342 lines
8.8 KiB
Zig
342 lines
8.8 KiB
Zig
// Special Cases:
|
|
//
|
|
// - sqrt(+inf) = +inf
|
|
// - sqrt(+-0) = +-0
|
|
// - sqrt(x) = nan if x < 0
|
|
// - sqrt(nan) = nan
|
|
|
|
const std = @import("../index.zig");
|
|
const math = std.math;
|
|
const assert = std.debug.assert;
|
|
const builtin = @import("builtin");
|
|
const TypeId = builtin.TypeId;
|
|
|
|
pub fn sqrt(x: var) (if (@typeId(@typeOf(x)) == TypeId.Int) @IntType(false, @typeOf(x).bit_count / 2) else @typeOf(x)) {
|
|
const T = @typeOf(x);
|
|
switch (@typeId(T)) {
|
|
TypeId.FloatLiteral => {
|
|
return T(sqrt64(x));
|
|
},
|
|
TypeId.Float => {
|
|
switch (T) {
|
|
f32 => {
|
|
switch (builtin.arch) {
|
|
builtin.Arch.x86_64 => return @import("x86_64/sqrt.zig").sqrt32(x),
|
|
else => return sqrt32(x),
|
|
}
|
|
},
|
|
f64 => {
|
|
switch (builtin.arch) {
|
|
builtin.Arch.x86_64 => return @import("x86_64/sqrt.zig").sqrt64(x),
|
|
else => return sqrt64(x),
|
|
}
|
|
},
|
|
else => @compileError("sqrt not implemented for " ++ @typeName(T)),
|
|
}
|
|
},
|
|
TypeId.IntLiteral => comptime {
|
|
if (x > @maxValue(u128)) {
|
|
@compileError("sqrt not implemented for comptime_int greater than 128 bits");
|
|
}
|
|
if (x < 0) {
|
|
@compileError("sqrt on negative number");
|
|
}
|
|
return T(sqrt_int(u128, x));
|
|
},
|
|
TypeId.Int => {
|
|
return sqrt_int(T, x);
|
|
},
|
|
else => @compileError("sqrt not implemented for " ++ @typeName(T)),
|
|
}
|
|
}
|
|
|
|
fn sqrt32(x: f32) f32 {
|
|
const tiny: f32 = 1.0e-30;
|
|
const sign: i32 = @bitCast(i32, u32(0x80000000));
|
|
var ix: i32 = @bitCast(i32, x);
|
|
|
|
if ((ix & 0x7F800000) == 0x7F800000) {
|
|
return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan
|
|
}
|
|
|
|
// zero
|
|
if (ix <= 0) {
|
|
if (ix & ~sign == 0) {
|
|
return x; // sqrt (+-0) = +-0
|
|
}
|
|
if (ix < 0) {
|
|
return math.snan(f32);
|
|
}
|
|
}
|
|
|
|
// normalize
|
|
var m = ix >> 23;
|
|
if (m == 0) {
|
|
// subnormal
|
|
var i: i32 = 0;
|
|
while (ix & 0x00800000 == 0) : (i += 1) {
|
|
ix <<= 1;
|
|
}
|
|
m -= i - 1;
|
|
}
|
|
|
|
m -= 127; // unbias exponent
|
|
ix = (ix & 0x007FFFFF) | 0x00800000;
|
|
|
|
if (m & 1 != 0) { // odd m, double x to even
|
|
ix += ix;
|
|
}
|
|
|
|
m >>= 1; // m = [m / 2]
|
|
|
|
// sqrt(x) bit by bit
|
|
ix += ix;
|
|
var q: i32 = 0; // q = sqrt(x)
|
|
var s: i32 = 0;
|
|
var r: i32 = 0x01000000; // r = moving bit right -> left
|
|
|
|
while (r != 0) {
|
|
const t = s + r;
|
|
if (t <= ix) {
|
|
s = t + r;
|
|
ix -= t;
|
|
q += r;
|
|
}
|
|
ix += ix;
|
|
r >>= 1;
|
|
}
|
|
|
|
// floating add to find rounding direction
|
|
if (ix != 0) {
|
|
var z = 1.0 - tiny; // inexact
|
|
if (z >= 1.0) {
|
|
z = 1.0 + tiny;
|
|
if (z > 1.0) {
|
|
q += 2;
|
|
} else {
|
|
if (q & 1 != 0) {
|
|
q += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ix = (q >> 1) + 0x3f000000;
|
|
ix += m << 23;
|
|
return @bitCast(f32, ix);
|
|
}
|
|
|
|
// NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound
|
|
// behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are
|
|
// potentially some edge cases remaining that are not handled in the same way.
|
|
fn sqrt64(x: f64) f64 {
|
|
const tiny: f64 = 1.0e-300;
|
|
const sign: u32 = 0x80000000;
|
|
const u = @bitCast(u64, x);
|
|
|
|
var ix0 = u32(u >> 32);
|
|
var ix1 = u32(u & 0xFFFFFFFF);
|
|
|
|
// sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan
|
|
if (ix0 & 0x7FF00000 == 0x7FF00000) {
|
|
return x * x + x;
|
|
}
|
|
|
|
// sqrt(+-0) = +-0
|
|
if (x == 0.0) {
|
|
return x;
|
|
}
|
|
// sqrt(-ve) = snan
|
|
if (ix0 & sign != 0) {
|
|
return math.snan(f64);
|
|
}
|
|
|
|
// normalize x
|
|
var m = i32(ix0 >> 20);
|
|
if (m == 0) {
|
|
// subnormal
|
|
while (ix0 == 0) {
|
|
m -= 21;
|
|
ix0 |= ix1 >> 11;
|
|
ix1 <<= 21;
|
|
}
|
|
|
|
// subnormal
|
|
var i: u32 = 0;
|
|
while (ix0 & 0x00100000 == 0) : (i += 1) {
|
|
ix0 <<= 1;
|
|
}
|
|
m -= i32(i) - 1;
|
|
ix0 |= ix1 >> u5(32 - i);
|
|
ix1 <<= u5(i);
|
|
}
|
|
|
|
// unbias exponent
|
|
m -= 1023;
|
|
ix0 = (ix0 & 0x000FFFFF) | 0x00100000;
|
|
if (m & 1 != 0) {
|
|
ix0 += ix0 + (ix1 >> 31);
|
|
ix1 = ix1 +% ix1;
|
|
}
|
|
m >>= 1;
|
|
|
|
// sqrt(x) bit by bit
|
|
ix0 += ix0 + (ix1 >> 31);
|
|
ix1 = ix1 +% ix1;
|
|
|
|
var q: u32 = 0;
|
|
var q1: u32 = 0;
|
|
var s0: u32 = 0;
|
|
var s1: u32 = 0;
|
|
var r: u32 = 0x00200000;
|
|
var t: u32 = undefined;
|
|
var t1: u32 = undefined;
|
|
|
|
while (r != 0) {
|
|
t = s0 +% r;
|
|
if (t <= ix0) {
|
|
s0 = t + r;
|
|
ix0 -= t;
|
|
q += r;
|
|
}
|
|
ix0 = ix0 +% ix0 +% (ix1 >> 31);
|
|
ix1 = ix1 +% ix1;
|
|
r >>= 1;
|
|
}
|
|
|
|
r = sign;
|
|
while (r != 0) {
|
|
t = s1 +% r;
|
|
t = s0;
|
|
if (t < ix0 or (t == ix0 and t1 <= ix1)) {
|
|
s1 = t1 +% r;
|
|
if (t1 & sign == sign and s1 & sign == 0) {
|
|
s0 += 1;
|
|
}
|
|
ix0 -= t;
|
|
if (ix1 < t1) {
|
|
ix0 -= 1;
|
|
}
|
|
ix1 = ix1 -% t1;
|
|
q1 += r;
|
|
}
|
|
ix0 = ix0 +% ix0 +% (ix1 >> 31);
|
|
ix1 = ix1 +% ix1;
|
|
r >>= 1;
|
|
}
|
|
|
|
// rounding direction
|
|
if (ix0 | ix1 != 0) {
|
|
var z = 1.0 - tiny; // raise inexact
|
|
if (z >= 1.0) {
|
|
z = 1.0 + tiny;
|
|
if (q1 == 0xFFFFFFFF) {
|
|
q1 = 0;
|
|
q += 1;
|
|
} else if (z > 1.0) {
|
|
if (q1 == 0xFFFFFFFE) {
|
|
q += 1;
|
|
}
|
|
q1 += 2;
|
|
} else {
|
|
q1 += q1 & 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
ix0 = (q >> 1) + 0x3FE00000;
|
|
ix1 = q1 >> 1;
|
|
if (q & 1 != 0) {
|
|
ix1 |= 0x80000000;
|
|
}
|
|
|
|
// NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same
|
|
// behaviour at least.
|
|
var iix0 = i32(ix0);
|
|
iix0 = iix0 +% (m << 20);
|
|
|
|
const uz = (u64(iix0) << 32) | ix1;
|
|
return @bitCast(f64, uz);
|
|
}
|
|
|
|
test "math.sqrt" {
|
|
assert(sqrt(f32(0.0)) == sqrt32(0.0));
|
|
assert(sqrt(f64(0.0)) == sqrt64(0.0));
|
|
}
|
|
|
|
test "math.sqrt32" {
|
|
const epsilon = 0.000001;
|
|
|
|
assert(sqrt32(0.0) == 0.0);
|
|
assert(math.approxEq(f32, sqrt32(2.0), 1.414214, epsilon));
|
|
assert(math.approxEq(f32, sqrt32(3.6), 1.897367, epsilon));
|
|
assert(sqrt32(4.0) == 2.0);
|
|
assert(math.approxEq(f32, sqrt32(7.539840), 2.745877, epsilon));
|
|
assert(math.approxEq(f32, sqrt32(19.230934), 4.385309, epsilon));
|
|
assert(sqrt32(64.0) == 8.0);
|
|
assert(math.approxEq(f32, sqrt32(64.1), 8.006248, epsilon));
|
|
assert(math.approxEq(f32, sqrt32(8942.230469), 94.563370, epsilon));
|
|
}
|
|
|
|
test "math.sqrt64" {
|
|
const epsilon = 0.000001;
|
|
|
|
assert(sqrt64(0.0) == 0.0);
|
|
assert(math.approxEq(f64, sqrt64(2.0), 1.414214, epsilon));
|
|
assert(math.approxEq(f64, sqrt64(3.6), 1.897367, epsilon));
|
|
assert(sqrt64(4.0) == 2.0);
|
|
assert(math.approxEq(f64, sqrt64(7.539840), 2.745877, epsilon));
|
|
assert(math.approxEq(f64, sqrt64(19.230934), 4.385309, epsilon));
|
|
assert(sqrt64(64.0) == 8.0);
|
|
assert(math.approxEq(f64, sqrt64(64.1), 8.006248, epsilon));
|
|
assert(math.approxEq(f64, sqrt64(8942.230469), 94.563367, epsilon));
|
|
}
|
|
|
|
test "math.sqrt32.special" {
|
|
assert(math.isPositiveInf(sqrt32(math.inf(f32))));
|
|
assert(sqrt32(0.0) == 0.0);
|
|
assert(sqrt32(-0.0) == -0.0);
|
|
assert(math.isNan(sqrt32(-1.0)));
|
|
assert(math.isNan(sqrt32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.sqrt64.special" {
|
|
assert(math.isPositiveInf(sqrt64(math.inf(f64))));
|
|
assert(sqrt64(0.0) == 0.0);
|
|
assert(sqrt64(-0.0) == -0.0);
|
|
assert(math.isNan(sqrt64(-1.0)));
|
|
assert(math.isNan(sqrt64(math.nan(f64))));
|
|
}
|
|
|
|
fn sqrt_int(comptime T: type, value: T) @IntType(false, T.bit_count / 2) {
|
|
var op = value;
|
|
var res: T = 0;
|
|
var one: T = 1 << (T.bit_count - 2);
|
|
|
|
// "one" starts at the highest power of four <= than the argument.
|
|
while (one > op) {
|
|
one >>= 2;
|
|
}
|
|
|
|
while (one != 0) {
|
|
if (op >= res + one) {
|
|
op -= res + one;
|
|
res += 2 * one;
|
|
}
|
|
res >>= 1;
|
|
one >>= 2;
|
|
}
|
|
|
|
const ResultType = @IntType(false, T.bit_count / 2);
|
|
return ResultType(res);
|
|
}
|
|
|
|
test "math.sqrt_int" {
|
|
assert(sqrt_int(u32, 3) == 1);
|
|
assert(sqrt_int(u32, 4) == 2);
|
|
assert(sqrt_int(u32, 5) == 2);
|
|
assert(sqrt_int(u32, 8) == 2);
|
|
assert(sqrt_int(u32, 9) == 3);
|
|
assert(sqrt_int(u32, 10) == 3);
|
|
}
|