice_two = packed_slice.slice(0, 3);
testing.expect(packed_slice_two.len() == 3);
const ps2_bit_count = (bits * packed_slice_two.len()) + packed_slice_two.bit_offset;
const ps2_expected_bytes = (ps2_bit_count + 7) / 8;
testing.expect(packed_slice_two.bytes.len == ps2_expected_bytes);
testing.expect(packed_slice_two.get(1) == 7 % limit);
testing.expect(packed_slice_two.get(2) == 4 % limit);
//size one case
const packed_slice_three = packed_slice_two.slice(1, 2);
testing.expect(packed_slice_three.len() == 1);
const ps3_bit_count = (bits * packed_slice_three.len()) + packed_slice_three.bit_offset;
const ps3_expected_bytes = (ps3_bit_count + 7) / 8;
testing.expect(packed_slice_three.bytes.len == ps3_expected_bytes);
testing.expect(packed_slice_three.get(0) == 7 % limit);
//empty slice case
const packed_slice_empty = packed_slice.slice(0, 0);
testing.expect(packed_slice_empty.len() == 0);
testing.expect(packed_slice_empty.bytes.len == 0);
//slicing at byte boundaries
const packed_slice_edge = packed_array.slice(8, 16);
testing.expect(packed_slice_edge.len() == 8);
const pse_bit_count = (bits * packed_slice_edge.len()) + packed_slice_edge.bit_offset;
const pse_expected_bytes = (pse_bit_count + 7) / 8;
testing.expect(packed_slice_edge.bytes.len == pse_expected_bytes);
testing.expect(packed_slice_edge.bit_offset == 0);
}
}
test "PackedIntSlice accumulating bit offsets" {
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
//bit_offset is u3, so standard debugging asserts should catch
// anything
{
const PackedArray = PackedIntArray(u3, 16);
var packed_array = @as(PackedArray, undefined);
var packed_slice = packed_array.slice(0, packed_array.len());
var i = @as(usize, 0);
while (i < packed_array.len() - 1) : (i += 1) {
packed_slice = packed_slice.slice(1, packed_slice.len());
}
}
{
const PackedArray = PackedIntArray(u11, 88);
var packed_array = @as(PackedArray, undefined);
var packed_slice = packed_array.slice(0, packed_array.len());
var i = @as(usize, 0);
while (i < packed_array.len() - 1) : (i += 1) {
packed_slice = packed_slice.slice(1, packed_slice.len());
}
}
}
//@NOTE: As I do not have a big endian system to test this on,
// big endian values were not tested
test "PackedInt(Array/Slice) sliceCast" {
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
const PackedArray = PackedIntArray(u1, 16);
var packed_array = PackedArray.init([_]u1{ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 });
const packed_slice_cast_2 = packed_array.sliceCast(u2);
const packed_slice_cast_4 = packed_slice_cast_2.sliceCast(u4);
var packed_slice_cast_9 = packed_array.slice(0, (packed_array.len() / 9) * 9).sliceCast(u9);
const packed_slice_cast_3 = packed_slice_cast_9.sliceCast(u3);
var i = @as(usize, 0);
while (i < packed_slice_cast_2.len()) : (i += 1) {
const val = switch (builtin.endian) {
.Big => 0b01,
.Little => 0b10,
};
testing.expect(packed_slice_cast_2.get(i) == val);
}
i = 0;
while (i < packed_slice_cast_4.len()) : (i += 1) {
const val = switch (builtin.endian) {
.Big => 0b0101,
.Little => 0b1010,
};
testing.expect(packed_slice_cast_4.get(i) == val);
}
i = 0;
while (i < packed_slice_cast_9.len()) : (i += 1) {
const val = 0b010101010;
testing.expect(packed_slice_cast_9.get(i) == val);
packed_slice_cast_9.set(i, 0b111000111);
}
i = 0;
while (i < packed_slice_cast_3.len()) : (i += 1) {
const val = switch (builtin.endian) {
.Big => if (i % 2 == 0) @as(u3, 0b111) else @as(u3, 0b000),
.Little => if (i % 2 == 0) @as(u3, 0b111) else @as(u3, 0b000),
};
testing.expect(packed_slice_cast_3.get(i) == val);
}
}
test "PackedInt(Array/Slice)Endian" {
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
{
const PackedArrayBe = PackedIntArrayEndian(u4, .Big, 8);
var packed_array_be = PackedArrayBe.init([_]u4{ 0, 1, 2, 3, 4, 5, 6, 7 });
testing.expect(packed_array_be.bytes[0] == 0b00000001);
testing.expect(packed_array_be.bytes[1] == 0b00100011);
var i = @as(usize, 0);
while (i < packed_array_be.len()) : (i += 1) {
testing.expect(packed_array_be.get(i) == i);
}
var packed_slice_le = packed_array_be.sliceCastEndian(u4, .Little);
i = 0;
while (i < packed_slice_le.len()) : (i += 1) {
const val = if (i % 2 == 0) i + 1 else i - 1;
testing.expect(packed_slice_le.get(i) == val);
}
var packed_slice_le_shift = packed_array_be.slice(1, 5).sliceCastEndian(u4, .Little);
i = 0;
while (i < packed_slice_le_shift.len()) : (i += 1) {
const val = if (i % 2 == 0) i else i + 2;
testing.expect(packed_slice_le_shift.get(i) == val);
}
}
{
const PackedArrayBe = PackedIntArrayEndian(u11, .Big, 8);
var packed_array_be = PackedArrayBe.init([_]u11{ 0, 1, 2, 3, 4, 5, 6, 7 });
testing.expect(packed_array_be.bytes[0] == 0b00000000);
testing.expect(packed_array_be.bytes[1] == 0b00000000);
testing.expect(packed_array_be.bytes[2] == 0b00000100);
testing.expect(packed_array_be.bytes[3] == 0b00000001);
testing.expect(packed_array_be.bytes[4] == 0b00000000);
var i = @as(usize, 0);
while (i < packed_array_be.len()) : (i += 1) {
testing.expect(packed_array_be.get(i) == i);
}
var packed_slice_le = packed_array_be.sliceCastEndian(u11, .Little);
testing.expect(packed_slice_le.get(0) == 0b00000000000);
testing.expect(packed_slice_le.get(1) == 0b00010000000);
testing.expect(packed_slice_le.get(2) == 0b00000000100);
testing.expect(packed_slice_le.get(3) == 0b00000000000);
testing.expect(packed_slice_le.get(4) == 0b00010000011);
testing.expect(packed_slice_le.get(5) == 0b00000000010);
testing.expect(packed_slice_le.get(6) == 0b10000010000);
testing.expect(packed_slice_le.get(7) == 0b00000111001);
var packed_slice_le_shift = packed_array_be.slice(1, 5).sliceCastEndian(u11, .Little);
testing.expect(packed_slice_le_shift.get(0) == 0b00010000000);
testing.expect(packed_slice_le_shift.get(1) == 0b00000000100);
testing.expect(packed_slice_le_shift.get(2) == 0b00000000000);
testing.expect(packed_slice_le_shift.get(3) == 0b00010000011);
}
}
//@NOTE: Need to manually update this list as more posix os's get
// added to DirectAllocator.
//These tests prove we aren't accidentally accessing memory past
// the end of the array/slice by placing it at the end of a page
// and reading the last element. The assumption is that the page
// after this one is not mapped and will cause a segfault if we
// don't account for the bounds.
test "PackedIntArray at end of available memory" {
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
switch (builtin.os.tag) {
.linux, .macos, .ios, .freebsd, .netbsd, .openbsd, .windows => {},
else => return,
}
const PackedArray = PackedIntArray(u3, 8);
const Padded = struct {
_: [std.mem.page_size - @sizeOf(PackedArray)]u8,
p: PackedArray,
};
const allocator = std.testing.allocator;
var pad = try allocator.create(Padded);
defer allocator.destroy(pad);
pad.p.set(7, std.math.maxInt(u3));
}
test "PackedIntSlice at end of available memory" {
if (we_are_testing_this_with_stage1_which_leaks_comptime_memory) return error.SkipZigTest;
switch (builtin.os.tag) {
.linux, .macos, .ios, .freebsd, .netbsd, .openbsd, .windows => {},
else => return,
}
const PackedSlice = PackedIntSlice(u11);
const allocator = std.testing.allocator;
var page = try allocator.alloc(u8, std.mem.page_size);
defer allocator.free(page);
var p = PackedSlice.init(page[std.mem.page_size - 2 ..], 1);
p.set(0, std.math.maxInt(u11));
}