700 lines
24 KiB
Zig
700 lines
24 KiB
Zig
const std = @import("./std.zig");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const testing = std.testing;
|
|
const mem = std.mem;
|
|
|
|
/// Returns how many bytes the UTF-8 representation would require
|
|
/// for the given codepoint.
|
|
pub fn utf8CodepointSequenceLength(c: u21) !u3 {
|
|
if (c < 0x80) return @as(u3, 1);
|
|
if (c < 0x800) return @as(u3, 2);
|
|
if (c < 0x10000) return @as(u3, 3);
|
|
if (c < 0x110000) return @as(u3, 4);
|
|
return error.CodepointTooLarge;
|
|
}
|
|
|
|
/// Given the first byte of a UTF-8 codepoint,
|
|
/// returns a number 1-4 indicating the total length of the codepoint in bytes.
|
|
/// If this byte does not match the form of a UTF-8 start byte, returns Utf8InvalidStartByte.
|
|
pub fn utf8ByteSequenceLength(first_byte: u8) !u3 {
|
|
return switch (@clz(u8, ~first_byte)) {
|
|
0 => 1,
|
|
2 => 2,
|
|
3 => 3,
|
|
4 => 4,
|
|
else => error.Utf8InvalidStartByte,
|
|
};
|
|
}
|
|
|
|
/// Encodes the given codepoint into a UTF-8 byte sequence.
|
|
/// c: the codepoint.
|
|
/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
|
|
/// Errors: if c cannot be encoded in UTF-8.
|
|
/// Returns: the number of bytes written to out.
|
|
pub fn utf8Encode(c: u21, out: []u8) !u3 {
|
|
const length = try utf8CodepointSequenceLength(c);
|
|
assert(out.len >= length);
|
|
switch (length) {
|
|
// The pattern for each is the same
|
|
// - Increasing the initial shift by 6 each time
|
|
// - Each time after the first shorten the shifted
|
|
// value to a max of 0b111111 (63)
|
|
1 => out[0] = @intCast(u8, c), // Can just do 0 + codepoint for initial range
|
|
2 => {
|
|
out[0] = @intCast(u8, 0b11000000 | (c >> 6));
|
|
out[1] = @intCast(u8, 0b10000000 | (c & 0b111111));
|
|
},
|
|
3 => {
|
|
if (0xd800 <= c and c <= 0xdfff) return error.Utf8CannotEncodeSurrogateHalf;
|
|
out[0] = @intCast(u8, 0b11100000 | (c >> 12));
|
|
out[1] = @intCast(u8, 0b10000000 | ((c >> 6) & 0b111111));
|
|
out[2] = @intCast(u8, 0b10000000 | (c & 0b111111));
|
|
},
|
|
4 => {
|
|
out[0] = @intCast(u8, 0b11110000 | (c >> 18));
|
|
out[1] = @intCast(u8, 0b10000000 | ((c >> 12) & 0b111111));
|
|
out[2] = @intCast(u8, 0b10000000 | ((c >> 6) & 0b111111));
|
|
out[3] = @intCast(u8, 0b10000000 | (c & 0b111111));
|
|
},
|
|
else => unreachable,
|
|
}
|
|
return length;
|
|
}
|
|
|
|
const Utf8DecodeError = Utf8Decode2Error || Utf8Decode3Error || Utf8Decode4Error;
|
|
|
|
/// Decodes the UTF-8 codepoint encoded in the given slice of bytes.
|
|
/// bytes.len must be equal to utf8ByteSequenceLength(bytes[0]) catch unreachable.
|
|
/// If you already know the length at comptime, you can call one of
|
|
/// utf8Decode2,utf8Decode3,utf8Decode4 directly instead of this function.
|
|
pub fn utf8Decode(bytes: []const u8) Utf8DecodeError!u21 {
|
|
return switch (bytes.len) {
|
|
1 => @as(u21, bytes[0]),
|
|
2 => utf8Decode2(bytes),
|
|
3 => utf8Decode3(bytes),
|
|
4 => utf8Decode4(bytes),
|
|
else => unreachable,
|
|
};
|
|
}
|
|
|
|
const Utf8Decode2Error = error{
|
|
Utf8ExpectedContinuation,
|
|
Utf8OverlongEncoding,
|
|
};
|
|
pub fn utf8Decode2(bytes: []const u8) Utf8Decode2Error!u21 {
|
|
assert(bytes.len == 2);
|
|
assert(bytes[0] & 0b11100000 == 0b11000000);
|
|
var value: u21 = bytes[0] & 0b00011111;
|
|
|
|
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
|
|
value <<= 6;
|
|
value |= bytes[1] & 0b00111111;
|
|
|
|
if (value < 0x80) return error.Utf8OverlongEncoding;
|
|
|
|
return value;
|
|
}
|
|
|
|
const Utf8Decode3Error = error{
|
|
Utf8ExpectedContinuation,
|
|
Utf8OverlongEncoding,
|
|
Utf8EncodesSurrogateHalf,
|
|
};
|
|
pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 {
|
|
assert(bytes.len == 3);
|
|
assert(bytes[0] & 0b11110000 == 0b11100000);
|
|
var value: u21 = bytes[0] & 0b00001111;
|
|
|
|
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
|
|
value <<= 6;
|
|
value |= bytes[1] & 0b00111111;
|
|
|
|
if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
|
|
value <<= 6;
|
|
value |= bytes[2] & 0b00111111;
|
|
|
|
if (value < 0x800) return error.Utf8OverlongEncoding;
|
|
if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf;
|
|
|
|
return value;
|
|
}
|
|
|
|
const Utf8Decode4Error = error{
|
|
Utf8ExpectedContinuation,
|
|
Utf8OverlongEncoding,
|
|
Utf8CodepointTooLarge,
|
|
};
|
|
pub fn utf8Decode4(bytes: []const u8) Utf8Decode4Error!u21 {
|
|
assert(bytes.len == 4);
|
|
assert(bytes[0] & 0b11111000 == 0b11110000);
|
|
var value: u21 = bytes[0] & 0b00000111;
|
|
|
|
if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
|
|
value <<= 6;
|
|
value |= bytes[1] & 0b00111111;
|
|
|
|
if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
|
|
value <<= 6;
|
|
value |= bytes[2] & 0b00111111;
|
|
|
|
if (bytes[3] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation;
|
|
value <<= 6;
|
|
value |= bytes[3] & 0b00111111;
|
|
|
|
if (value < 0x10000) return error.Utf8OverlongEncoding;
|
|
if (value > 0x10FFFF) return error.Utf8CodepointTooLarge;
|
|
|
|
return value;
|
|
}
|
|
|
|
pub fn utf8ValidateSlice(s: []const u8) bool {
|
|
var i: usize = 0;
|
|
while (i < s.len) {
|
|
if (utf8ByteSequenceLength(s[i])) |cp_len| {
|
|
if (i + cp_len > s.len) {
|
|
return false;
|
|
}
|
|
|
|
if (utf8Decode(s[i .. i + cp_len])) |_| {} else |_| {
|
|
return false;
|
|
}
|
|
i += cp_len;
|
|
} else |err| {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Utf8View iterates the code points of a utf-8 encoded string.
|
|
///
|
|
/// ```
|
|
/// var utf8 = (try std.unicode.Utf8View.init("hi there")).iterator();
|
|
/// while (utf8.nextCodepointSlice()) |codepoint| {
|
|
/// std.debug.warn("got codepoint {}\n", .{codepoint});
|
|
/// }
|
|
/// ```
|
|
pub const Utf8View = struct {
|
|
bytes: []const u8,
|
|
|
|
pub fn init(s: []const u8) !Utf8View {
|
|
if (!utf8ValidateSlice(s)) {
|
|
return error.InvalidUtf8;
|
|
}
|
|
|
|
return initUnchecked(s);
|
|
}
|
|
|
|
pub fn initUnchecked(s: []const u8) Utf8View {
|
|
return Utf8View{ .bytes = s };
|
|
}
|
|
|
|
/// TODO: https://github.com/ziglang/zig/issues/425
|
|
pub fn initComptime(comptime s: []const u8) Utf8View {
|
|
if (comptime init(s)) |r| {
|
|
return r;
|
|
} else |err| switch (err) {
|
|
error.InvalidUtf8 => {
|
|
@compileError("invalid utf8");
|
|
unreachable;
|
|
},
|
|
}
|
|
}
|
|
|
|
pub fn iterator(s: Utf8View) Utf8Iterator {
|
|
return Utf8Iterator{
|
|
.bytes = s.bytes,
|
|
.i = 0,
|
|
};
|
|
}
|
|
};
|
|
|
|
pub const Utf8Iterator = struct {
|
|
bytes: []const u8,
|
|
i: usize,
|
|
|
|
pub fn nextCodepointSlice(it: *Utf8Iterator) ?[]const u8 {
|
|
if (it.i >= it.bytes.len) {
|
|
return null;
|
|
}
|
|
|
|
const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable;
|
|
it.i += cp_len;
|
|
return it.bytes[it.i - cp_len .. it.i];
|
|
}
|
|
|
|
pub fn nextCodepoint(it: *Utf8Iterator) ?u21 {
|
|
const slice = it.nextCodepointSlice() orelse return null;
|
|
|
|
switch (slice.len) {
|
|
1 => return @as(u21, slice[0]),
|
|
2 => return utf8Decode2(slice) catch unreachable,
|
|
3 => return utf8Decode3(slice) catch unreachable,
|
|
4 => return utf8Decode4(slice) catch unreachable,
|
|
else => unreachable,
|
|
}
|
|
}
|
|
};
|
|
|
|
pub const Utf16LeIterator = struct {
|
|
bytes: []const u8,
|
|
i: usize,
|
|
|
|
pub fn init(s: []const u16) Utf16LeIterator {
|
|
return Utf16LeIterator{
|
|
.bytes = mem.sliceAsBytes(s),
|
|
.i = 0,
|
|
};
|
|
}
|
|
|
|
pub fn nextCodepoint(it: *Utf16LeIterator) !?u21 {
|
|
assert(it.i <= it.bytes.len);
|
|
if (it.i == it.bytes.len) return null;
|
|
const c0: u21 = mem.readIntSliceLittle(u16, it.bytes[it.i .. it.i + 2]);
|
|
if (c0 & ~@as(u21, 0x03ff) == 0xd800) {
|
|
// surrogate pair
|
|
it.i += 2;
|
|
if (it.i >= it.bytes.len) return error.DanglingSurrogateHalf;
|
|
const c1: u21 = mem.readIntSliceLittle(u16, it.bytes[it.i .. it.i + 2]);
|
|
if (c1 & ~@as(u21, 0x03ff) != 0xdc00) return error.ExpectedSecondSurrogateHalf;
|
|
it.i += 2;
|
|
return 0x10000 + (((c0 & 0x03ff) << 10) | (c1 & 0x03ff));
|
|
} else if (c0 & ~@as(u21, 0x03ff) == 0xdc00) {
|
|
return error.UnexpectedSecondSurrogateHalf;
|
|
} else {
|
|
it.i += 2;
|
|
return c0;
|
|
}
|
|
}
|
|
};
|
|
|
|
test "utf8 encode" {
|
|
comptime testUtf8Encode() catch unreachable;
|
|
try testUtf8Encode();
|
|
}
|
|
fn testUtf8Encode() !void {
|
|
// A few taken from wikipedia a few taken elsewhere
|
|
var array: [4]u8 = undefined;
|
|
testing.expect((try utf8Encode(try utf8Decode("€"), array[0..])) == 3);
|
|
testing.expect(array[0] == 0b11100010);
|
|
testing.expect(array[1] == 0b10000010);
|
|
testing.expect(array[2] == 0b10101100);
|
|
|
|
testing.expect((try utf8Encode(try utf8Decode("$"), array[0..])) == 1);
|
|
testing.expect(array[0] == 0b00100100);
|
|
|
|
testing.expect((try utf8Encode(try utf8Decode("¢"), array[0..])) == 2);
|
|
testing.expect(array[0] == 0b11000010);
|
|
testing.expect(array[1] == 0b10100010);
|
|
|
|
testing.expect((try utf8Encode(try utf8Decode("𐍈"), array[0..])) == 4);
|
|
testing.expect(array[0] == 0b11110000);
|
|
testing.expect(array[1] == 0b10010000);
|
|
testing.expect(array[2] == 0b10001101);
|
|
testing.expect(array[3] == 0b10001000);
|
|
}
|
|
|
|
test "utf8 encode error" {
|
|
comptime testUtf8EncodeError();
|
|
testUtf8EncodeError();
|
|
}
|
|
fn testUtf8EncodeError() void {
|
|
var array: [4]u8 = undefined;
|
|
testErrorEncode(0xd800, array[0..], error.Utf8CannotEncodeSurrogateHalf);
|
|
testErrorEncode(0xdfff, array[0..], error.Utf8CannotEncodeSurrogateHalf);
|
|
testErrorEncode(0x110000, array[0..], error.CodepointTooLarge);
|
|
testErrorEncode(0x1fffff, array[0..], error.CodepointTooLarge);
|
|
}
|
|
|
|
fn testErrorEncode(codePoint: u21, array: []u8, expectedErr: anyerror) void {
|
|
testing.expectError(expectedErr, utf8Encode(codePoint, array));
|
|
}
|
|
|
|
test "utf8 iterator on ascii" {
|
|
comptime testUtf8IteratorOnAscii();
|
|
testUtf8IteratorOnAscii();
|
|
}
|
|
fn testUtf8IteratorOnAscii() void {
|
|
const s = Utf8View.initComptime("abc");
|
|
|
|
var it1 = s.iterator();
|
|
testing.expect(std.mem.eql(u8, "a", it1.nextCodepointSlice().?));
|
|
testing.expect(std.mem.eql(u8, "b", it1.nextCodepointSlice().?));
|
|
testing.expect(std.mem.eql(u8, "c", it1.nextCodepointSlice().?));
|
|
testing.expect(it1.nextCodepointSlice() == null);
|
|
|
|
var it2 = s.iterator();
|
|
testing.expect(it2.nextCodepoint().? == 'a');
|
|
testing.expect(it2.nextCodepoint().? == 'b');
|
|
testing.expect(it2.nextCodepoint().? == 'c');
|
|
testing.expect(it2.nextCodepoint() == null);
|
|
}
|
|
|
|
test "utf8 view bad" {
|
|
comptime testUtf8ViewBad();
|
|
testUtf8ViewBad();
|
|
}
|
|
fn testUtf8ViewBad() void {
|
|
// Compile-time error.
|
|
// const s3 = Utf8View.initComptime("\xfe\xf2");
|
|
testing.expectError(error.InvalidUtf8, Utf8View.init("hel\xadlo"));
|
|
}
|
|
|
|
test "utf8 view ok" {
|
|
comptime testUtf8ViewOk();
|
|
testUtf8ViewOk();
|
|
}
|
|
fn testUtf8ViewOk() void {
|
|
const s = Utf8View.initComptime("東京市");
|
|
|
|
var it1 = s.iterator();
|
|
testing.expect(std.mem.eql(u8, "東", it1.nextCodepointSlice().?));
|
|
testing.expect(std.mem.eql(u8, "京", it1.nextCodepointSlice().?));
|
|
testing.expect(std.mem.eql(u8, "市", it1.nextCodepointSlice().?));
|
|
testing.expect(it1.nextCodepointSlice() == null);
|
|
|
|
var it2 = s.iterator();
|
|
testing.expect(it2.nextCodepoint().? == 0x6771);
|
|
testing.expect(it2.nextCodepoint().? == 0x4eac);
|
|
testing.expect(it2.nextCodepoint().? == 0x5e02);
|
|
testing.expect(it2.nextCodepoint() == null);
|
|
}
|
|
|
|
test "bad utf8 slice" {
|
|
comptime testBadUtf8Slice();
|
|
testBadUtf8Slice();
|
|
}
|
|
fn testBadUtf8Slice() void {
|
|
testing.expect(utf8ValidateSlice("abc"));
|
|
testing.expect(!utf8ValidateSlice("abc\xc0"));
|
|
testing.expect(!utf8ValidateSlice("abc\xc0abc"));
|
|
testing.expect(utf8ValidateSlice("abc\xdf\xbf"));
|
|
}
|
|
|
|
test "valid utf8" {
|
|
comptime testValidUtf8();
|
|
testValidUtf8();
|
|
}
|
|
fn testValidUtf8() void {
|
|
testValid("\x00", 0x0);
|
|
testValid("\x20", 0x20);
|
|
testValid("\x7f", 0x7f);
|
|
testValid("\xc2\x80", 0x80);
|
|
testValid("\xdf\xbf", 0x7ff);
|
|
testValid("\xe0\xa0\x80", 0x800);
|
|
testValid("\xe1\x80\x80", 0x1000);
|
|
testValid("\xef\xbf\xbf", 0xffff);
|
|
testValid("\xf0\x90\x80\x80", 0x10000);
|
|
testValid("\xf1\x80\x80\x80", 0x40000);
|
|
testValid("\xf3\xbf\xbf\xbf", 0xfffff);
|
|
testValid("\xf4\x8f\xbf\xbf", 0x10ffff);
|
|
}
|
|
|
|
test "invalid utf8 continuation bytes" {
|
|
comptime testInvalidUtf8ContinuationBytes();
|
|
testInvalidUtf8ContinuationBytes();
|
|
}
|
|
fn testInvalidUtf8ContinuationBytes() void {
|
|
// unexpected continuation
|
|
testError("\x80", error.Utf8InvalidStartByte);
|
|
testError("\xbf", error.Utf8InvalidStartByte);
|
|
// too many leading 1's
|
|
testError("\xf8", error.Utf8InvalidStartByte);
|
|
testError("\xff", error.Utf8InvalidStartByte);
|
|
// expected continuation for 2 byte sequences
|
|
testError("\xc2", error.UnexpectedEof);
|
|
testError("\xc2\x00", error.Utf8ExpectedContinuation);
|
|
testError("\xc2\xc0", error.Utf8ExpectedContinuation);
|
|
// expected continuation for 3 byte sequences
|
|
testError("\xe0", error.UnexpectedEof);
|
|
testError("\xe0\x00", error.UnexpectedEof);
|
|
testError("\xe0\xc0", error.UnexpectedEof);
|
|
testError("\xe0\xa0", error.UnexpectedEof);
|
|
testError("\xe0\xa0\x00", error.Utf8ExpectedContinuation);
|
|
testError("\xe0\xa0\xc0", error.Utf8ExpectedContinuation);
|
|
// expected continuation for 4 byte sequences
|
|
testError("\xf0", error.UnexpectedEof);
|
|
testError("\xf0\x00", error.UnexpectedEof);
|
|
testError("\xf0\xc0", error.UnexpectedEof);
|
|
testError("\xf0\x90\x00", error.UnexpectedEof);
|
|
testError("\xf0\x90\xc0", error.UnexpectedEof);
|
|
testError("\xf0\x90\x80\x00", error.Utf8ExpectedContinuation);
|
|
testError("\xf0\x90\x80\xc0", error.Utf8ExpectedContinuation);
|
|
}
|
|
|
|
test "overlong utf8 codepoint" {
|
|
comptime testOverlongUtf8Codepoint();
|
|
testOverlongUtf8Codepoint();
|
|
}
|
|
fn testOverlongUtf8Codepoint() void {
|
|
testError("\xc0\x80", error.Utf8OverlongEncoding);
|
|
testError("\xc1\xbf", error.Utf8OverlongEncoding);
|
|
testError("\xe0\x80\x80", error.Utf8OverlongEncoding);
|
|
testError("\xe0\x9f\xbf", error.Utf8OverlongEncoding);
|
|
testError("\xf0\x80\x80\x80", error.Utf8OverlongEncoding);
|
|
testError("\xf0\x8f\xbf\xbf", error.Utf8OverlongEncoding);
|
|
}
|
|
|
|
test "misc invalid utf8" {
|
|
comptime testMiscInvalidUtf8();
|
|
testMiscInvalidUtf8();
|
|
}
|
|
fn testMiscInvalidUtf8() void {
|
|
// codepoint out of bounds
|
|
testError("\xf4\x90\x80\x80", error.Utf8CodepointTooLarge);
|
|
testError("\xf7\xbf\xbf\xbf", error.Utf8CodepointTooLarge);
|
|
// surrogate halves
|
|
testValid("\xed\x9f\xbf", 0xd7ff);
|
|
testError("\xed\xa0\x80", error.Utf8EncodesSurrogateHalf);
|
|
testError("\xed\xbf\xbf", error.Utf8EncodesSurrogateHalf);
|
|
testValid("\xee\x80\x80", 0xe000);
|
|
}
|
|
|
|
fn testError(bytes: []const u8, expected_err: anyerror) void {
|
|
testing.expectError(expected_err, testDecode(bytes));
|
|
}
|
|
|
|
fn testValid(bytes: []const u8, expected_codepoint: u21) void {
|
|
testing.expect((testDecode(bytes) catch unreachable) == expected_codepoint);
|
|
}
|
|
|
|
fn testDecode(bytes: []const u8) !u21 {
|
|
const length = try utf8ByteSequenceLength(bytes[0]);
|
|
if (bytes.len < length) return error.UnexpectedEof;
|
|
testing.expect(bytes.len == length);
|
|
return utf8Decode(bytes);
|
|
}
|
|
|
|
/// Caller must free returned memory.
|
|
pub fn utf16leToUtf8Alloc(allocator: *mem.Allocator, utf16le: []const u16) ![]u8 {
|
|
var result = std.ArrayList(u8).init(allocator);
|
|
// optimistically guess that it will all be ascii.
|
|
try result.ensureCapacity(utf16le.len);
|
|
var out_index: usize = 0;
|
|
var it = Utf16LeIterator.init(utf16le);
|
|
while (try it.nextCodepoint()) |codepoint| {
|
|
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
|
|
try result.resize(result.len + utf8_len);
|
|
assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len);
|
|
out_index += utf8_len;
|
|
}
|
|
|
|
return result.toOwnedSlice();
|
|
}
|
|
|
|
/// Asserts that the output buffer is big enough.
|
|
/// Returns end byte index into utf8.
|
|
pub fn utf16leToUtf8(utf8: []u8, utf16le: []const u16) !usize {
|
|
var end_index: usize = 0;
|
|
var it = Utf16LeIterator.init(utf16le);
|
|
while (try it.nextCodepoint()) |codepoint| {
|
|
end_index += try utf8Encode(codepoint, utf8[end_index..]);
|
|
}
|
|
return end_index;
|
|
}
|
|
|
|
test "utf16leToUtf8" {
|
|
var utf16le: [2]u16 = undefined;
|
|
const utf16le_as_bytes = mem.sliceAsBytes(utf16le[0..]);
|
|
|
|
{
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 'A');
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 'a');
|
|
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
|
|
defer std.testing.allocator.free(utf8);
|
|
testing.expect(mem.eql(u8, utf8, "Aa"));
|
|
}
|
|
|
|
{
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0x80);
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xffff);
|
|
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
|
|
defer std.testing.allocator.free(utf8);
|
|
testing.expect(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf"));
|
|
}
|
|
|
|
{
|
|
// the values just outside the surrogate half range
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xd7ff);
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xe000);
|
|
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
|
|
defer std.testing.allocator.free(utf8);
|
|
testing.expect(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80"));
|
|
}
|
|
|
|
{
|
|
// smallest surrogate pair
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xd800);
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdc00);
|
|
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
|
|
defer std.testing.allocator.free(utf8);
|
|
testing.expect(mem.eql(u8, utf8, "\xf0\x90\x80\x80"));
|
|
}
|
|
|
|
{
|
|
// largest surrogate pair
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xdbff);
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdfff);
|
|
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
|
|
defer std.testing.allocator.free(utf8);
|
|
testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf"));
|
|
}
|
|
|
|
{
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xdbff);
|
|
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdc00);
|
|
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
|
|
defer std.testing.allocator.free(utf8);
|
|
testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80"));
|
|
}
|
|
}
|
|
|
|
pub fn utf8ToUtf16LeWithNull(allocator: *mem.Allocator, utf8: []const u8) ![:0]u16 {
|
|
var result = std.ArrayList(u16).init(allocator);
|
|
// optimistically guess that it will not require surrogate pairs
|
|
try result.ensureCapacity(utf8.len + 1);
|
|
|
|
const view = try Utf8View.init(utf8);
|
|
var it = view.iterator();
|
|
while (it.nextCodepoint()) |codepoint| {
|
|
if (codepoint < 0x10000) {
|
|
const short = @intCast(u16, codepoint);
|
|
try result.append(mem.nativeToLittle(u16, short));
|
|
} else {
|
|
const high = @intCast(u16, (codepoint - 0x10000) >> 10) + 0xD800;
|
|
const low = @intCast(u16, codepoint & 0x3FF) + 0xDC00;
|
|
var out: [2]u16 = undefined;
|
|
out[0] = mem.nativeToLittle(u16, high);
|
|
out[1] = mem.nativeToLittle(u16, low);
|
|
try result.appendSlice(out[0..]);
|
|
}
|
|
}
|
|
|
|
const len = result.len;
|
|
try result.append(0);
|
|
return result.toOwnedSlice()[0..len :0];
|
|
}
|
|
|
|
/// Returns index of next character. If exact fit, returned index equals output slice length.
|
|
/// Assumes there is enough space for the output.
|
|
pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize {
|
|
var dest_i: usize = 0;
|
|
var src_i: usize = 0;
|
|
while (src_i < utf8.len) {
|
|
const n = utf8ByteSequenceLength(utf8[src_i]) catch return error.InvalidUtf8;
|
|
const next_src_i = src_i + n;
|
|
const codepoint = utf8Decode(utf8[src_i..next_src_i]) catch return error.InvalidUtf8;
|
|
if (codepoint < 0x10000) {
|
|
const short = @intCast(u16, codepoint);
|
|
utf16le[dest_i] = mem.nativeToLittle(u16, short);
|
|
dest_i += 1;
|
|
} else {
|
|
const high = @intCast(u16, (codepoint - 0x10000) >> 10) + 0xD800;
|
|
const low = @intCast(u16, codepoint & 0x3FF) + 0xDC00;
|
|
utf16le[dest_i] = mem.nativeToLittle(u16, high);
|
|
utf16le[dest_i + 1] = mem.nativeToLittle(u16, low);
|
|
dest_i += 2;
|
|
}
|
|
src_i = next_src_i;
|
|
}
|
|
return dest_i;
|
|
}
|
|
|
|
test "utf8ToUtf16Le" {
|
|
var utf16le: [2]u16 = [_]u16{0} ** 2;
|
|
{
|
|
const length = try utf8ToUtf16Le(utf16le[0..], "𐐷");
|
|
testing.expectEqual(@as(usize, 2), length);
|
|
testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16le[0..]));
|
|
}
|
|
{
|
|
const length = try utf8ToUtf16Le(utf16le[0..], "\u{10FFFF}");
|
|
testing.expectEqual(@as(usize, 2), length);
|
|
testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16le[0..]));
|
|
}
|
|
}
|
|
|
|
test "utf8ToUtf16LeWithNull" {
|
|
{
|
|
const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "𐐷");
|
|
defer testing.allocator.free(utf16);
|
|
testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..]));
|
|
testing.expect(utf16[2] == 0);
|
|
}
|
|
{
|
|
const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "\u{10FFFF}");
|
|
defer testing.allocator.free(utf16);
|
|
testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..]));
|
|
testing.expect(utf16[2] == 0);
|
|
}
|
|
}
|
|
|
|
/// Converts a UTF-8 string literal into a UTF-16LE string literal.
|
|
pub fn utf8ToUtf16LeStringLiteral(comptime utf8: []const u8) *const [calcUtf16LeLen(utf8) :0] u16 {
|
|
comptime {
|
|
const len: usize = calcUtf16LeLen(utf8);
|
|
var utf16le: [len :0]u16 = [_ :0]u16{0} ** len;
|
|
const utf16le_len = utf8ToUtf16Le(&utf16le, utf8[0..]) catch |err| @compileError(err);
|
|
assert(len == utf16le_len);
|
|
return &utf16le;
|
|
}
|
|
}
|
|
|
|
/// Returns length of a supplied UTF-8 string literal. Asserts that the data is valid UTF-8.
|
|
fn calcUtf16LeLen(utf8: []const u8) usize {
|
|
var src_i: usize = 0;
|
|
var dest_len: usize = 0;
|
|
while (src_i < utf8.len) {
|
|
const n = utf8ByteSequenceLength(utf8[src_i]) catch unreachable;
|
|
const next_src_i = src_i + n;
|
|
const codepoint = utf8Decode(utf8[src_i..next_src_i]) catch unreachable;
|
|
if (codepoint < 0x10000) {
|
|
dest_len += 1;
|
|
} else {
|
|
dest_len += 2;
|
|
}
|
|
src_i = next_src_i;
|
|
}
|
|
return dest_len;
|
|
}
|
|
|
|
test "utf8ToUtf16LeStringLiteral" {
|
|
{
|
|
const bytes = [_:0]u16{ 0x41 };
|
|
const utf16 = utf8ToUtf16LeStringLiteral("A");
|
|
testing.expectEqualSlices(u16, &bytes, utf16);
|
|
testing.expect(utf16[1] == 0);
|
|
}
|
|
{
|
|
const bytes = [_:0]u16{ 0xD801, 0xDC37 };
|
|
const utf16 = utf8ToUtf16LeStringLiteral("𐐷");
|
|
testing.expectEqualSlices(u16, &bytes, utf16);
|
|
testing.expect(utf16[2] == 0);
|
|
}
|
|
{
|
|
const bytes = [_:0]u16{ 0x02FF };
|
|
const utf16 = utf8ToUtf16LeStringLiteral("\u{02FF}");
|
|
testing.expectEqualSlices(u16, &bytes, utf16);
|
|
testing.expect(utf16[1] == 0);
|
|
}
|
|
{
|
|
const bytes = [_:0]u16{ 0x7FF };
|
|
const utf16 = utf8ToUtf16LeStringLiteral("\u{7FF}");
|
|
testing.expectEqualSlices(u16, &bytes, utf16);
|
|
testing.expect(utf16[1] == 0);
|
|
}
|
|
{
|
|
const bytes = [_:0]u16{ 0x801 };
|
|
const utf16 = utf8ToUtf16LeStringLiteral("\u{801}");
|
|
testing.expectEqualSlices(u16, &bytes, utf16);
|
|
testing.expect(utf16[1] == 0);
|
|
}
|
|
{
|
|
const bytes = [_:0]u16{ 0xDBFF, 0xDFFF };
|
|
const utf16 = utf8ToUtf16LeStringLiteral("\u{10FFFF}");
|
|
testing.expectEqualSlices(u16, &bytes, utf16);
|
|
testing.expect(utf16[2] == 0);
|
|
}
|
|
}
|