zig/std/atomic/queue.zig

362 lines
10 KiB
Zig

const std = @import("../std.zig");
const builtin = @import("builtin");
const AtomicOrder = builtin.AtomicOrder;
const AtomicRmwOp = builtin.AtomicRmwOp;
const assert = std.debug.assert;
const expect = std.testing.expect;
/// Many producer, many consumer, non-allocating, thread-safe.
/// Uses a mutex to protect access.
pub fn Queue(comptime T: type) type {
return struct {
head: ?*Node,
tail: ?*Node,
mutex: std.Mutex,
pub const Self = @This();
pub const Node = std.LinkedList(T).Node;
pub fn init() Self {
return Self{
.head = null,
.tail = null,
.mutex = std.Mutex.init(),
};
}
pub fn put(self: *Self, node: *Node) void {
node.next = null;
const held = self.mutex.acquire();
defer held.release();
node.prev = self.tail;
self.tail = node;
if (node.prev) |prev_tail| {
prev_tail.next = node;
} else {
assert(self.head == null);
self.head = node;
}
}
pub fn get(self: *Self) ?*Node {
const held = self.mutex.acquire();
defer held.release();
const head = self.head orelse return null;
self.head = head.next;
if (head.next) |new_head| {
new_head.prev = null;
} else {
self.tail = null;
}
// This way, a get() and a remove() are thread-safe with each other.
head.prev = null;
head.next = null;
return head;
}
pub fn unget(self: *Self, node: *Node) void {
node.prev = null;
const held = self.mutex.acquire();
defer held.release();
const opt_head = self.head;
self.head = node;
if (opt_head) |head| {
head.next = node;
} else {
assert(self.tail == null);
self.tail = node;
}
}
/// Thread-safe with get() and remove(). Returns whether node was actually removed.
pub fn remove(self: *Self, node: *Node) bool {
const held = self.mutex.acquire();
defer held.release();
if (node.prev == null and node.next == null and self.head != node) {
return false;
}
if (node.prev) |prev| {
prev.next = node.next;
} else {
self.head = node.next;
}
if (node.next) |next| {
next.prev = node.prev;
} else {
self.tail = node.prev;
}
node.prev = null;
node.next = null;
return true;
}
pub fn isEmpty(self: *Self) bool {
const held = self.mutex.acquire();
defer held.release();
return self.head != null;
}
pub fn dump(self: *Self) void {
var stderr_file = std.io.getStdErr() catch return;
const stderr = &stderr_file.outStream().stream;
const Error = @typeInfo(@typeOf(stderr)).Pointer.child.Error;
self.dumpToStream(Error, stderr) catch return;
}
pub fn dumpToStream(self: *Self, comptime Error: type, stream: *std.io.OutStream(Error)) Error!void {
const S = struct {
fn dumpRecursive(s: *std.io.OutStream(Error), optional_node: ?*Node, indent: usize) Error!void {
try s.writeByteNTimes(' ', indent);
if (optional_node) |node| {
try s.print("0x{x}={}\n", @ptrToInt(node), node.data);
try dumpRecursive(s, node.next, indent + 1);
} else {
try s.print("(null)\n");
}
}
};
const held = self.mutex.acquire();
defer held.release();
try stream.print("head: ");
try S.dumpRecursive(stream, self.head, 0);
try stream.print("tail: ");
try S.dumpRecursive(stream, self.tail, 0);
}
};
}
const Context = struct {
allocator: *std.mem.Allocator,
queue: *Queue(i32),
put_sum: isize,
get_sum: isize,
get_count: usize,
puts_done: u8, // TODO make this a bool
};
// TODO add lazy evaluated build options and then put puts_per_thread behind
// some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor
// CI we would use a less aggressive setting since at 1 core, while we still
// want this test to pass, we need a smaller value since there is so much thrashing
// we would also use a less aggressive setting when running in valgrind
const puts_per_thread = 500;
const put_thread_count = 3;
test "std.atomic.Queue" {
var direct_allocator = std.heap.DirectAllocator.init();
defer direct_allocator.deinit();
var plenty_of_memory = try direct_allocator.allocator.alloc(u8, 300 * 1024);
defer direct_allocator.allocator.free(plenty_of_memory);
var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
var a = &fixed_buffer_allocator.allocator;
var queue = Queue(i32).init();
var context = Context{
.allocator = a,
.queue = &queue,
.put_sum = 0,
.get_sum = 0,
.puts_done = 0,
.get_count = 0,
};
if (builtin.single_threaded) {
{
var i: usize = 0;
while (i < put_thread_count) : (i += 1) {
expect(startPuts(&context) == 0);
}
}
context.puts_done = 1;
{
var i: usize = 0;
while (i < put_thread_count) : (i += 1) {
expect(startGets(&context) == 0);
}
}
} else {
var putters: [put_thread_count]*std.os.Thread = undefined;
for (putters) |*t| {
t.* = try std.os.spawnThread(&context, startPuts);
}
var getters: [put_thread_count]*std.os.Thread = undefined;
for (getters) |*t| {
t.* = try std.os.spawnThread(&context, startGets);
}
for (putters) |t|
t.wait();
_ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
for (getters) |t|
t.wait();
}
if (context.put_sum != context.get_sum) {
std.debug.panic("failure\nput_sum:{} != get_sum:{}", context.put_sum, context.get_sum);
}
if (context.get_count != puts_per_thread * put_thread_count) {
std.debug.panic(
"failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}",
context.get_count,
u32(puts_per_thread),
u32(put_thread_count),
);
}
}
fn startPuts(ctx: *Context) u8 {
var put_count: usize = puts_per_thread;
var r = std.rand.DefaultPrng.init(0xdeadbeef);
while (put_count != 0) : (put_count -= 1) {
std.os.time.sleep(1); // let the os scheduler be our fuzz
const x = @bitCast(i32, r.random.scalar(u32));
const node = ctx.allocator.create(Queue(i32).Node) catch unreachable;
node.* = Queue(i32).Node{
.prev = undefined,
.next = undefined,
.data = x,
};
ctx.queue.put(node);
_ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst);
}
return 0;
}
fn startGets(ctx: *Context) u8 {
while (true) {
const last = @atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1;
while (ctx.queue.get()) |node| {
std.os.time.sleep(1); // let the os scheduler be our fuzz
_ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst);
_ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst);
}
if (last) return 0;
}
}
test "std.atomic.Queue single-threaded" {
var queue = Queue(i32).init();
var node_0 = Queue(i32).Node{
.data = 0,
.next = undefined,
.prev = undefined,
};
queue.put(&node_0);
var node_1 = Queue(i32).Node{
.data = 1,
.next = undefined,
.prev = undefined,
};
queue.put(&node_1);
expect(queue.get().?.data == 0);
var node_2 = Queue(i32).Node{
.data = 2,
.next = undefined,
.prev = undefined,
};
queue.put(&node_2);
var node_3 = Queue(i32).Node{
.data = 3,
.next = undefined,
.prev = undefined,
};
queue.put(&node_3);
expect(queue.get().?.data == 1);
expect(queue.get().?.data == 2);
var node_4 = Queue(i32).Node{
.data = 4,
.next = undefined,
.prev = undefined,
};
queue.put(&node_4);
expect(queue.get().?.data == 3);
node_3.next = null;
expect(queue.get().?.data == 4);
expect(queue.get() == null);
}
test "std.atomic.Queue dump" {
const mem = std.mem;
const SliceOutStream = std.io.SliceOutStream;
var buffer: [1024]u8 = undefined;
var expected_buffer: [1024]u8 = undefined;
var sos = SliceOutStream.init(buffer[0..]);
var queue = Queue(i32).init();
// Test empty stream
sos.reset();
try queue.dumpToStream(SliceOutStream.Error, &sos.stream);
expect(mem.eql(u8, buffer[0..sos.pos],
\\head: (null)
\\tail: (null)
\\
));
// Test a stream with one element
var node_0 = Queue(i32).Node{
.data = 1,
.next = undefined,
.prev = undefined,
};
queue.put(&node_0);
sos.reset();
try queue.dumpToStream(SliceOutStream.Error, &sos.stream);
var expected = try std.fmt.bufPrint(expected_buffer[0..],
\\head: 0x{x}=1
\\ (null)
\\tail: 0x{x}=1
\\ (null)
\\
, @ptrToInt(queue.head), @ptrToInt(queue.tail));
expect(mem.eql(u8, buffer[0..sos.pos], expected));
// Test a stream with two elements
var node_1 = Queue(i32).Node{
.data = 2,
.next = undefined,
.prev = undefined,
};
queue.put(&node_1);
sos.reset();
try queue.dumpToStream(SliceOutStream.Error, &sos.stream);
expected = try std.fmt.bufPrint(expected_buffer[0..],
\\head: 0x{x}=1
\\ 0x{x}=2
\\ (null)
\\tail: 0x{x}=2
\\ (null)
\\
, @ptrToInt(queue.head), @ptrToInt(queue.head.?.next), @ptrToInt(queue.tail));
expect(mem.eql(u8, buffer[0..sos.pos], expected));
}