zig/lib/std/meta.zig

1076 lines
34 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std.zig");
const builtin = @import("builtin");
const debug = std.debug;
const mem = std.mem;
const math = std.math;
const testing = std.testing;
pub const trait = @import("meta/trait.zig");
pub const TrailerFlags = @import("meta/trailer_flags.zig").TrailerFlags;
const TypeInfo = builtin.TypeInfo;
pub fn tagName(v: anytype) []const u8 {
const T = @TypeOf(v);
switch (@typeInfo(T)) {
.ErrorSet => return @errorName(v),
else => return @tagName(v),
}
}
test "std.meta.tagName" {
const E1 = enum {
A,
B,
};
const E2 = enum(u8) {
C = 33,
D,
};
const U1 = union(enum) {
G: u8,
H: u16,
};
const U2 = union(E2) {
C: u8,
D: u16,
};
var u1g = U1{ .G = 0 };
var u1h = U1{ .H = 0 };
var u2a = U2{ .C = 0 };
var u2b = U2{ .D = 0 };
testing.expect(mem.eql(u8, tagName(E1.A), "A"));
testing.expect(mem.eql(u8, tagName(E1.B), "B"));
testing.expect(mem.eql(u8, tagName(E2.C), "C"));
testing.expect(mem.eql(u8, tagName(E2.D), "D"));
testing.expect(mem.eql(u8, tagName(error.E), "E"));
testing.expect(mem.eql(u8, tagName(error.F), "F"));
testing.expect(mem.eql(u8, tagName(u1g), "G"));
testing.expect(mem.eql(u8, tagName(u1h), "H"));
testing.expect(mem.eql(u8, tagName(u2a), "C"));
testing.expect(mem.eql(u8, tagName(u2b), "D"));
}
pub fn stringToEnum(comptime T: type, str: []const u8) ?T {
// Using ComptimeStringMap here is more performant, but it will start to take too
// long to compile if the enum is large enough, due to the current limits of comptime
// performance when doing things like constructing lookup maps at comptime.
// TODO The '100' here is arbitrary and should be increased when possible:
// - https://github.com/ziglang/zig/issues/4055
// - https://github.com/ziglang/zig/issues/3863
if (@typeInfo(T).Enum.fields.len <= 100) {
const kvs = comptime build_kvs: {
// In order to generate an array of structs that play nice with anonymous
// list literals, we need to give them "0" and "1" field names.
// TODO https://github.com/ziglang/zig/issues/4335
const EnumKV = struct {
@"0": []const u8,
@"1": T,
};
var kvs_array: [@typeInfo(T).Enum.fields.len]EnumKV = undefined;
inline for (@typeInfo(T).Enum.fields) |enumField, i| {
kvs_array[i] = .{ .@"0" = enumField.name, .@"1" = @field(T, enumField.name) };
}
break :build_kvs kvs_array[0..];
};
const map = std.ComptimeStringMap(T, kvs);
return map.get(str);
} else {
inline for (@typeInfo(T).Enum.fields) |enumField| {
if (mem.eql(u8, str, enumField.name)) {
return @field(T, enumField.name);
}
}
return null;
}
}
test "std.meta.stringToEnum" {
const E1 = enum {
A,
B,
};
testing.expect(E1.A == stringToEnum(E1, "A").?);
testing.expect(E1.B == stringToEnum(E1, "B").?);
testing.expect(null == stringToEnum(E1, "C"));
}
pub fn bitCount(comptime T: type) comptime_int {
return switch (@typeInfo(T)) {
.Bool => 1,
.Int => |info| info.bits,
.Float => |info| info.bits,
else => @compileError("Expected bool, int or float type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.bitCount" {
testing.expect(bitCount(u8) == 8);
testing.expect(bitCount(f32) == 32);
}
pub fn alignment(comptime T: type) comptime_int {
//@alignOf works on non-pointer types
const P = if (comptime trait.is(.Pointer)(T)) T else *T;
return @typeInfo(P).Pointer.alignment;
}
test "std.meta.alignment" {
testing.expect(alignment(u8) == 1);
testing.expect(alignment(*align(1) u8) == 1);
testing.expect(alignment(*align(2) u8) == 2);
testing.expect(alignment([]align(1) u8) == 1);
testing.expect(alignment([]align(2) u8) == 2);
}
pub fn Child(comptime T: type) type {
return switch (@typeInfo(T)) {
.Array => |info| info.child,
.Vector => |info| info.child,
.Pointer => |info| info.child,
.Optional => |info| info.child,
else => @compileError("Expected pointer, optional, array or vector type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.Child" {
testing.expect(Child([1]u8) == u8);
testing.expect(Child(*u8) == u8);
testing.expect(Child([]u8) == u8);
testing.expect(Child(?u8) == u8);
testing.expect(Child(Vector(2, u8)) == u8);
}
/// Given a "memory span" type, returns the "element type".
pub fn Elem(comptime T: type) type {
switch (@typeInfo(T)) {
.Array => |info| return info.child,
.Vector => |info| return info.child,
.Pointer => |info| switch (info.size) {
.One => switch (@typeInfo(info.child)) {
.Array => |array_info| return array_info.child,
.Vector => |vector_info| return vector_info.child,
else => {},
},
.Many, .C, .Slice => return info.child,
},
.Optional => |info| switch (@typeInfo(info.child)) {
.Pointer => |ptr_info| switch (ptr_info.size) {
.Many => return ptr_info.child,
else => {},
},
else => {},
},
else => {},
}
@compileError("Expected pointer, slice, array or vector type, found '" ++ @typeName(T) ++ "'");
}
test "std.meta.Elem" {
testing.expect(Elem([1]u8) == u8);
testing.expect(Elem([*]u8) == u8);
testing.expect(Elem([]u8) == u8);
testing.expect(Elem(*[10]u8) == u8);
testing.expect(Elem(Vector(2, u8)) == u8);
testing.expect(Elem(*Vector(2, u8)) == u8);
testing.expect(Elem(?[*]u8) == u8);
}
/// Given a type which can have a sentinel e.g. `[:0]u8`, returns the sentinel value,
/// or `null` if there is not one.
/// Types which cannot possibly have a sentinel will be a compile error.
pub fn sentinel(comptime T: type) ?Elem(T) {
switch (@typeInfo(T)) {
.Array => |info| return info.sentinel,
.Pointer => |info| {
switch (info.size) {
.Many, .Slice => return info.sentinel,
.One => switch (@typeInfo(info.child)) {
.Array => |array_info| return array_info.sentinel,
else => {},
},
else => {},
}
},
else => {},
}
@compileError("type '" ++ @typeName(T) ++ "' cannot possibly have a sentinel");
}
test "std.meta.sentinel" {
testSentinel();
comptime testSentinel();
}
fn testSentinel() void {
testing.expectEqual(@as(u8, 0), sentinel([:0]u8).?);
testing.expectEqual(@as(u8, 0), sentinel([*:0]u8).?);
testing.expectEqual(@as(u8, 0), sentinel([5:0]u8).?);
testing.expectEqual(@as(u8, 0), sentinel(*const [5:0]u8).?);
testing.expect(sentinel([]u8) == null);
testing.expect(sentinel([*]u8) == null);
testing.expect(sentinel([5]u8) == null);
testing.expect(sentinel(*const [5]u8) == null);
}
/// Given a "memory span" type, returns the same type except with the given sentinel value.
pub fn Sentinel(comptime T: type, comptime sentinel_val: Elem(T)) type {
switch (@typeInfo(T)) {
.Pointer => |info| switch (info.size) {
.One => switch (@typeInfo(info.child)) {
.Array => |array_info| return @Type(.{ .Pointer = .{
.size = info.size,
.is_const = info.is_const,
.is_volatile = info.is_volatile,
.alignment = info.alignment,
.child = @Type(.{ .Array = .{
.len = array_info.len,
.child = array_info.child,
.sentinel = sentinel_val,
}}),
.is_allowzero = info.is_allowzero,
.sentinel = info.sentinel,
}}),
else => {},
},
.Many, .Slice => return @Type(.{ .Pointer = .{
.size = info.size,
.is_const = info.is_const,
.is_volatile = info.is_volatile,
.alignment = info.alignment,
.child = info.child,
.is_allowzero = info.is_allowzero,
.sentinel = sentinel_val,
}}),
else => {},
},
.Optional => |info| switch (@typeInfo(info.child)) {
.Pointer => |ptr_info| switch (ptr_info.size) {
.Many => return @Type(.{ .Optional = .{ .child = @Type(.{ .Pointer = .{
.size = ptr_info.size,
.is_const = ptr_info.is_const,
.is_volatile = ptr_info.is_volatile,
.alignment = ptr_info.alignment,
.child = ptr_info.child,
.is_allowzero = ptr_info.is_allowzero,
.sentinel = sentinel_val,
}})}}),
else => {},
},
else => {},
},
else => {},
}
@compileError("Unable to derive a sentinel pointer type from " ++ @typeName(T));
}
/// Takes a Slice or Many Pointer and returns it with the Type modified to have the given sentinel value.
/// This function assumes the caller has verified the memory contains the sentinel value.
pub fn assumeSentinel(p: anytype, comptime sentinel_val: Elem(@TypeOf(p))) Sentinel(@TypeOf(p), sentinel_val) {
const T = @TypeOf(p);
const ReturnType = Sentinel(T, sentinel_val);
switch (@typeInfo(T)) {
.Pointer => |info| switch (info.size) {
.Slice => return @bitCast(ReturnType, p),
.Many, .One => return @ptrCast(ReturnType, p),
.C => {},
},
.Optional => |info| switch (@typeInfo(info.child)) {
.Pointer => |ptr_info| switch (ptr_info.size) {
.Many => return @ptrCast(ReturnType, p),
else => {},
},
else => {},
},
else => {},
}
@compileError("Unable to derive a sentinel pointer type from " ++ @typeName(T));
}
test "std.meta.assumeSentinel" {
testing.expect([*:0]u8 == @TypeOf(assumeSentinel(@as([*]u8 , undefined), 0)));
testing.expect([:0]u8 == @TypeOf(assumeSentinel(@as([]u8 , undefined), 0)));
testing.expect([*:0]const u8 == @TypeOf(assumeSentinel(@as([*]const u8, undefined), 0)));
testing.expect([:0]const u8 == @TypeOf(assumeSentinel(@as([]const u8 , undefined), 0)));
testing.expect([*:0]u16 == @TypeOf(assumeSentinel(@as([*]u16 , undefined), 0)));
testing.expect([:0]const u16 == @TypeOf(assumeSentinel(@as([]const u16, undefined), 0)));
testing.expect([*:3]u8 == @TypeOf(assumeSentinel(@as([*:1]u8 , undefined), 3)));
testing.expect([:null]?[*]u8 == @TypeOf(assumeSentinel(@as([]?[*]u8 , undefined), null)));
testing.expect([*:null]?[*]u8 == @TypeOf(assumeSentinel(@as([*]?[*]u8 , undefined), null)));
testing.expect(*[10:0]u8 == @TypeOf(assumeSentinel(@as(*[10]u8 , undefined), 0)));
testing.expect(?[*:0]u8 == @TypeOf(assumeSentinel(@as(?[*]u8 , undefined), 0)));
}
pub fn containerLayout(comptime T: type) TypeInfo.ContainerLayout {
return switch (@typeInfo(T)) {
.Struct => |info| info.layout,
.Enum => |info| info.layout,
.Union => |info| info.layout,
else => @compileError("Expected struct, enum or union type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.containerLayout" {
const E1 = enum {
A,
};
const E2 = packed enum {
A,
};
const E3 = extern enum {
A,
};
const S1 = struct {};
const S2 = packed struct {};
const S3 = extern struct {};
const U1 = union {
a: u8,
};
const U2 = packed union {
a: u8,
};
const U3 = extern union {
a: u8,
};
testing.expect(containerLayout(E1) == .Auto);
testing.expect(containerLayout(E2) == .Packed);
testing.expect(containerLayout(E3) == .Extern);
testing.expect(containerLayout(S1) == .Auto);
testing.expect(containerLayout(S2) == .Packed);
testing.expect(containerLayout(S3) == .Extern);
testing.expect(containerLayout(U1) == .Auto);
testing.expect(containerLayout(U2) == .Packed);
testing.expect(containerLayout(U3) == .Extern);
}
pub fn declarations(comptime T: type) []const TypeInfo.Declaration {
return switch (@typeInfo(T)) {
.Struct => |info| info.decls,
.Enum => |info| info.decls,
.Union => |info| info.decls,
.Opaque => |info| info.decls,
else => @compileError("Expected struct, enum, union, or opaque type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.declarations" {
const E1 = enum {
A,
fn a() void {}
};
const S1 = struct {
fn a() void {}
};
const U1 = union {
a: u8,
fn a() void {}
};
const O1 = opaque {
fn a() void {}
};
const decls = comptime [_][]const TypeInfo.Declaration{
declarations(E1),
declarations(S1),
declarations(U1),
declarations(O1),
};
inline for (decls) |decl| {
testing.expect(decl.len == 1);
testing.expect(comptime mem.eql(u8, decl[0].name, "a"));
}
}
pub fn declarationInfo(comptime T: type, comptime decl_name: []const u8) TypeInfo.Declaration {
inline for (comptime declarations(T)) |decl| {
if (comptime mem.eql(u8, decl.name, decl_name))
return decl;
}
@compileError("'" ++ @typeName(T) ++ "' has no declaration '" ++ decl_name ++ "'");
}
test "std.meta.declarationInfo" {
const E1 = enum {
A,
fn a() void {}
};
const S1 = struct {
fn a() void {}
};
const U1 = union {
a: u8,
fn a() void {}
};
const infos = comptime [_]TypeInfo.Declaration{
declarationInfo(E1, "a"),
declarationInfo(S1, "a"),
declarationInfo(U1, "a"),
};
inline for (infos) |info| {
testing.expect(comptime mem.eql(u8, info.name, "a"));
testing.expect(!info.is_pub);
}
}
pub fn fields(comptime T: type) switch (@typeInfo(T)) {
.Struct => []const TypeInfo.StructField,
.Union => []const TypeInfo.UnionField,
.ErrorSet => []const TypeInfo.Error,
.Enum => []const TypeInfo.EnumField,
else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"),
} {
return switch (@typeInfo(T)) {
.Struct => |info| info.fields,
.Union => |info| info.fields,
.Enum => |info| info.fields,
.ErrorSet => |errors| errors.?, // must be non global error set
else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.fields" {
const E1 = enum {
A,
};
const E2 = error{A};
const S1 = struct {
a: u8,
};
const U1 = union {
a: u8,
};
const e1f = comptime fields(E1);
const e2f = comptime fields(E2);
const sf = comptime fields(S1);
const uf = comptime fields(U1);
testing.expect(e1f.len == 1);
testing.expect(e2f.len == 1);
testing.expect(sf.len == 1);
testing.expect(uf.len == 1);
testing.expect(mem.eql(u8, e1f[0].name, "A"));
testing.expect(mem.eql(u8, e2f[0].name, "A"));
testing.expect(mem.eql(u8, sf[0].name, "a"));
testing.expect(mem.eql(u8, uf[0].name, "a"));
testing.expect(comptime sf[0].field_type == u8);
testing.expect(comptime uf[0].field_type == u8);
}
pub fn fieldInfo(comptime T: type, comptime field_name: []const u8) switch (@typeInfo(T)) {
.Struct => TypeInfo.StructField,
.Union => TypeInfo.UnionField,
.ErrorSet => TypeInfo.Error,
.Enum => TypeInfo.EnumField,
else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"),
} {
inline for (comptime fields(T)) |field| {
if (comptime mem.eql(u8, field.name, field_name))
return field;
}
@compileError("'" ++ @typeName(T) ++ "' has no field '" ++ field_name ++ "'");
}
test "std.meta.fieldInfo" {
const E1 = enum {
A,
};
const E2 = error{A};
const S1 = struct {
a: u8,
};
const U1 = union {
a: u8,
};
const e1f = comptime fieldInfo(E1, "A");
const e2f = comptime fieldInfo(E2, "A");
const sf = comptime fieldInfo(S1, "a");
const uf = comptime fieldInfo(U1, "a");
testing.expect(mem.eql(u8, e1f.name, "A"));
testing.expect(mem.eql(u8, e2f.name, "A"));
testing.expect(mem.eql(u8, sf.name, "a"));
testing.expect(mem.eql(u8, uf.name, "a"));
testing.expect(comptime sf.field_type == u8);
testing.expect(comptime uf.field_type == u8);
}
pub fn fieldNames(comptime T: type) *const [fields(T).len][]const u8 {
comptime {
const fieldInfos = fields(T);
var names: [fieldInfos.len][]const u8 = undefined;
for (fieldInfos) |field, i| {
names[i] = field.name;
}
return &names;
}
}
test "std.meta.fieldNames" {
const E1 = enum {
A, B
};
const E2 = error{A};
const S1 = struct {
a: u8,
};
const U1 = union {
a: u8,
b: void,
};
const e1names = fieldNames(E1);
const e2names = fieldNames(E2);
const s1names = fieldNames(S1);
const u1names = fieldNames(U1);
testing.expect(e1names.len == 2);
testing.expectEqualSlices(u8, e1names[0], "A");
testing.expectEqualSlices(u8, e1names[1], "B");
testing.expect(e2names.len == 1);
testing.expectEqualSlices(u8, e2names[0], "A");
testing.expect(s1names.len == 1);
testing.expectEqualSlices(u8, s1names[0], "a");
testing.expect(u1names.len == 2);
testing.expectEqualSlices(u8, u1names[0], "a");
testing.expectEqualSlices(u8, u1names[1], "b");
}
pub fn TagType(comptime T: type) type {
return switch (@typeInfo(T)) {
.Enum => |info| info.tag_type,
.Union => |info| if (info.tag_type) |Tag| Tag else null,
else => @compileError("expected enum or union type, found '" ++ @typeName(T) ++ "'"),
};
}
test "std.meta.TagType" {
const E = enum(u8) {
C = 33,
D,
};
const U = union(E) {
C: u8,
D: u16,
};
testing.expect(TagType(E) == u8);
testing.expect(TagType(U) == E);
}
///Returns the active tag of a tagged union
pub fn activeTag(u: anytype) @TagType(@TypeOf(u)) {
const T = @TypeOf(u);
return @as(@TagType(T), u);
}
test "std.meta.activeTag" {
const UE = enum {
Int,
Float,
};
const U = union(UE) {
Int: u32,
Float: f32,
};
var u = U{ .Int = 32 };
testing.expect(activeTag(u) == UE.Int);
u = U{ .Float = 112.9876 };
testing.expect(activeTag(u) == UE.Float);
}
///Given a tagged union type, and an enum, return the type of the union
/// field corresponding to the enum tag.
pub fn TagPayloadType(comptime U: type, tag: @TagType(U)) type {
testing.expect(trait.is(.Union)(U));
const info = @typeInfo(U).Union;
const tag_info = @typeInfo(@TagType(U)).Enum;
inline for (info.fields) |field_info| {
if (comptime mem.eql(u8, field_info.name, @tagName(tag)))
return field_info.field_type;
}
unreachable;
}
test "std.meta.TagPayloadType" {
const Event = union(enum) {
Moved: struct {
from: i32,
to: i32,
},
};
const MovedEvent = TagPayloadType(Event, Event.Moved);
var e: Event = undefined;
testing.expect(MovedEvent == @TypeOf(e.Moved));
}
/// Compares two of any type for equality. Containers are compared on a field-by-field basis,
/// where possible. Pointers are not followed.
pub fn eql(a: anytype, b: @TypeOf(a)) bool {
const T = @TypeOf(a);
switch (@typeInfo(T)) {
.Struct => |info| {
inline for (info.fields) |field_info| {
if (!eql(@field(a, field_info.name), @field(b, field_info.name))) return false;
}
return true;
},
.ErrorUnion => {
if (a) |a_p| {
if (b) |b_p| return eql(a_p, b_p) else |_| return false;
} else |a_e| {
if (b) |_| return false else |b_e| return a_e == b_e;
}
},
.Union => |info| {
if (info.tag_type) |Tag| {
const tag_a = activeTag(a);
const tag_b = activeTag(b);
if (tag_a != tag_b) return false;
inline for (info.fields) |field_info| {
if (@field(Tag, field_info.name) == tag_a) {
return eql(@field(a, field_info.name), @field(b, field_info.name));
}
}
return false;
}
@compileError("cannot compare untagged union type " ++ @typeName(T));
},
.Array => {
if (a.len != b.len) return false;
for (a) |e, i|
if (!eql(e, b[i])) return false;
return true;
},
.Vector => |info| {
var i: usize = 0;
while (i < info.len) : (i += 1) {
if (!eql(a[i], b[i])) return false;
}
return true;
},
.Pointer => |info| {
return switch (info.size) {
.One, .Many, .C => a == b,
.Slice => a.ptr == b.ptr and a.len == b.len,
};
},
.Optional => {
if (a == null and b == null) return true;
if (a == null or b == null) return false;
return eql(a.?, b.?);
},
else => return a == b,
}
}
test "std.meta.eql" {
const S = struct {
a: u32,
b: f64,
c: [5]u8,
};
const U = union(enum) {
s: S,
f: ?f32,
};
const s_1 = S{
.a = 134,
.b = 123.3,
.c = "12345".*,
};
const s_2 = S{
.a = 1,
.b = 123.3,
.c = "54321".*,
};
var s_3 = S{
.a = 134,
.b = 123.3,
.c = "12345".*,
};
const u_1 = U{ .f = 24 };
const u_2 = U{ .s = s_1 };
const u_3 = U{ .f = 24 };
testing.expect(eql(s_1, s_3));
testing.expect(eql(&s_1, &s_1));
testing.expect(!eql(&s_1, &s_3));
testing.expect(eql(u_1, u_3));
testing.expect(!eql(u_1, u_2));
var a1 = "abcdef".*;
var a2 = "abcdef".*;
var a3 = "ghijkl".*;
testing.expect(eql(a1, a2));
testing.expect(!eql(a1, a3));
testing.expect(!eql(a1[0..], a2[0..]));
const EU = struct {
fn tst(err: bool) !u8 {
if (err) return error.Error;
return @as(u8, 5);
}
};
testing.expect(eql(EU.tst(true), EU.tst(true)));
testing.expect(eql(EU.tst(false), EU.tst(false)));
testing.expect(!eql(EU.tst(false), EU.tst(true)));
var v1 = @splat(4, @as(u32, 1));
var v2 = @splat(4, @as(u32, 1));
var v3 = @splat(4, @as(u32, 2));
testing.expect(eql(v1, v2));
testing.expect(!eql(v1, v3));
}
test "intToEnum with error return" {
const E1 = enum {
A,
};
const E2 = enum {
A,
B,
};
var zero: u8 = 0;
var one: u16 = 1;
testing.expect(intToEnum(E1, zero) catch unreachable == E1.A);
testing.expect(intToEnum(E2, one) catch unreachable == E2.B);
testing.expectError(error.InvalidEnumTag, intToEnum(E1, one));
}
pub const IntToEnumError = error{InvalidEnumTag};
pub fn intToEnum(comptime Tag: type, tag_int: anytype) IntToEnumError!Tag {
inline for (@typeInfo(Tag).Enum.fields) |f| {
const this_tag_value = @field(Tag, f.name);
if (tag_int == @enumToInt(this_tag_value)) {
return this_tag_value;
}
}
return error.InvalidEnumTag;
}
/// Given a type and a name, return the field index according to source order.
/// Returns `null` if the field is not found.
pub fn fieldIndex(comptime T: type, comptime name: []const u8) ?comptime_int {
inline for (fields(T)) |field, i| {
if (mem.eql(u8, field.name, name))
return i;
}
return null;
}
pub const refAllDecls = @compileError("refAllDecls has been moved from std.meta to std.testing");
/// Returns a slice of pointers to public declarations of a namespace.
pub fn declList(comptime Namespace: type, comptime Decl: type) []const *const Decl {
const S = struct {
fn declNameLessThan(context: void, lhs: *const Decl, rhs: *const Decl) bool {
return mem.lessThan(u8, lhs.name, rhs.name);
}
};
comptime {
const decls = declarations(Namespace);
var array: [decls.len]*const Decl = undefined;
for (decls) |decl, i| {
array[i] = &@field(Namespace, decl.name);
}
std.sort.sort(*const Decl, &array, {}, S.declNameLessThan);
return &array;
}
}
pub const IntType = @compileError("replaced by std.meta.Int");
pub fn Int(comptime signedness: builtin.Signedness, comptime bit_count: u16) type {
return @Type(TypeInfo{
.Int = .{
.signedness = signedness,
.bits = bit_count,
},
});
}
pub fn Vector(comptime len: u32, comptime child: type) type {
return @Type(TypeInfo{
.Vector = .{
.len = len,
.child = child,
},
});
}
/// Given a type and value, cast the value to the type as c would.
/// This is for translate-c and is not intended for general use.
pub fn cast(comptime DestType: type, target: anytype) DestType {
const TargetType = @TypeOf(target);
switch (@typeInfo(DestType)) {
.Pointer => |dest_ptr| {
switch (@typeInfo(TargetType)) {
.Int, .ComptimeInt => {
return @intToPtr(DestType, target);
},
.Pointer => |ptr| {
return @ptrCast(DestType, @alignCast(dest_ptr.alignment, target));
},
.Optional => |opt| {
if (@typeInfo(opt.child) == .Pointer) {
return @ptrCast(DestType, @alignCast(dest_ptr.alignment, target));
}
},
else => {},
}
},
.Optional => |dest_opt| {
if (@typeInfo(dest_opt.child) == .Pointer) {
const dest_ptr = @typeInfo(dest_opt.child).Pointer;
switch (@typeInfo(TargetType)) {
.Int, .ComptimeInt => {
return @intToPtr(DestType, target);
},
.Pointer => {
return @ptrCast(DestType, @alignCast(dest_ptr.alignment, target));
},
.Optional => |target_opt| {
if (@typeInfo(target_opt.child) == .Pointer) {
return @ptrCast(DestType, @alignCast(dest_ptr.alignment, target));
}
},
else => {},
}
}
},
.Enum => {
if (@typeInfo(TargetType) == .Int or @typeInfo(TargetType) == .ComptimeInt) {
return @intToEnum(DestType, target);
}
},
.Int, .ComptimeInt => {
switch (@typeInfo(TargetType)) {
.Pointer => {
return @intCast(DestType, @ptrToInt(target));
},
.Optional => |opt| {
if (@typeInfo(opt.child) == .Pointer) {
return @intCast(DestType, @ptrToInt(target));
}
},
.Enum => {
return @intCast(DestType, @enumToInt(target));
},
.Int, .ComptimeInt => {
return @intCast(DestType, target);
},
else => {},
}
},
else => {},
}
return @as(DestType, target);
}
test "std.meta.cast" {
const E = enum(u2) {
Zero,
One,
Two,
};
var i = @as(i64, 10);
testing.expect(cast(*u8, 16) == @intToPtr(*u8, 16));
testing.expect(cast(*u64, &i).* == @as(u64, 10));
testing.expect(cast(*i64, @as(?*align(1) i64, &i)) == &i);
testing.expect(cast(?*u8, 2) == @intToPtr(*u8, 2));
testing.expect(cast(?*i64, @as(*align(1) i64, &i)) == &i);
testing.expect(cast(?*i64, @as(?*align(1) i64, &i)) == &i);
testing.expect(cast(E, 1) == .One);
testing.expectEqual(@as(u32, 4), cast(u32, @intToPtr(*u32, 4)));
testing.expectEqual(@as(u32, 4), cast(u32, @intToPtr(?*u32, 4)));
testing.expectEqual(@as(u32, 10), cast(u32, @as(u64, 10)));
testing.expectEqual(@as(u8, 2), cast(u8, E.Two));
}
/// Given a value returns its size as C's sizeof operator would.
/// This is for translate-c and is not intended for general use.
pub fn sizeof(target: anytype) usize {
switch (@typeInfo(@TypeOf(target))) {
.Type => return @sizeOf(target),
.Float, .Int, .Struct, .Union, .Enum => return @sizeOf(@TypeOf(target)),
.ComptimeFloat => return @sizeOf(f64), // TODO c_double #3999
.ComptimeInt => {
// TODO to get the correct result we have to translate
// `1073741824 * 4` as `int(1073741824) *% int(4)` since
// sizeof(1073741824 * 4) != sizeof(4294967296).
// TODO test if target fits in int, long or long long
return @sizeOf(c_int);
},
else => @compileError("TODO implement std.meta.sizeof for type " ++ @typeName(@TypeOf(target))),
}
}
test "sizeof" {
const E = extern enum(c_int) { One, _ };
const S = extern struct { a: u32 };
testing.expect(sizeof(u32) == 4);
testing.expect(sizeof(@as(u32, 2)) == 4);
testing.expect(sizeof(2) == @sizeOf(c_int));
testing.expect(sizeof(E) == @sizeOf(c_int));
testing.expect(sizeof(E.One) == @sizeOf(c_int));
testing.expect(sizeof(S) == 4);
}
/// For a given function type, returns a tuple type which fields will
/// correspond to the argument types.
///
/// Examples:
/// - `ArgsTuple(fn() void)` ⇒ `tuple { }`
/// - `ArgsTuple(fn(a: u32) u32)` ⇒ `tuple { u32 }`
/// - `ArgsTuple(fn(a: u32, b: f16) noreturn)` ⇒ `tuple { u32, f16 }`
pub fn ArgsTuple(comptime Function: type) type {
const info = @typeInfo(Function);
if (info != .Fn)
@compileError("ArgsTuple expects a function type");
const function_info = info.Fn;
if (function_info.is_generic)
@compileError("Cannot create ArgsTuple for generic function");
if (function_info.is_var_args)
@compileError("Cannot create ArgsTuple for variadic function");
var argument_field_list: [function_info.args.len]std.builtin.TypeInfo.StructField = undefined;
inline for (function_info.args) |arg, i| {
const T = arg.arg_type.?;
@setEvalBranchQuota(10_000);
var num_buf: [128]u8 = undefined;
argument_field_list[i] = std.builtin.TypeInfo.StructField{
.name = std.fmt.bufPrint(&num_buf, "{d}", .{i}) catch unreachable,
.field_type = T,
.default_value = @as(?T, null),
.is_comptime = false,
.alignment = if (@sizeOf(T) > 0) @alignOf(T) else 0,
};
}
return @Type(std.builtin.TypeInfo{
.Struct = std.builtin.TypeInfo.Struct{
.is_tuple = true,
.layout = .Auto,
.decls = &[_]std.builtin.TypeInfo.Declaration{},
.fields = &argument_field_list,
},
});
}
/// For a given anonymous list of types, returns a new tuple type
/// with those types as fields.
///
/// Examples:
/// - `Tuple(&[_]type {})` ⇒ `tuple { }`
/// - `Tuple(&[_]type {f32})` ⇒ `tuple { f32 }`
/// - `Tuple(&[_]type {f32,u32})` ⇒ `tuple { f32, u32 }`
pub fn Tuple(comptime types: []const type) type {
var tuple_fields: [types.len]std.builtin.TypeInfo.StructField = undefined;
inline for (types) |T, i| {
@setEvalBranchQuota(10_000);
var num_buf: [128]u8 = undefined;
tuple_fields[i] = std.builtin.TypeInfo.StructField{
.name = std.fmt.bufPrint(&num_buf, "{d}", .{i}) catch unreachable,
.field_type = T,
.default_value = @as(?T, null),
.is_comptime = false,
.alignment = if (@sizeOf(T) > 0) @alignOf(T) else 0,
};
}
return @Type(std.builtin.TypeInfo{
.Struct = std.builtin.TypeInfo.Struct{
.is_tuple = true,
.layout = .Auto,
.decls = &[_]std.builtin.TypeInfo.Declaration{},
.fields = &tuple_fields,
},
});
}
const TupleTester = struct {
fn assertTypeEqual(comptime Expected: type, comptime Actual: type) void {
if (Expected != Actual)
@compileError("Expected type " ++ @typeName(Expected) ++ ", but got type " ++ @typeName(Actual));
}
fn assertTuple(comptime expected: anytype, comptime Actual: type) void {
const info = @typeInfo(Actual);
if (info != .Struct)
@compileError("Expected struct type");
if (!info.Struct.is_tuple)
@compileError("Struct type must be a tuple type");
const fields_list = std.meta.fields(Actual);
if (expected.len != fields_list.len)
@compileError("Argument count mismatch");
inline for (fields_list) |fld, i| {
if (expected[i] != fld.field_type) {
@compileError("Field " ++ fld.name ++ " expected to be type " ++ @typeName(expected[i]) ++ ", but was type " ++ @typeName(fld.field_type));
}
}
}
};
test "ArgsTuple" {
TupleTester.assertTuple(.{}, ArgsTuple(fn () void));
TupleTester.assertTuple(.{u32}, ArgsTuple(fn (a: u32) []const u8));
TupleTester.assertTuple(.{ u32, f16 }, ArgsTuple(fn (a: u32, b: f16) noreturn));
TupleTester.assertTuple(.{ u32, f16, []const u8, void }, ArgsTuple(fn (a: u32, b: f16, c: []const u8, void) noreturn));
}
test "Tuple" {
TupleTester.assertTuple(.{}, Tuple(&[_]type{}));
TupleTester.assertTuple(.{u32}, Tuple(&[_]type{u32}));
TupleTester.assertTuple(.{ u32, f16 }, Tuple(&[_]type{ u32, f16 }));
TupleTester.assertTuple(.{ u32, f16, []const u8, void }, Tuple(&[_]type{ u32, f16, []const u8, void }));
}