zig/lib/std/linked_list.zig

435 lines
13 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const Allocator = mem.Allocator;
/// A singly-linked list is headed by a single forward pointer. The elements
/// are singly linked for minimum space and pointer manipulation overhead at
/// the expense of O(n) removal for arbitrary elements. New elements can be
/// added to the list after an existing element or at the head of the list.
/// A singly-linked list may only be traversed in the forward direction.
/// Singly-linked lists are ideal for applications with large datasets and
/// few or no removals or for implementing a LIFO queue.
pub fn SinglyLinkedList(comptime T: type) type {
return struct {
const Self = @This();
/// Node inside the linked list wrapping the actual data.
pub const Node = struct {
next: ?*Node = null,
data: T,
pub const Data = T;
/// Insert a new node after the current one.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn insertAfter(node: *Node, new_node: *Node) void {
new_node.next = node.next;
node.next = new_node;
}
/// Remove a node from the list.
///
/// Arguments:
/// node: Pointer to the node to be removed.
/// Returns:
/// node removed
pub fn removeNext(node: *Node) ?*Node {
const next_node = node.next orelse return null;
node.next = next_node.next;
return next_node;
}
/// Iterate over the singly-linked list from this node, until the final node is found.
/// This operation is O(N).
pub fn findLast(node: *Node) *Node {
var it = node;
while (true) {
it = it.next orelse return it;
}
}
/// Iterate over each next node, returning the count of all nodes except the starting one.
/// This operation is O(N).
pub fn countChildren(node: *const Node) usize {
var count: usize = 0;
var it: ?*const Node = node;
while (it) |n| : (it = n.next) {
count += 1;
}
return count;
}
};
first: ?*Node = null,
/// Insert a new node at the head.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn prepend(list: *Self, new_node: *Node) void {
new_node.next = list.first;
list.first = new_node;
}
/// Remove a node from the list.
///
/// Arguments:
/// node: Pointer to the node to be removed.
pub fn remove(list: *Self, node: *Node) void {
if (list.first == node) {
list.first = node.next;
} else {
var current_elm = list.first.?;
while (current_elm.next != node) {
current_elm = current_elm.next.?;
}
current_elm.next = node.next;
}
}
/// Remove and return the first node in the list.
///
/// Returns:
/// A pointer to the first node in the list.
pub fn popFirst(list: *Self) ?*Node {
const first = list.first orelse return null;
list.first = first.next;
return first;
}
/// Iterate over all nodes, returning the count.
/// This operation is O(N).
pub fn len(list: Self) usize {
if (list.first) |n| {
return 1 + n.countChildren();
} else {
return 0;
}
}
};
}
test "basic SinglyLinkedList test" {
const L = SinglyLinkedList(u32);
var list = L{};
var one = L.Node{ .data = 1 };
var two = L.Node{ .data = 2 };
var three = L.Node{ .data = 3 };
var four = L.Node{ .data = 4 };
var five = L.Node{ .data = 5 };
list.prepend(&two); // {2}
two.insertAfter(&five); // {2, 5}
list.prepend(&one); // {1, 2, 5}
two.insertAfter(&three); // {1, 2, 3, 5}
three.insertAfter(&four); // {1, 2, 3, 4, 5}
// Traverse forwards.
{
var it = list.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
testing.expect(node.data == index);
index += 1;
}
}
_ = list.popFirst(); // {2, 3, 4, 5}
_ = list.remove(&five); // {2, 3, 4}
_ = two.removeNext(); // {2, 4}
testing.expect(list.first.?.data == 2);
testing.expect(list.first.?.next.?.data == 4);
testing.expect(list.first.?.next.?.next == null);
}
/// A tail queue is headed by a pair of pointers, one to the head of the
/// list and the other to the tail of the list. The elements are doubly
/// linked so that an arbitrary element can be removed without a need to
/// traverse the list. New elements can be added to the list before or
/// after an existing element, at the head of the list, or at the end of
/// the list. A tail queue may be traversed in either direction.
pub fn TailQueue(comptime T: type) type {
return struct {
const Self = @This();
/// Node inside the linked list wrapping the actual data.
pub const Node = struct {
prev: ?*Node = null,
next: ?*Node = null,
data: T,
};
first: ?*Node = null,
last: ?*Node = null,
len: usize = 0,
/// Insert a new node after an existing one.
///
/// Arguments:
/// node: Pointer to a node in the list.
/// new_node: Pointer to the new node to insert.
pub fn insertAfter(list: *Self, node: *Node, new_node: *Node) void {
new_node.prev = node;
if (node.next) |next_node| {
// Intermediate node.
new_node.next = next_node;
next_node.prev = new_node;
} else {
// Last element of the list.
new_node.next = null;
list.last = new_node;
}
node.next = new_node;
list.len += 1;
}
/// Insert a new node before an existing one.
///
/// Arguments:
/// node: Pointer to a node in the list.
/// new_node: Pointer to the new node to insert.
pub fn insertBefore(list: *Self, node: *Node, new_node: *Node) void {
new_node.next = node;
if (node.prev) |prev_node| {
// Intermediate node.
new_node.prev = prev_node;
prev_node.next = new_node;
} else {
// First element of the list.
new_node.prev = null;
list.first = new_node;
}
node.prev = new_node;
list.len += 1;
}
/// Concatenate list2 onto the end of list1, removing all entries from the former.
///
/// Arguments:
/// list1: the list to concatenate onto
/// list2: the list to be concatenated
pub fn concatByMoving(list1: *Self, list2: *Self) void {
const l2_first = list2.first orelse return;
if (list1.last) |l1_last| {
l1_last.next = list2.first;
l2_first.prev = list1.last;
list1.len += list2.len;
} else {
// list1 was empty
list1.first = list2.first;
list1.len = list2.len;
}
list1.last = list2.last;
list2.first = null;
list2.last = null;
list2.len = 0;
}
/// Insert a new node at the end of the list.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn append(list: *Self, new_node: *Node) void {
if (list.last) |last| {
// Insert after last.
list.insertAfter(last, new_node);
} else {
// Empty list.
list.prepend(new_node);
}
}
/// Insert a new node at the beginning of the list.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn prepend(list: *Self, new_node: *Node) void {
if (list.first) |first| {
// Insert before first.
list.insertBefore(first, new_node);
} else {
// Empty list.
list.first = new_node;
list.last = new_node;
new_node.prev = null;
new_node.next = null;
list.len = 1;
}
}
/// Remove a node from the list.
///
/// Arguments:
/// node: Pointer to the node to be removed.
pub fn remove(list: *Self, node: *Node) void {
if (node.prev) |prev_node| {
// Intermediate node.
prev_node.next = node.next;
} else {
// First element of the list.
list.first = node.next;
}
if (node.next) |next_node| {
// Intermediate node.
next_node.prev = node.prev;
} else {
// Last element of the list.
list.last = node.prev;
}
list.len -= 1;
assert(list.len == 0 or (list.first != null and list.last != null));
}
/// Remove and return the last node in the list.
///
/// Returns:
/// A pointer to the last node in the list.
pub fn pop(list: *Self) ?*Node {
const last = list.last orelse return null;
list.remove(last);
return last;
}
/// Remove and return the first node in the list.
///
/// Returns:
/// A pointer to the first node in the list.
pub fn popFirst(list: *Self) ?*Node {
const first = list.first orelse return null;
list.remove(first);
return first;
}
};
}
test "basic TailQueue test" {
const L = TailQueue(u32);
var list = L{};
var one = L.Node{ .data = 1 };
var two = L.Node{ .data = 2 };
var three = L.Node{ .data = 3 };
var four = L.Node{ .data = 4 };
var five = L.Node{ .data = 5 };
list.append(&two); // {2}
list.append(&five); // {2, 5}
list.prepend(&one); // {1, 2, 5}
list.insertBefore(&five, &four); // {1, 2, 4, 5}
list.insertAfter(&two, &three); // {1, 2, 3, 4, 5}
// Traverse forwards.
{
var it = list.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
testing.expect(node.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
testing.expect(node.data == (6 - index));
index += 1;
}
}
var first = list.popFirst(); // {2, 3, 4, 5}
var last = list.pop(); // {2, 3, 4}
list.remove(&three); // {2, 4}
testing.expect(list.first.?.data == 2);
testing.expect(list.last.?.data == 4);
testing.expect(list.len == 2);
}
test "TailQueue concatenation" {
const L = TailQueue(u32);
var list1 = L{};
var list2 = L{};
var one = L.Node{ .data = 1 };
var two = L.Node{ .data = 2 };
var three = L.Node{ .data = 3 };
var four = L.Node{ .data = 4 };
var five = L.Node{ .data = 5 };
list1.append(&one);
list1.append(&two);
list2.append(&three);
list2.append(&four);
list2.append(&five);
list1.concatByMoving(&list2);
testing.expect(list1.last == &five);
testing.expect(list1.len == 5);
testing.expect(list2.first == null);
testing.expect(list2.last == null);
testing.expect(list2.len == 0);
// Traverse forwards.
{
var it = list1.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
testing.expect(node.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list1.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
testing.expect(node.data == (6 - index));
index += 1;
}
}
// Swap them back, this verifies that concating to an empty list works.
list2.concatByMoving(&list1);
// Traverse forwards.
{
var it = list2.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
testing.expect(node.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list2.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
testing.expect(node.data == (6 - index));
index += 1;
}
}
}