213 lines
6.1 KiB
Zig
213 lines
6.1 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
const maxInt = std.math.maxInt;
|
|
|
|
/// Returns the base-2 logarithm of x.
|
|
///
|
|
/// Special Cases:
|
|
/// - log2(+inf) = +inf
|
|
/// - log2(0) = -inf
|
|
/// - log2(x) = nan if x < 0
|
|
/// - log2(nan) = nan
|
|
pub fn log2(x: var) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
switch (@typeInfo(T)) {
|
|
.ComptimeFloat => {
|
|
return @as(comptime_float, log2_64(x));
|
|
},
|
|
.Float => {
|
|
return switch (T) {
|
|
f32 => log2_32(x),
|
|
f64 => log2_64(x),
|
|
else => @compileError("log2 not implemented for " ++ @typeName(T)),
|
|
};
|
|
},
|
|
.ComptimeInt => comptime {
|
|
var result = 0;
|
|
var x_shifted = x;
|
|
while (b: {
|
|
x_shifted >>= 1;
|
|
break :b x_shifted != 0;
|
|
}) : (result += 1) {}
|
|
return result;
|
|
},
|
|
.Int => {
|
|
return math.log2_int(T, x);
|
|
},
|
|
else => @compileError("log2 not implemented for " ++ @typeName(T)),
|
|
}
|
|
}
|
|
|
|
pub fn log2_32(x_: f32) f32 {
|
|
const ivln2hi: f32 = 1.4428710938e+00;
|
|
const ivln2lo: f32 = -1.7605285393e-04;
|
|
const Lg1: f32 = 0xaaaaaa.0p-24;
|
|
const Lg2: f32 = 0xccce13.0p-25;
|
|
const Lg3: f32 = 0x91e9ee.0p-25;
|
|
const Lg4: f32 = 0xf89e26.0p-26;
|
|
|
|
var x = x_;
|
|
var u = @bitCast(u32, x);
|
|
var ix = u;
|
|
var k: i32 = 0;
|
|
|
|
// x < 2^(-126)
|
|
if (ix < 0x00800000 or ix >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f32);
|
|
}
|
|
// log(-#) = nan
|
|
if (ix >> 31 != 0) {
|
|
return math.nan(f32);
|
|
}
|
|
|
|
k -= 25;
|
|
x *= 0x1.0p25;
|
|
ix = @bitCast(u32, x);
|
|
} else if (ix >= 0x7F800000) {
|
|
return x;
|
|
} else if (ix == 0x3F800000) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
ix += 0x3F800000 - 0x3F3504F3;
|
|
k += @intCast(i32, ix >> 23) - 0x7F;
|
|
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
|
|
x = @bitCast(f32, ix);
|
|
|
|
const f = x - 1.0;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * Lg4);
|
|
const t2 = z * (Lg1 + w * Lg3);
|
|
const R = t2 + t1;
|
|
const hfsq = 0.5 * f * f;
|
|
|
|
var hi = f - hfsq;
|
|
u = @bitCast(u32, hi);
|
|
u &= 0xFFFFF000;
|
|
hi = @bitCast(f32, u);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k);
|
|
}
|
|
|
|
pub fn log2_64(x_: f64) f64 {
|
|
const ivln2hi: f64 = 1.44269504072144627571e+00;
|
|
const ivln2lo: f64 = 1.67517131648865118353e-10;
|
|
const Lg1: f64 = 6.666666666666735130e-01;
|
|
const Lg2: f64 = 3.999999999940941908e-01;
|
|
const Lg3: f64 = 2.857142874366239149e-01;
|
|
const Lg4: f64 = 2.222219843214978396e-01;
|
|
const Lg5: f64 = 1.818357216161805012e-01;
|
|
const Lg6: f64 = 1.531383769920937332e-01;
|
|
const Lg7: f64 = 1.479819860511658591e-01;
|
|
|
|
var x = x_;
|
|
var ix = @bitCast(u64, x);
|
|
var hx = @intCast(u32, ix >> 32);
|
|
var k: i32 = 0;
|
|
|
|
if (hx < 0x00100000 or hx >> 31 != 0) {
|
|
// log(+-0) = -inf
|
|
if (ix << 1 == 0) {
|
|
return -math.inf(f64);
|
|
}
|
|
// log(-#) = nan
|
|
if (hx >> 31 != 0) {
|
|
return math.nan(f64);
|
|
}
|
|
|
|
// subnormal, scale x
|
|
k -= 54;
|
|
x *= 0x1.0p54;
|
|
hx = @intCast(u32, @bitCast(u64, x) >> 32);
|
|
} else if (hx >= 0x7FF00000) {
|
|
return x;
|
|
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// x into [sqrt(2) / 2, sqrt(2)]
|
|
hx += 0x3FF00000 - 0x3FE6A09E;
|
|
k += @intCast(i32, hx >> 20) - 0x3FF;
|
|
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
|
|
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
|
|
x = @bitCast(f64, ix);
|
|
|
|
const f = x - 1.0;
|
|
const hfsq = 0.5 * f * f;
|
|
const s = f / (2.0 + f);
|
|
const z = s * s;
|
|
const w = z * z;
|
|
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
|
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
|
const R = t2 + t1;
|
|
|
|
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
|
|
var hi = f - hfsq;
|
|
var hii = @bitCast(u64, hi);
|
|
hii &= @as(u64, maxInt(u64)) << 32;
|
|
hi = @bitCast(f64, hii);
|
|
const lo = f - hi - hfsq + s * (hfsq + R);
|
|
|
|
var val_hi = hi * ivln2hi;
|
|
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
|
|
|
|
// spadd(val_hi, val_lo, y)
|
|
const y = @intToFloat(f64, k);
|
|
const ww = y + val_hi;
|
|
val_lo += (y - ww) + val_hi;
|
|
val_hi = ww;
|
|
|
|
return val_lo + val_hi;
|
|
}
|
|
|
|
test "math.log2" {
|
|
expect(log2(@as(f32, 0.2)) == log2_32(0.2));
|
|
expect(log2(@as(f64, 0.2)) == log2_64(0.2));
|
|
}
|
|
|
|
test "math.log2_32" {
|
|
const epsilon = 0.000001;
|
|
|
|
expect(math.approxEq(f32, log2_32(0.2), -2.321928, epsilon));
|
|
expect(math.approxEq(f32, log2_32(0.8923), -0.164399, epsilon));
|
|
expect(math.approxEq(f32, log2_32(1.5), 0.584962, epsilon));
|
|
expect(math.approxEq(f32, log2_32(37.45), 5.226894, epsilon));
|
|
expect(math.approxEq(f32, log2_32(123123.234375), 16.909744, epsilon));
|
|
}
|
|
|
|
test "math.log2_64" {
|
|
const epsilon = 0.000001;
|
|
|
|
expect(math.approxEq(f64, log2_64(0.2), -2.321928, epsilon));
|
|
expect(math.approxEq(f64, log2_64(0.8923), -0.164399, epsilon));
|
|
expect(math.approxEq(f64, log2_64(1.5), 0.584962, epsilon));
|
|
expect(math.approxEq(f64, log2_64(37.45), 5.226894, epsilon));
|
|
expect(math.approxEq(f64, log2_64(123123.234375), 16.909744, epsilon));
|
|
}
|
|
|
|
test "math.log2_32.special" {
|
|
expect(math.isPositiveInf(log2_32(math.inf(f32))));
|
|
expect(math.isNegativeInf(log2_32(0.0)));
|
|
expect(math.isNan(log2_32(-1.0)));
|
|
expect(math.isNan(log2_32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.log2_64.special" {
|
|
expect(math.isPositiveInf(log2_64(math.inf(f64))));
|
|
expect(math.isNegativeInf(log2_64(0.0)));
|
|
expect(math.isNan(log2_64(-1.0)));
|
|
expect(math.isNan(log2_64(math.nan(f64))));
|
|
}
|