zig/lib/std/mutex.zig

331 lines
12 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std.zig");
const builtin = @import("builtin");
const os = std.os;
const assert = std.debug.assert;
const windows = os.windows;
const testing = std.testing;
const SpinLock = std.SpinLock;
const ResetEvent = std.ResetEvent;
/// Lock may be held only once. If the same thread tries to acquire
/// the same mutex twice, it deadlocks. This type supports static
/// initialization and is at most `@sizeOf(usize)` in size. When an
/// application is built in single threaded release mode, all the
/// functions are no-ops. In single threaded debug mode, there is
/// deadlock detection.
///
/// Example usage:
/// var m = Mutex{};
///
/// const lock = m.acquire();
/// defer lock.release();
/// ... critical code
///
/// Non-blocking:
/// if (m.tryAcquire) |lock| {
/// defer lock.release();
/// // ... critical section
/// } else {
/// // ... lock not acquired
/// }
pub const Mutex = if (builtin.single_threaded)
Dummy
else if (builtin.os.tag == .windows)
WindowsMutex
else if (builtin.link_libc or builtin.os.tag == .linux)
// stack-based version of https://github.com/Amanieu/parking_lot/blob/master/core/src/word_lock.rs
struct {
state: usize = 0,
/// number of times to spin trying to acquire the lock.
/// https://webkit.org/blog/6161/locking-in-webkit/
const SPIN_COUNT = 40;
const MUTEX_LOCK: usize = 1 << 0;
const QUEUE_LOCK: usize = 1 << 1;
const QUEUE_MASK: usize = ~(MUTEX_LOCK | QUEUE_LOCK);
const Node = struct {
next: ?*Node,
event: ResetEvent,
};
pub fn tryAcquire(self: *Mutex) ?Held {
if (@cmpxchgWeak(usize, &self.state, 0, MUTEX_LOCK, .Acquire, .Monotonic) != null)
return null;
return Held{ .mutex = self };
}
pub fn acquire(self: *Mutex) Held {
return self.tryAcquire() orelse {
self.acquireSlow();
return Held{ .mutex = self };
};
}
fn acquireSlow(self: *Mutex) void {
// inlining the fast path and hiding *Slow()
// calls behind a @setCold(true) appears to
// improve performance in release builds.
@setCold(true);
while (true) {
// try and spin for a bit to acquire the mutex if theres currently no queue
var spin_count: u32 = SPIN_COUNT;
var state = @atomicLoad(usize, &self.state, .Monotonic);
while (spin_count != 0) : (spin_count -= 1) {
if (state & MUTEX_LOCK == 0) {
_ = @cmpxchgWeak(usize, &self.state, state, state | MUTEX_LOCK, .Acquire, .Monotonic) orelse return;
} else if (state & QUEUE_MASK == 0) {
break;
}
SpinLock.yield();
state = @atomicLoad(usize, &self.state, .Monotonic);
}
// create the ResetEvent node on the stack
// (faster than threadlocal on platforms like OSX)
var node: Node = undefined;
node.event = ResetEvent.init();
defer node.event.deinit();
// we've spun too long, try and add our node to the LIFO queue.
// if the mutex becomes available in the process, try and grab it instead.
while (true) {
if (state & MUTEX_LOCK == 0) {
_ = @cmpxchgWeak(usize, &self.state, state, state | MUTEX_LOCK, .Acquire, .Monotonic) orelse return;
} else {
node.next = @intToPtr(?*Node, state & QUEUE_MASK);
const new_state = @ptrToInt(&node) | (state & ~QUEUE_MASK);
_ = @cmpxchgWeak(usize, &self.state, state, new_state, .Release, .Monotonic) orelse {
node.event.wait();
break;
};
}
SpinLock.yield();
state = @atomicLoad(usize, &self.state, .Monotonic);
}
}
}
/// Returned when the lock is acquired. Call release to
/// release.
pub const Held = struct {
mutex: *Mutex,
/// Release the held lock.
pub fn release(self: Held) void {
// first, remove the lock bit so another possibly parallel acquire() can succeed.
// use .Sub since it can be usually compiled down more efficiency
// (`lock sub` on x86) vs .And ~MUTEX_LOCK (`lock cmpxchg` loop on x86)
const state = @atomicRmw(usize, &self.mutex.state, .Sub, MUTEX_LOCK, .Release);
// if the LIFO queue isnt locked and it has a node, try and wake up the node.
if ((state & QUEUE_LOCK) == 0 and (state & QUEUE_MASK) != 0)
self.mutex.releaseSlow();
}
};
fn releaseSlow(self: *Mutex) void {
@setCold(true);
// try and lock the LFIO queue to pop a node off,
// stopping altogether if its already locked or the queue is empty
var state = @atomicLoad(usize, &self.state, .Monotonic);
while (true) : (SpinLock.loopHint(1)) {
if (state & QUEUE_LOCK != 0 or state & QUEUE_MASK == 0)
return;
state = @cmpxchgWeak(usize, &self.state, state, state | QUEUE_LOCK, .Acquire, .Monotonic) orelse break;
}
// acquired the QUEUE_LOCK, try and pop a node to wake it.
// if the mutex is locked, then unset QUEUE_LOCK and let
// the thread who holds the mutex do the wake-up on unlock()
while (true) : (SpinLock.loopHint(1)) {
if ((state & MUTEX_LOCK) != 0) {
state = @cmpxchgWeak(usize, &self.state, state, state & ~QUEUE_LOCK, .Release, .Acquire) orelse return;
} else {
const node = @intToPtr(*Node, state & QUEUE_MASK);
const new_state = @ptrToInt(node.next);
state = @cmpxchgWeak(usize, &self.state, state, new_state, .Release, .Acquire) orelse {
node.event.set();
return;
};
}
}
}
}
// for platforms without a known OS blocking
// primitive, default to SpinLock for correctness
else
SpinLock;
/// This has the sematics as `Mutex`, however it does not actually do any
/// synchronization. Operations are safety-checked no-ops.
pub const Dummy = struct {
lock: @TypeOf(lock_init) = lock_init,
const lock_init = if (std.debug.runtime_safety) false else {};
pub const Held = struct {
mutex: *Dummy,
pub fn release(self: Held) void {
if (std.debug.runtime_safety) {
self.mutex.lock = false;
}
}
};
/// Create a new mutex in unlocked state.
pub const init = Dummy{};
/// Try to acquire the mutex without blocking. Returns null if
/// the mutex is unavailable. Otherwise returns Held. Call
/// release on Held.
pub fn tryAcquire(self: *Dummy) ?Held {
if (std.debug.runtime_safety) {
if (self.lock) return null;
self.lock = true;
}
return Held{ .mutex = self };
}
/// Acquire the mutex. Will deadlock if the mutex is already
/// held by the calling thread.
pub fn acquire(self: *Dummy) Held {
return self.tryAcquire() orelse @panic("deadlock detected");
}
};
// https://locklessinc.com/articles/keyed_events/
const WindowsMutex = struct {
state: State = State{ .waiters = 0 },
const State = extern union {
locked: u8,
waiters: u32,
};
const WAKE = 1 << 8;
const WAIT = 1 << 9;
pub fn tryAcquire(self: *WindowsMutex) ?Held {
if (@atomicRmw(u8, &self.state.locked, .Xchg, 1, .Acquire) != 0)
return null;
return Held{ .mutex = self };
}
pub fn acquire(self: *WindowsMutex) Held {
return self.tryAcquire() orelse self.acquireSlow();
}
fn acquireSpinning(self: *WindowsMutex) Held {
@setCold(true);
while (true) : (SpinLock.yield()) {
return self.tryAcquire() orelse continue;
}
}
fn acquireSlow(self: *WindowsMutex) Held {
// try to use NT keyed events for blocking, falling back to spinlock if unavailable
@setCold(true);
const handle = ResetEvent.OsEvent.Futex.getEventHandle() orelse return self.acquireSpinning();
const key = @ptrCast(*const c_void, &self.state.waiters);
while (true) : (SpinLock.loopHint(1)) {
const waiters = @atomicLoad(u32, &self.state.waiters, .Monotonic);
// try and take lock if unlocked
if ((waiters & 1) == 0) {
if (@atomicRmw(u8, &self.state.locked, .Xchg, 1, .Acquire) == 0) {
return Held{ .mutex = self };
}
// otherwise, try and update the waiting count.
// then unset the WAKE bit so that another unlocker can wake up a thread.
} else if (@cmpxchgWeak(u32, &self.state.waiters, waiters, (waiters + WAIT) | 1, .Monotonic, .Monotonic) == null) {
const rc = windows.ntdll.NtWaitForKeyedEvent(handle, key, windows.FALSE, null);
assert(rc == .SUCCESS);
_ = @atomicRmw(u32, &self.state.waiters, .Sub, WAKE, .Monotonic);
}
}
}
pub const Held = struct {
mutex: *WindowsMutex,
pub fn release(self: Held) void {
// unlock without a rmw/cmpxchg instruction
@atomicStore(u8, @ptrCast(*u8, &self.mutex.state.locked), 0, .Release);
const handle = ResetEvent.OsEvent.Futex.getEventHandle() orelse return;
const key = @ptrCast(*const c_void, &self.mutex.state.waiters);
while (true) : (SpinLock.loopHint(1)) {
const waiters = @atomicLoad(u32, &self.mutex.state.waiters, .Monotonic);
// no one is waiting
if (waiters < WAIT) return;
// someone grabbed the lock and will do the wake instead
if (waiters & 1 != 0) return;
// someone else is currently waking up
if (waiters & WAKE != 0) return;
// try to decrease the waiter count & set the WAKE bit meaning a thread is waking up
if (@cmpxchgWeak(u32, &self.mutex.state.waiters, waiters, waiters - WAIT + WAKE, .Release, .Monotonic) == null) {
const rc = windows.ntdll.NtReleaseKeyedEvent(handle, key, windows.FALSE, null);
assert(rc == .SUCCESS);
return;
}
}
}
};
};
const TestContext = struct {
mutex: *Mutex,
data: i128,
const incr_count = 10000;
};
test "std.Mutex" {
var mutex = Mutex{};
var context = TestContext{
.mutex = &mutex,
.data = 0,
};
if (builtin.single_threaded) {
worker(&context);
testing.expect(context.data == TestContext.incr_count);
} else {
const thread_count = 10;
var threads: [thread_count]*std.Thread = undefined;
for (threads) |*t| {
t.* = try std.Thread.spawn(&context, worker);
}
for (threads) |t|
t.wait();
testing.expect(context.data == thread_count * TestContext.incr_count);
}
}
fn worker(ctx: *TestContext) void {
var i: usize = 0;
while (i != TestContext.incr_count) : (i += 1) {
const held = ctx.mutex.acquire();
defer held.release();
ctx.data += 1;
}
}