zig/std/atomic/stack.zig

183 lines
6.1 KiB
Zig

const assert = std.debug.assert;
const builtin = @import("builtin");
const AtomicOrder = builtin.AtomicOrder;
const expect = std.testing.expect;
/// Many reader, many writer, non-allocating, thread-safe
/// Uses a spinlock to protect push() and pop()
/// When building in single threaded mode, this is a simple linked list.
pub fn Stack(comptime T: type) type {
return struct {
root: ?*Node,
lock: @typeOf(lock_init),
const lock_init = if (builtin.single_threaded) {} else u8(0);
pub const Self = @This();
pub const Node = struct {
next: ?*Node,
data: T,
};
pub fn init() Self {
return Self{
.root = null,
.lock = lock_init,
};
}
/// push operation, but only if you are the first item in the stack. if you did not succeed in
/// being the first item in the stack, returns the other item that was there.
pub fn pushFirst(self: *Self, node: *Node) ?*Node {
node.next = null;
return @cmpxchgStrong(?*Node, &self.root, null, node, AtomicOrder.SeqCst, AtomicOrder.SeqCst);
}
pub fn push(self: *Self, node: *Node) void {
if (builtin.single_threaded) {
node.next = self.root;
self.root = node;
} else {
while (@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) != 0) {}
defer assert(@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst) == 1);
node.next = self.root;
self.root = node;
}
}
pub fn pop(self: *Self) ?*Node {
if (builtin.single_threaded) {
const root = self.root orelse return null;
self.root = root.next;
return root;
} else {
while (@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) != 0) {}
defer assert(@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst) == 1);
const root = self.root orelse return null;
self.root = root.next;
return root;
}
}
pub fn isEmpty(self: *Self) bool {
return @atomicLoad(?*Node, &self.root, AtomicOrder.SeqCst) == null;
}
};
}
const std = @import("../std.zig");
const Context = struct {
allocator: *std.mem.Allocator,
stack: *Stack(i32),
put_sum: isize,
get_sum: isize,
get_count: usize,
puts_done: u8, // TODO make this a bool
};
// TODO add lazy evaluated build options and then put puts_per_thread behind
// some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor
// CI we would use a less aggressive setting since at 1 core, while we still
// want this test to pass, we need a smaller value since there is so much thrashing
// we would also use a less aggressive setting when running in valgrind
const puts_per_thread = 500;
const put_thread_count = 3;
test "std.atomic.stack" {
var direct_allocator = std.heap.DirectAllocator.init();
defer direct_allocator.deinit();
var plenty_of_memory = try direct_allocator.allocator.alloc(u8, 300 * 1024);
defer direct_allocator.allocator.free(plenty_of_memory);
var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
var a = &fixed_buffer_allocator.allocator;
var stack = Stack(i32).init();
var context = Context{
.allocator = a,
.stack = &stack,
.put_sum = 0,
.get_sum = 0,
.puts_done = 0,
.get_count = 0,
};
if (builtin.single_threaded) {
{
var i: usize = 0;
while (i < put_thread_count) : (i += 1) {
expect(startPuts(&context) == 0);
}
}
context.puts_done = 1;
{
var i: usize = 0;
while (i < put_thread_count) : (i += 1) {
expect(startGets(&context) == 0);
}
}
} else {
var putters: [put_thread_count]*std.os.Thread = undefined;
for (putters) |*t| {
t.* = try std.os.spawnThread(&context, startPuts);
}
var getters: [put_thread_count]*std.os.Thread = undefined;
for (getters) |*t| {
t.* = try std.os.spawnThread(&context, startGets);
}
for (putters) |t|
t.wait();
_ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
for (getters) |t|
t.wait();
}
if (context.put_sum != context.get_sum) {
std.debug.panic("failure\nput_sum:{} != get_sum:{}", context.put_sum, context.get_sum);
}
if (context.get_count != puts_per_thread * put_thread_count) {
std.debug.panic(
"failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}",
context.get_count,
u32(puts_per_thread),
u32(put_thread_count),
);
}
}
fn startPuts(ctx: *Context) u8 {
var put_count: usize = puts_per_thread;
var r = std.rand.DefaultPrng.init(0xdeadbeef);
while (put_count != 0) : (put_count -= 1) {
std.os.time.sleep(1); // let the os scheduler be our fuzz
const x = @bitCast(i32, r.random.scalar(u32));
const node = ctx.allocator.create(Stack(i32).Node) catch unreachable;
node.* = Stack(i32).Node{
.next = undefined,
.data = x,
};
ctx.stack.push(node);
_ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst);
}
return 0;
}
fn startGets(ctx: *Context) u8 {
while (true) {
const last = @atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1;
while (ctx.stack.pop()) |node| {
std.os.time.sleep(1); // let the os scheduler be our fuzz
_ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst);
_ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst);
}
if (last) return 0;
}
}