zig/lib/std/bloom_filter.zig

266 lines
9.6 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const builtin = @import("builtin");
const std = @import("std.zig");
const math = std.math;
const debug = std.debug;
const assert = std.debug.assert;
const testing = std.testing;
/// There is a trade off of how quickly to fill a bloom filter;
/// the number of items is:
/// n_items / K * ln(2)
/// the rate of false positives is:
/// (1-e^(-K*N/n_items))^K
/// where N is the number of items
pub fn BloomFilter(
/// Size of bloom filter in cells, must be a power of two.
comptime n_items: usize,
/// Number of cells to set per item
comptime K: usize,
/// Cell type, should be:
/// - `bool` for a standard bloom filter
/// - an unsigned integer type for a counting bloom filter
comptime Cell: type,
/// endianess of the Cell
comptime endian: builtin.Endian,
/// Hash function to use
comptime hash: fn (out: []u8, Ki: usize, in: []const u8) void,
) type {
assert(n_items > 0);
assert(math.isPowerOfTwo(n_items));
assert(K > 0);
const cellEmpty = if (Cell == bool) false else @as(Cell, 0);
const cellMax = if (Cell == bool) true else math.maxInt(Cell);
const n_bytes = (n_items * comptime std.meta.bitCount(Cell)) / 8;
assert(n_bytes > 0);
const Io = std.packed_int_array.PackedIntIo(Cell, endian);
return struct {
const Self = @This();
pub const items = n_items;
pub const Index = math.IntFittingRange(0, n_items - 1);
data: [n_bytes]u8 = [_]u8{0} ** n_bytes,
pub fn reset(self: *Self) void {
std.mem.set(u8, self.data[0..], 0);
}
pub fn @"union"(x: Self, y: Self) Self {
var r = Self{ .data = undefined };
inline for (x.data) |v, i| {
r.data[i] = v | y.data[i];
}
return r;
}
pub fn intersection(x: Self, y: Self) Self {
var r = Self{ .data = undefined };
inline for (x.data) |v, i| {
r.data[i] = v & y.data[i];
}
return r;
}
pub fn getCell(self: Self, cell: Index) Cell {
return Io.get(&self.data, cell, 0);
}
pub fn incrementCell(self: *Self, cell: Index) void {
if (Cell == bool or Cell == u1) {
// skip the 'get' operation
Io.set(&self.data, cell, 0, cellMax);
} else {
const old = Io.get(&self.data, cell, 0);
if (old != cellMax) {
Io.set(&self.data, cell, 0, old + 1);
}
}
}
pub fn clearCell(self: *Self, cell: Index) void {
Io.set(&self.data, cell, 0, cellEmpty);
}
pub fn add(self: *Self, item: []const u8) void {
comptime var i = 0;
inline while (i < K) : (i += 1) {
var K_th_bit: packed struct {
x: Index,
} = undefined;
hash(std.mem.asBytes(&K_th_bit), i, item);
incrementCell(self, K_th_bit.x);
}
}
pub fn contains(self: Self, item: []const u8) bool {
comptime var i = 0;
inline while (i < K) : (i += 1) {
var K_th_bit: packed struct {
x: Index,
} = undefined;
hash(std.mem.asBytes(&K_th_bit), i, item);
if (getCell(self, K_th_bit.x) == cellEmpty)
return false;
}
return true;
}
pub fn resize(self: Self, comptime newsize: usize) BloomFilter(newsize, K, Cell, endian, hash) {
var r: BloomFilter(newsize, K, Cell, endian, hash) = undefined;
if (newsize < n_items) {
std.mem.copy(u8, r.data[0..], self.data[0..r.data.len]);
var copied: usize = r.data.len;
while (copied < self.data.len) : (copied += r.data.len) {
for (self.data[copied .. copied + r.data.len]) |s, i| {
r.data[i] |= s;
}
}
} else if (newsize == n_items) {
r = self;
} else if (newsize > n_items) {
var copied: usize = 0;
while (copied < r.data.len) : (copied += self.data.len) {
std.mem.copy(u8, r.data[copied .. copied + self.data.len], &self.data);
}
}
return r;
}
/// Returns number of non-zero cells
pub fn popCount(self: Self) Index {
var n: Index = 0;
if (Cell == bool or Cell == u1) {
for (self.data) |b, i| {
n += @popCount(u8, b);
}
} else {
var i: usize = 0;
while (i < n_items) : (i += 1) {
const cell = self.getCell(@intCast(Index, i));
n += if (if (Cell == bool) cell else cell > 0) @as(Index, 1) else @as(Index, 0);
}
}
return n;
}
pub fn estimateItems(self: Self) f64 {
const m = comptime @intToFloat(f64, n_items);
const k = comptime @intToFloat(f64, K);
const X = @intToFloat(f64, self.popCount());
return (comptime (-m / k)) * math.log1p(X * comptime (-1 / m));
}
};
}
fn hashFunc(out: []u8, Ki: usize, in: []const u8) void {
var st = std.crypto.hash.Gimli.init(.{});
st.update(std.mem.asBytes(&Ki));
st.update(in);
st.final(out);
}
test "std.BloomFilter" {
// https://github.com/ziglang/zig/issues/5127
if (std.Target.current.cpu.arch == .mips) return error.SkipZigTest;
inline for ([_]type{ bool, u1, u2, u3, u4 }) |Cell| {
const emptyCell = if (Cell == bool) false else @as(Cell, 0);
const BF = BloomFilter(128 * 8, 8, Cell, builtin.endian, hashFunc);
var bf = BF{};
var i: usize = undefined;
// confirm that it is initialised to the empty filter
i = 0;
while (i < BF.items) : (i += 1) {
testing.expectEqual(emptyCell, bf.getCell(@intCast(BF.Index, i)));
}
testing.expectEqual(@as(BF.Index, 0), bf.popCount());
testing.expectEqual(@as(f64, 0), bf.estimateItems());
// fill in a few items
bf.incrementCell(42);
bf.incrementCell(255);
bf.incrementCell(256);
bf.incrementCell(257);
// check that they were set
testing.expectEqual(true, bf.getCell(42) != emptyCell);
testing.expectEqual(true, bf.getCell(255) != emptyCell);
testing.expectEqual(true, bf.getCell(256) != emptyCell);
testing.expectEqual(true, bf.getCell(257) != emptyCell);
// clear just one of them; make sure the rest are still set
bf.clearCell(256);
testing.expectEqual(true, bf.getCell(42) != emptyCell);
testing.expectEqual(true, bf.getCell(255) != emptyCell);
testing.expectEqual(false, bf.getCell(256) != emptyCell);
testing.expectEqual(true, bf.getCell(257) != emptyCell);
// reset any of the ones we've set and confirm we're back to the empty filter
bf.clearCell(42);
bf.clearCell(255);
bf.clearCell(257);
i = 0;
while (i < BF.items) : (i += 1) {
testing.expectEqual(emptyCell, bf.getCell(@intCast(BF.Index, i)));
}
testing.expectEqual(@as(BF.Index, 0), bf.popCount());
testing.expectEqual(@as(f64, 0), bf.estimateItems());
// Lets add a string
bf.add("foo");
testing.expectEqual(true, bf.contains("foo"));
{
// try adding same string again. make sure popcount is the same
const old_popcount = bf.popCount();
testing.expect(old_popcount > 0);
bf.add("foo");
testing.expectEqual(true, bf.contains("foo"));
testing.expectEqual(old_popcount, bf.popCount());
}
// Get back to empty filter via .reset
bf.reset();
// Double check that .reset worked
i = 0;
while (i < BF.items) : (i += 1) {
testing.expectEqual(emptyCell, bf.getCell(@intCast(BF.Index, i)));
}
testing.expectEqual(@as(BF.Index, 0), bf.popCount());
testing.expectEqual(@as(f64, 0), bf.estimateItems());
comptime var teststrings = [_][]const u8{
"foo",
"bar",
"a longer string",
"some more",
"the quick brown fox",
"unique string",
};
inline for (teststrings) |str| {
bf.add(str);
}
inline for (teststrings) |str| {
testing.expectEqual(true, bf.contains(str));
}
{ // estimate should be close for low packing
const est = bf.estimateItems();
testing.expect(est > @intToFloat(f64, teststrings.len) - 1);
testing.expect(est < @intToFloat(f64, teststrings.len) + 1);
}
const larger_bf = bf.resize(4096);
inline for (teststrings) |str| {
testing.expectEqual(true, larger_bf.contains(str));
}
testing.expectEqual(@as(u12, bf.popCount()) * (4096 / 1024), larger_bf.popCount());
const smaller_bf = bf.resize(64);
inline for (teststrings) |str| {
testing.expectEqual(true, smaller_bf.contains(str));
}
testing.expect(bf.popCount() <= @as(u10, smaller_bf.popCount()) * (1024 / 64));
}
}