zig/lib/std/array_list.zig

1124 lines
40 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const Allocator = mem.Allocator;
/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
pub fn ArrayList(comptime T: type) type {
return ArrayListAligned(T, null);
}
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAligned(T, null);
}
}
return struct {
const Self = @This();
/// Content of the ArrayList
items: Slice,
capacity: usize,
allocator: *Allocator,
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn init(allocator: *Allocator) Self {
return Self{
.items = &[_]T{},
.capacity = 0,
.allocator = allocator,
};
}
/// Initialize with capacity to hold at least num elements.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
var self = Self.init(allocator);
const new_memory = try self.allocator.allocAdvanced(T, alignment, num, .at_least);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
return self;
}
/// Release all allocated memory.
pub fn deinit(self: Self) void {
self.allocator.free(self.allocatedSlice());
}
pub const span = @compileError("deprecated: use `items` field directly");
pub const toSlice = @compileError("deprecated: use `items` field directly");
pub const toSliceConst = @compileError("deprecated: use `items` field directly");
pub const at = @compileError("deprecated: use `list.items[i]`");
pub const ptrAt = @compileError("deprecated: use `&list.items[i]`");
pub const setOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.items[i] = item`");
pub const set = @compileError("deprecated: use `list.items[i] = item`");
pub const swapRemoveOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.swapRemove(i)`");
/// ArrayList takes ownership of the passed in slice. The slice must have been
/// allocated with `allocator`.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn fromOwnedSlice(allocator: *Allocator, slice: Slice) Self {
return Self{
.items = slice,
.capacity = slice.len,
.allocator = allocator,
};
}
pub fn toUnmanaged(self: Self) ArrayListAlignedUnmanaged(T, alignment) {
return .{ .items = self.items, .capacity = self.capacity };
}
/// The caller owns the returned memory. ArrayList becomes empty.
pub fn toOwnedSlice(self: *Self) Slice {
const allocator = self.allocator;
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
self.* = init(allocator);
return result;
}
/// Insert `item` at index `n` by moving `list[n .. list.len]` to make room.
/// This operation is O(N).
pub fn insert(self: *Self, n: usize, item: T) !void {
try self.ensureCapacity(self.items.len + 1);
self.items.len += 1;
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
self.items[n] = item;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
pub fn insertSlice(self: *Self, i: usize, items: SliceConst) !void {
try self.ensureCapacity(self.items.len + items.len);
self.items.len += items.len;
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
mem.copy(T, self.items[i .. i + items.len], items);
}
/// Replace range of elements `list[start..start+len]` with `new_items`
/// grows list if `len < new_items.len`. may allocate
/// shrinks list if `len > new_items.len`
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: SliceConst) !void {
const after_range = start + len;
const range = self.items[start..after_range];
if (range.len == new_items.len)
mem.copy(T, range, new_items)
else if (range.len < new_items.len) {
const first = new_items[0..range.len];
const rest = new_items[range.len..];
mem.copy(T, range, first);
try self.insertSlice(after_range, rest);
} else {
mem.copy(T, range, new_items);
const after_subrange = start + new_items.len;
for (self.items[after_range..]) |item, i| {
self.items[after_subrange..][i] = item;
}
self.items.len -= len - new_items.len;
}
}
/// Extend the list by 1 element. Allocates more memory as necessary.
pub fn append(self: *Self, item: T) !void {
const new_item_ptr = try self.addOne();
new_item_ptr.* = item;
}
/// Extend the list by 1 element, but asserting `self.capacity`
/// is sufficient to hold an additional item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i` from the list and return its value.
/// Asserts the array has at least one item.
/// This operation is O(N).
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.items.len - 1;
if (newlen == i) return self.pop();
const old_item = self.items[i];
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
self.items[newlen] = undefined;
self.items.len = newlen;
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// This operation is O(1).
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
pub fn appendSlice(self: *Self, items: SliceConst) !void {
try self.ensureCapacity(self.items.len + items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list, asserting the capacity is already
/// enough to store the new items.
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
const oldlen = self.items.len;
const newlen = self.items.len + items.len;
self.items.len = newlen;
mem.copy(T, self.items[oldlen..], items);
}
pub usingnamespace if (T != u8) struct {} else struct {
pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
/// Deprecated: use `writer`
pub const outStream = writer;
/// Same as `append` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
fn appendWrite(self: *Self, m: []const u8) !usize {
try self.appendSlice(m);
return m.len;
}
};
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
pub fn appendNTimes(self: *Self, value: T, n: usize) !void {
const old_len = self.items.len;
try self.resize(self.items.len + n);
mem.set(T, self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// Asserts the capacity is enough.
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
mem.set(T, self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list's length to `new_len`.
/// Does not initialize added items if any.
pub fn resize(self: *Self, new_len: usize) !void {
try self.ensureCapacity(new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// Invalidates element pointers.
pub fn shrink(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items = self.allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
error.OutOfMemory => { // no problem, capacity is still correct then.
self.items.len = new_len;
return;
},
};
self.capacity = new_len;
}
/// Reduce length to `new_len`.
/// Invalidates element pointers.
/// Keeps capacity the same.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
pub fn ensureCapacity(self: *Self, new_capacity: usize) !void {
var better_capacity = self.capacity;
if (better_capacity >= new_capacity) return;
while (true) {
better_capacity += better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
// TODO This can be optimized to avoid needlessly copying undefined memory.
const new_memory = try self.allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values. This operation does not invalidate any
/// element pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list is resized.
pub fn addOne(self: *Self) !*T {
const newlen = self.items.len + 1;
try self.ensureCapacity(newlen);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is already space for the new item without allocating more.
/// The returned pointer becomes invalid when the list is resized.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
pub fn addManyAsArray(self: *Self, comptime n: usize) !*[n]T {
const prev_len = self.items.len;
try self.resize(self.items.len + n);
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Asserts the list has at least one item.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list.
/// If the list is empty, returns `null`.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
// For a nicer API, `items.len` is the length, not the capacity.
// This requires "unsafe" slicing.
fn allocatedSlice(self: Self) Slice {
return self.items.ptr[0..self.capacity];
}
};
}
/// Bring-your-own allocator with every function call.
/// Initialize directly and deinitialize with `deinit` or use `toOwnedSlice`.
pub fn ArrayListUnmanaged(comptime T: type) type {
return ArrayListAlignedUnmanaged(T, null);
}
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
if (alignment) |a| {
if (a == @alignOf(T)) {
return ArrayListAlignedUnmanaged(T, null);
}
}
return struct {
const Self = @This();
/// Content of the ArrayList.
items: Slice = &[_]T{},
capacity: usize = 0,
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
/// Initialize with capacity to hold at least num elements.
/// Deinitialize with `deinit` or use `toOwnedSlice`.
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
var self = Self{};
const new_memory = try allocator.allocAdvanced(T, alignment, num, .at_least);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
return self;
}
/// Release all allocated memory.
pub fn deinit(self: *Self, allocator: *Allocator) void {
allocator.free(self.allocatedSlice());
self.* = undefined;
}
pub fn toManaged(self: *Self, allocator: *Allocator) ArrayListAligned(T, alignment) {
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
}
/// The caller owns the returned memory. ArrayList becomes empty.
pub fn toOwnedSlice(self: *Self, allocator: *Allocator) Slice {
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
self.* = Self{};
return result;
}
/// Insert `item` at index `n`. Moves `list[n .. list.len]`
/// to make room.
pub fn insert(self: *Self, allocator: *Allocator, n: usize, item: T) !void {
try self.ensureCapacity(allocator, self.items.len + 1);
self.items.len += 1;
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
self.items[n] = item;
}
/// Insert slice `items` at index `i`. Moves
/// `list[i .. list.len]` to make room.
/// This operation is O(N).
pub fn insertSlice(self: *Self, allocator: *Allocator, i: usize, items: SliceConst) !void {
try self.ensureCapacity(allocator, self.items.len + items.len);
self.items.len += items.len;
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
mem.copy(T, self.items[i .. i + items.len], items);
}
/// Replace range of elements `list[start..start+len]` with `new_items`
/// grows list if `len < new_items.len`. may allocate
/// shrinks list if `len > new_items.len`
pub fn replaceRange(self: *Self, allocator: *Allocator, start: usize, len: usize, new_items: SliceConst) !void {
var managed = self.toManaged(allocator);
try managed.replaceRange(start, len, new_items);
self.* = managed.toUnmanaged();
}
/// Extend the list by 1 element. Allocates more memory as necessary.
pub fn append(self: *Self, allocator: *Allocator, item: T) !void {
const new_item_ptr = try self.addOne(allocator);
new_item_ptr.* = item;
}
/// Extend the list by 1 element, but asserting `self.capacity`
/// is sufficient to hold an additional item.
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
/// Remove the element at index `i` from the list and return its value.
/// Asserts the array has at least one item.
/// This operation is O(N).
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.items.len - 1;
if (newlen == i) return self.pop();
const old_item = self.items[i];
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
self.items[newlen] = undefined;
self.items.len = newlen;
return old_item;
}
/// Removes the element at the specified index and returns it.
/// The empty slot is filled from the end of the list.
/// This operation is O(1).
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
const old_item = self.items[i];
self.items[i] = self.pop();
return old_item;
}
/// Append the slice of items to the list. Allocates more
/// memory as necessary.
pub fn appendSlice(self: *Self, allocator: *Allocator, items: SliceConst) !void {
try self.ensureCapacity(allocator, self.items.len + items.len);
self.appendSliceAssumeCapacity(items);
}
/// Append the slice of items to the list, asserting the capacity is enough
/// to store the new items.
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
const oldlen = self.items.len;
const newlen = self.items.len + items.len;
self.items.len = newlen;
mem.copy(T, self.items[oldlen..], items);
}
/// Same as `append` except it returns the number of bytes written, which is always the same
/// as `m.len`. The purpose of this function existing is to match `std.io.OutStream` API.
/// This function may be called only when `T` is `u8`.
fn appendWrite(self: *Self, allocator: *Allocator, m: []const u8) !usize {
try self.appendSlice(allocator, m);
return m.len;
}
/// Append a value to the list `n` times.
/// Allocates more memory as necessary.
pub fn appendNTimes(self: *Self, allocator: *Allocator, value: T, n: usize) !void {
const old_len = self.items.len;
try self.resize(allocator, self.items.len + n);
mem.set(T, self.items[old_len..self.items.len], value);
}
/// Append a value to the list `n` times.
/// Asserts the capacity is enough.
pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
mem.set(T, self.items.ptr[self.items.len..new_len], value);
self.items.len = new_len;
}
/// Adjust the list's length to `new_len`.
/// Does not initialize added items if any.
pub fn resize(self: *Self, allocator: *Allocator, new_len: usize) !void {
try self.ensureCapacity(allocator, new_len);
self.items.len = new_len;
}
/// Reduce allocated capacity to `new_len`.
/// Invalidates element pointers.
pub fn shrink(self: *Self, allocator: *Allocator, new_len: usize) void {
assert(new_len <= self.items.len);
self.items = allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
error.OutOfMemory => { // no problem, capacity is still correct then.
self.items.len = new_len;
return;
},
};
self.capacity = new_len;
}
/// Reduce length to `new_len`.
/// Invalidates element pointers.
/// Keeps capacity the same.
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
}
pub fn ensureCapacity(self: *Self, allocator: *Allocator, new_capacity: usize) !void {
var better_capacity = self.capacity;
if (better_capacity >= new_capacity) return;
while (true) {
better_capacity += better_capacity / 2 + 8;
if (better_capacity >= new_capacity) break;
}
const new_memory = try allocator.reallocAtLeast(self.allocatedSlice(), better_capacity);
self.items.ptr = new_memory.ptr;
self.capacity = new_memory.len;
}
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values.
/// This operation does not invalidate any element pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list is resized.
pub fn addOne(self: *Self, allocator: *Allocator) !*T {
const newlen = self.items.len + 1;
try self.ensureCapacity(allocator, newlen);
return self.addOneAssumeCapacity();
}
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is already space for the new item without allocating more.
/// The returned pointer becomes invalid when the list is resized.
/// This operation does not invalidate any element pointers.
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
return &self.items[self.items.len - 1];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
pub fn addManyAsArray(self: *Self, allocator: *Allocator, comptime n: usize) !*[n]T {
const prev_len = self.items.len;
try self.resize(allocator, self.items.len + n);
return self.items[prev_len..][0..n];
}
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
self.items.len += n;
return self.items[prev_len..][0..n];
}
/// Remove and return the last element from the list.
/// Asserts the list has at least one item.
/// This operation does not invalidate any element pointers.
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
return val;
}
/// Remove and return the last element from the list.
/// If the list is empty, returns `null`.
/// This operation does not invalidate any element pointers.
pub fn popOrNull(self: *Self) ?T {
if (self.items.len == 0) return null;
return self.pop();
}
/// For a nicer API, `items.len` is the length, not the capacity.
/// This requires "unsafe" slicing.
fn allocatedSlice(self: Self) Slice {
return self.items.ptr[0..self.capacity];
}
};
}
test "std.ArrayList/ArrayListUnmanaged.init" {
{
var list = ArrayList(i32).init(testing.allocator);
defer list.deinit();
testing.expect(list.items.len == 0);
testing.expect(list.capacity == 0);
}
{
var list = ArrayListUnmanaged(i32){};
testing.expect(list.items.len == 0);
testing.expect(list.capacity == 0);
}
}
test "std.ArrayList/ArrayListUnmanaged.initCapacity" {
const a = testing.allocator;
{
var list = try ArrayList(i8).initCapacity(a, 200);
defer list.deinit();
testing.expect(list.items.len == 0);
testing.expect(list.capacity >= 200);
}
{
var list = try ArrayListUnmanaged(i8).initCapacity(a, 200);
defer list.deinit(a);
testing.expect(list.items.len == 0);
testing.expect(list.capacity >= 200);
}
}
test "std.ArrayList/ArrayListUnmanaged.basic" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(@intCast(i32, i + 1)) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
testing.expect(list.items[i] == @intCast(i32, i + 1));
}
}
for (list.items) |v, i| {
testing.expect(v == @intCast(i32, i + 1));
}
testing.expect(list.pop() == 10);
testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
testing.expect(list.items.len == 12);
testing.expect(list.pop() == 3);
testing.expect(list.pop() == 2);
testing.expect(list.pop() == 1);
testing.expect(list.items.len == 9);
list.appendSlice(&[_]i32{}) catch unreachable;
testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
testing.expect(list.pop() == 42);
testing.expect(list.pop() == 33);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
{
var i: usize = 0;
while (i < 10) : (i += 1) {
list.append(a, @intCast(i32, i + 1)) catch unreachable;
}
}
{
var i: usize = 0;
while (i < 10) : (i += 1) {
testing.expect(list.items[i] == @intCast(i32, i + 1));
}
}
for (list.items) |v, i| {
testing.expect(v == @intCast(i32, i + 1));
}
testing.expect(list.pop() == 10);
testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable;
testing.expect(list.items.len == 12);
testing.expect(list.pop() == 3);
testing.expect(list.pop() == 2);
testing.expect(list.pop() == 1);
testing.expect(list.items.len == 9);
list.appendSlice(a, &[_]i32{}) catch unreachable;
testing.expect(list.items.len == 9);
// can only set on indices < self.items.len
list.items[7] = 33;
list.items[8] = 42;
testing.expect(list.pop() == 42);
testing.expect(list.pop() == 33);
}
}
test "std.ArrayList/ArrayListUnmanaged.appendNTimes" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.appendNTimes(2, 10);
testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
testing.expectEqual(@as(i32, 2), element);
}
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.appendNTimes(a, 2, 10);
testing.expectEqual(@as(usize, 10), list.items.len);
for (list.items) |element| {
testing.expectEqual(@as(i32, 2), element);
}
}
}
test "std.ArrayList/ArrayListUnmanaged.appendNTimes with failing allocator" {
const a = testing.failing_allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10));
}
}
test "std.ArrayList/ArrayListUnmanaged.orderedRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
testing.expectEqual(@as(i32, 5), list.items[3]);
testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
testing.expectEqual(@as(i32, 2), list.items[0]);
testing.expectEqual(@as(usize, 4), list.items.len);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
testing.expectEqual(@as(i32, 5), list.items[3]);
testing.expectEqual(@as(usize, 6), list.items.len);
//remove from end
testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
testing.expectEqual(@as(usize, 5), list.items.len);
//remove from front
testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
testing.expectEqual(@as(i32, 2), list.items[0]);
testing.expectEqual(@as(usize, 4), list.items.len);
}
}
test "std.ArrayList/ArrayListUnmanaged.swapRemove" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.append(5);
try list.append(6);
try list.append(7);
//remove from middle
testing.expect(list.swapRemove(3) == 4);
testing.expect(list.items[3] == 7);
testing.expect(list.items.len == 6);
//remove from end
testing.expect(list.swapRemove(5) == 6);
testing.expect(list.items.len == 5);
//remove from front
testing.expect(list.swapRemove(0) == 1);
testing.expect(list.items[0] == 5);
testing.expect(list.items.len == 4);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.append(a, 5);
try list.append(a, 6);
try list.append(a, 7);
//remove from middle
testing.expect(list.swapRemove(3) == 4);
testing.expect(list.items[3] == 7);
testing.expect(list.items.len == 6);
//remove from end
testing.expect(list.swapRemove(5) == 6);
testing.expect(list.items.len == 5);
//remove from front
testing.expect(list.swapRemove(0) == 1);
testing.expect(list.items[0] == 5);
testing.expect(list.items.len == 4);
}
}
test "std.ArrayList/ArrayListUnmanaged.insert" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.insert(0, 5);
testing.expect(list.items[0] == 5);
testing.expect(list.items[1] == 1);
testing.expect(list.items[2] == 2);
testing.expect(list.items[3] == 3);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.insert(a, 0, 5);
testing.expect(list.items[0] == 5);
testing.expect(list.items[1] == 1);
testing.expect(list.items[2] == 2);
testing.expect(list.items[3] == 3);
}
}
test "std.ArrayList/ArrayListUnmanaged.insertSlice" {
const a = testing.allocator;
{
var list = ArrayList(i32).init(a);
defer list.deinit();
try list.append(1);
try list.append(2);
try list.append(3);
try list.append(4);
try list.insertSlice(1, &[_]i32{ 9, 8 });
testing.expect(list.items[0] == 1);
testing.expect(list.items[1] == 9);
testing.expect(list.items[2] == 8);
testing.expect(list.items[3] == 2);
testing.expect(list.items[4] == 3);
testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(0, items[0..0]);
testing.expect(list.items.len == 6);
testing.expect(list.items[0] == 1);
}
{
var list = ArrayListUnmanaged(i32){};
defer list.deinit(a);
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
try list.append(a, 4);
try list.insertSlice(a, 1, &[_]i32{ 9, 8 });
testing.expect(list.items[0] == 1);
testing.expect(list.items[1] == 9);
testing.expect(list.items[2] == 8);
testing.expect(list.items[3] == 2);
testing.expect(list.items[4] == 3);
testing.expect(list.items[5] == 4);
const items = [_]i32{1};
try list.insertSlice(a, 0, items[0..0]);
testing.expect(list.items.len == 6);
testing.expect(list.items[0] == 1);
}
}
test "std.ArrayList/ArrayListUnmanaged.replaceRange" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
const a = &arena.allocator;
const init = [_]i32{ 1, 2, 3, 4, 5 };
const new = [_]i32{ 0, 0, 0 };
const result_zero = [_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 };
const result_eq = [_]i32{ 1, 0, 0, 0, 5 };
const result_le = [_]i32{ 1, 0, 0, 0, 4, 5 };
const result_gt = [_]i32{ 1, 0, 0, 0 };
{
var list_zero = ArrayList(i32).init(a);
var list_eq = ArrayList(i32).init(a);
var list_lt = ArrayList(i32).init(a);
var list_gt = ArrayList(i32).init(a);
try list_zero.appendSlice(&init);
try list_eq.appendSlice(&init);
try list_lt.appendSlice(&init);
try list_gt.appendSlice(&init);
try list_zero.replaceRange(1, 0, &new);
try list_eq.replaceRange(1, 3, &new);
try list_lt.replaceRange(1, 2, &new);
// after_range > new_items.len in function body
testing.expect(1 + 4 > new.len);
try list_gt.replaceRange(1, 4, &new);
testing.expectEqualSlices(i32, list_zero.items, &result_zero);
testing.expectEqualSlices(i32, list_eq.items, &result_eq);
testing.expectEqualSlices(i32, list_lt.items, &result_le);
testing.expectEqualSlices(i32, list_gt.items, &result_gt);
}
{
var list_zero = ArrayListUnmanaged(i32){};
var list_eq = ArrayListUnmanaged(i32){};
var list_lt = ArrayListUnmanaged(i32){};
var list_gt = ArrayListUnmanaged(i32){};
try list_zero.appendSlice(a, &init);
try list_eq.appendSlice(a, &init);
try list_lt.appendSlice(a, &init);
try list_gt.appendSlice(a, &init);
try list_zero.replaceRange(a, 1, 0, &new);
try list_eq.replaceRange(a, 1, 3, &new);
try list_lt.replaceRange(a, 1, 2, &new);
// after_range > new_items.len in function body
testing.expect(1 + 4 > new.len);
try list_gt.replaceRange(a, 1, 4, &new);
testing.expectEqualSlices(i32, list_zero.items, &result_zero);
testing.expectEqualSlices(i32, list_eq.items, &result_eq);
testing.expectEqualSlices(i32, list_lt.items, &result_le);
testing.expectEqualSlices(i32, list_gt.items, &result_gt);
}
}
const Item = struct {
integer: i32,
sub_items: ArrayList(Item),
};
const ItemUnmanaged = struct {
integer: i32,
sub_items: ArrayListUnmanaged(ItemUnmanaged),
};
test "std.ArrayList/ArrayListUnmanaged: ArrayList(T) of struct T" {
const a = std.testing.allocator;
{
var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(a) };
defer root.sub_items.deinit();
try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(a) });
testing.expect(root.sub_items.items[0].integer == 42);
}
{
var root = ItemUnmanaged{ .integer = 1, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} };
defer root.sub_items.deinit(a);
try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = ArrayListUnmanaged(ItemUnmanaged){} });
testing.expect(root.sub_items.items[0].integer == 42);
}
}
test "std.ArrayList(u8) implements outStream" {
var buffer = ArrayList(u8).init(std.testing.allocator);
defer buffer.deinit();
const x: i32 = 42;
const y: i32 = 1234;
try buffer.outStream().print("x: {}\ny: {}\n", .{ x, y });
testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
}
test "std.ArrayList/ArrayListUnmanaged.shrink still sets length on error.OutOfMemory" {
// use an arena allocator to make sure realloc returns error.OutOfMemory
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
const a = &arena.allocator;
{
var list = ArrayList(i32).init(a);
try list.append(1);
try list.append(2);
try list.append(3);
list.shrink(1);
testing.expect(list.items.len == 1);
}
{
var list = ArrayListUnmanaged(i32){};
try list.append(a, 1);
try list.append(a, 2);
try list.append(a, 3);
list.shrink(a, 1);
testing.expect(list.items.len == 1);
}
}
test "std.ArrayList.writer" {
var list = ArrayList(u8).init(std.testing.allocator);
defer list.deinit();
const writer = list.writer();
try writer.writeAll("a");
try writer.writeAll("bc");
try writer.writeAll("d");
try writer.writeAll("efg");
testing.expectEqualSlices(u8, list.items, "abcdefg");
}
test "std.ArrayList/ArrayListUnmanaged.addManyAsArray" {
const a = std.testing.allocator;
{
var list = ArrayList(u8).init(a);
defer list.deinit();
(try list.addManyAsArray(4)).* = "aoeu".*;
try list.ensureCapacity(8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
{
var list = ArrayListUnmanaged(u8){};
defer list.deinit(a);
(try list.addManyAsArray(a, 4)).* = "aoeu".*;
try list.ensureCapacity(a, 8);
list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;
testing.expectEqualSlices(u8, list.items, "aoeuasdf");
}
}