zig/std/fs/path.zig

1137 lines
41 KiB
Zig

const builtin = @import("builtin");
const std = @import("../std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const fmt = std.fmt;
const Allocator = mem.Allocator;
const math = std.math;
const windows = std.os.windows;
const fs = std.fs;
const process = std.process;
pub const sep_windows = '\\';
pub const sep_posix = '/';
pub const sep = if (windows.is_the_target) sep_windows else sep_posix;
pub const sep_str = [1]u8{sep};
pub const delimiter_windows = ';';
pub const delimiter_posix = ':';
pub const delimiter = if (windows.is_the_target) delimiter_windows else delimiter_posix;
pub fn isSep(byte: u8) bool {
if (windows.is_the_target) {
return byte == '/' or byte == '\\';
} else {
return byte == '/';
}
}
/// This is different from mem.join in that the separator will not be repeated if
/// it is found at the end or beginning of a pair of consecutive paths.
fn joinSep(allocator: *Allocator, separator: u8, paths: []const []const u8) ![]u8 {
if (paths.len == 0) return (([*]u8)(undefined))[0..0];
const total_len = blk: {
var sum: usize = paths[0].len;
var i: usize = 1;
while (i < paths.len) : (i += 1) {
const prev_path = paths[i - 1];
const this_path = paths[i];
const prev_sep = (prev_path.len != 0 and prev_path[prev_path.len - 1] == separator);
const this_sep = (this_path.len != 0 and this_path[0] == separator);
sum += @boolToInt(!prev_sep and !this_sep);
sum += if (prev_sep and this_sep) this_path.len - 1 else this_path.len;
}
break :blk sum;
};
const buf = try allocator.alloc(u8, total_len);
errdefer allocator.free(buf);
mem.copy(u8, buf, paths[0]);
var buf_index: usize = paths[0].len;
var i: usize = 1;
while (i < paths.len) : (i += 1) {
const prev_path = paths[i - 1];
const this_path = paths[i];
const prev_sep = (prev_path.len != 0 and prev_path[prev_path.len - 1] == separator);
const this_sep = (this_path.len != 0 and this_path[0] == separator);
if (!prev_sep and !this_sep) {
buf[buf_index] = separator;
buf_index += 1;
}
const adjusted_path = if (prev_sep and this_sep) this_path[1..] else this_path;
mem.copy(u8, buf[buf_index..], adjusted_path);
buf_index += adjusted_path.len;
}
// No need for shrink since buf is exactly the correct size.
return buf;
}
pub const join = if (windows.is_the_target) joinWindows else joinPosix;
/// Naively combines a series of paths with the native path seperator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn joinWindows(allocator: *Allocator, paths: []const []const u8) ![]u8 {
return joinSep(allocator, sep_windows, paths);
}
/// Naively combines a series of paths with the native path seperator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn joinPosix(allocator: *Allocator, paths: []const []const u8) ![]u8 {
return joinSep(allocator, sep_posix, paths);
}
fn testJoinWindows(paths: []const []const u8, expected: []const u8) void {
var buf: [1024]u8 = undefined;
const a = &std.heap.FixedBufferAllocator.init(&buf).allocator;
const actual = joinWindows(a, paths) catch @panic("fail");
testing.expectEqualSlices(u8, expected, actual);
}
fn testJoinPosix(paths: []const []const u8, expected: []const u8) void {
var buf: [1024]u8 = undefined;
const a = &std.heap.FixedBufferAllocator.init(&buf).allocator;
const actual = joinPosix(a, paths) catch @panic("fail");
testing.expectEqualSlices(u8, expected, actual);
}
test "join" {
testJoinWindows([_][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c");
testJoinWindows([_][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c");
testJoinWindows([_][]const u8{ "c:\\a\\b\\", "c" }, "c:\\a\\b\\c");
testJoinWindows([_][]const u8{ "c:\\", "a", "b\\", "c" }, "c:\\a\\b\\c");
testJoinWindows([_][]const u8{ "c:\\a\\", "b\\", "c" }, "c:\\a\\b\\c");
testJoinWindows(
[_][]const u8{ "c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std", "io.zig" },
"c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std\\io.zig",
);
testJoinPosix([_][]const u8{ "/a/b", "c" }, "/a/b/c");
testJoinPosix([_][]const u8{ "/a/b/", "c" }, "/a/b/c");
testJoinPosix([_][]const u8{ "/", "a", "b/", "c" }, "/a/b/c");
testJoinPosix([_][]const u8{ "/a/", "b/", "c" }, "/a/b/c");
testJoinPosix(
[_][]const u8{ "/home/andy/dev/zig/build/lib/zig/std", "io.zig" },
"/home/andy/dev/zig/build/lib/zig/std/io.zig",
);
testJoinPosix([_][]const u8{ "a", "/c" }, "a/c");
testJoinPosix([_][]const u8{ "a/", "/c" }, "a/c");
}
pub fn isAbsolute(path: []const u8) bool {
if (windows.is_the_target) {
return isAbsoluteWindows(path);
} else {
return isAbsolutePosix(path);
}
}
pub fn isAbsoluteWindows(path: []const u8) bool {
if (path[0] == '/')
return true;
if (path[0] == '\\') {
return true;
}
if (path.len < 3) {
return false;
}
if (path[1] == ':') {
if (path[2] == '/')
return true;
if (path[2] == '\\')
return true;
}
return false;
}
pub fn isAbsolutePosix(path: []const u8) bool {
return path[0] == sep_posix;
}
test "isAbsoluteWindows" {
testIsAbsoluteWindows("/", true);
testIsAbsoluteWindows("//", true);
testIsAbsoluteWindows("//server", true);
testIsAbsoluteWindows("//server/file", true);
testIsAbsoluteWindows("\\\\server\\file", true);
testIsAbsoluteWindows("\\\\server", true);
testIsAbsoluteWindows("\\\\", true);
testIsAbsoluteWindows("c", false);
testIsAbsoluteWindows("c:", false);
testIsAbsoluteWindows("c:\\", true);
testIsAbsoluteWindows("c:/", true);
testIsAbsoluteWindows("c://", true);
testIsAbsoluteWindows("C:/Users/", true);
testIsAbsoluteWindows("C:\\Users\\", true);
testIsAbsoluteWindows("C:cwd/another", false);
testIsAbsoluteWindows("C:cwd\\another", false);
testIsAbsoluteWindows("directory/directory", false);
testIsAbsoluteWindows("directory\\directory", false);
testIsAbsoluteWindows("/usr/local", true);
}
test "isAbsolutePosix" {
testIsAbsolutePosix("/home/foo", true);
testIsAbsolutePosix("/home/foo/..", true);
testIsAbsolutePosix("bar/", false);
testIsAbsolutePosix("./baz", false);
}
fn testIsAbsoluteWindows(path: []const u8, expected_result: bool) void {
testing.expectEqual(expected_result, isAbsoluteWindows(path));
}
fn testIsAbsolutePosix(path: []const u8, expected_result: bool) void {
testing.expectEqual(expected_result, isAbsolutePosix(path));
}
pub const WindowsPath = struct {
is_abs: bool,
kind: Kind,
disk_designator: []const u8,
pub const Kind = enum {
None,
Drive,
NetworkShare,
};
};
pub fn windowsParsePath(path: []const u8) WindowsPath {
if (path.len >= 2 and path[1] == ':') {
return WindowsPath{
.is_abs = isAbsoluteWindows(path),
.kind = WindowsPath.Kind.Drive,
.disk_designator = path[0..2],
};
}
if (path.len >= 1 and (path[0] == '/' or path[0] == '\\') and
(path.len == 1 or (path[1] != '/' and path[1] != '\\')))
{
return WindowsPath{
.is_abs = true,
.kind = WindowsPath.Kind.None,
.disk_designator = path[0..0],
};
}
const relative_path = WindowsPath{
.kind = WindowsPath.Kind.None,
.disk_designator = [_]u8{},
.is_abs = false,
};
if (path.len < "//a/b".len) {
return relative_path;
}
// TODO when I combined these together with `inline for` the compiler crashed
{
const this_sep = '/';
const two_sep = [_]u8{ this_sep, this_sep };
if (mem.startsWith(u8, path, two_sep)) {
if (path[2] == this_sep) {
return relative_path;
}
var it = mem.tokenize(path, [_]u8{this_sep});
_ = (it.next() orelse return relative_path);
_ = (it.next() orelse return relative_path);
return WindowsPath{
.is_abs = isAbsoluteWindows(path),
.kind = WindowsPath.Kind.NetworkShare,
.disk_designator = path[0..it.index],
};
}
}
{
const this_sep = '\\';
const two_sep = [_]u8{ this_sep, this_sep };
if (mem.startsWith(u8, path, two_sep)) {
if (path[2] == this_sep) {
return relative_path;
}
var it = mem.tokenize(path, [_]u8{this_sep});
_ = (it.next() orelse return relative_path);
_ = (it.next() orelse return relative_path);
return WindowsPath{
.is_abs = isAbsoluteWindows(path),
.kind = WindowsPath.Kind.NetworkShare,
.disk_designator = path[0..it.index],
};
}
}
return relative_path;
}
test "windowsParsePath" {
{
const parsed = windowsParsePath("//a/b");
testing.expect(parsed.is_abs);
testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
testing.expect(mem.eql(u8, parsed.disk_designator, "//a/b"));
}
{
const parsed = windowsParsePath("\\\\a\\b");
testing.expect(parsed.is_abs);
testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
testing.expect(mem.eql(u8, parsed.disk_designator, "\\\\a\\b"));
}
{
const parsed = windowsParsePath("\\\\a\\");
testing.expect(!parsed.is_abs);
testing.expect(parsed.kind == WindowsPath.Kind.None);
testing.expect(mem.eql(u8, parsed.disk_designator, ""));
}
{
const parsed = windowsParsePath("/usr/local");
testing.expect(parsed.is_abs);
testing.expect(parsed.kind == WindowsPath.Kind.None);
testing.expect(mem.eql(u8, parsed.disk_designator, ""));
}
{
const parsed = windowsParsePath("c:../");
testing.expect(!parsed.is_abs);
testing.expect(parsed.kind == WindowsPath.Kind.Drive);
testing.expect(mem.eql(u8, parsed.disk_designator, "c:"));
}
}
pub fn diskDesignator(path: []const u8) []const u8 {
if (windows.is_the_target) {
return diskDesignatorWindows(path);
} else {
return "";
}
}
pub fn diskDesignatorWindows(path: []const u8) []const u8 {
return windowsParsePath(path).disk_designator;
}
fn networkShareServersEql(ns1: []const u8, ns2: []const u8) bool {
const sep1 = ns1[0];
const sep2 = ns2[0];
var it1 = mem.tokenize(ns1, [_]u8{sep1});
var it2 = mem.tokenize(ns2, [_]u8{sep2});
// TODO ASCII is wrong, we actually need full unicode support to compare paths.
return asciiEqlIgnoreCase(it1.next().?, it2.next().?);
}
fn compareDiskDesignators(kind: WindowsPath.Kind, p1: []const u8, p2: []const u8) bool {
switch (kind) {
WindowsPath.Kind.None => {
assert(p1.len == 0);
assert(p2.len == 0);
return true;
},
WindowsPath.Kind.Drive => {
return asciiUpper(p1[0]) == asciiUpper(p2[0]);
},
WindowsPath.Kind.NetworkShare => {
const sep1 = p1[0];
const sep2 = p2[0];
var it1 = mem.tokenize(p1, [_]u8{sep1});
var it2 = mem.tokenize(p2, [_]u8{sep2});
// TODO ASCII is wrong, we actually need full unicode support to compare paths.
return asciiEqlIgnoreCase(it1.next().?, it2.next().?) and asciiEqlIgnoreCase(it1.next().?, it2.next().?);
},
}
}
fn asciiUpper(byte: u8) u8 {
return switch (byte) {
'a'...'z' => 'A' + (byte - 'a'),
else => byte,
};
}
fn asciiEqlIgnoreCase(s1: []const u8, s2: []const u8) bool {
if (s1.len != s2.len)
return false;
var i: usize = 0;
while (i < s1.len) : (i += 1) {
if (asciiUpper(s1[i]) != asciiUpper(s2[i]))
return false;
}
return true;
}
/// On Windows, this calls `resolveWindows` and on POSIX it calls `resolvePosix`.
pub fn resolve(allocator: *Allocator, paths: []const []const u8) ![]u8 {
if (windows.is_the_target) {
return resolveWindows(allocator, paths);
} else {
return resolvePosix(allocator, paths);
}
}
/// This function is like a series of `cd` statements executed one after another.
/// It resolves "." and "..".
/// The result does not have a trailing path separator.
/// If all paths are relative it uses the current working directory as a starting point.
/// Each drive has its own current working directory.
/// Path separators are canonicalized to '\\' and drives are canonicalized to capital letters.
/// Note: all usage of this function should be audited due to the existence of symlinks.
/// Without performing actual syscalls, resolving `..` could be incorrect.
pub fn resolveWindows(allocator: *Allocator, paths: []const []const u8) ![]u8 {
if (paths.len == 0) {
assert(windows.is_the_target); // resolveWindows called on non windows can't use getCwd
return process.getCwdAlloc(allocator);
}
// determine which disk designator we will result with, if any
var result_drive_buf = "_:";
var result_disk_designator: []const u8 = "";
var have_drive_kind = WindowsPath.Kind.None;
var have_abs_path = false;
var first_index: usize = 0;
var max_size: usize = 0;
for (paths) |p, i| {
const parsed = windowsParsePath(p);
if (parsed.is_abs) {
have_abs_path = true;
first_index = i;
max_size = result_disk_designator.len;
}
switch (parsed.kind) {
WindowsPath.Kind.Drive => {
result_drive_buf[0] = asciiUpper(parsed.disk_designator[0]);
result_disk_designator = result_drive_buf[0..];
have_drive_kind = WindowsPath.Kind.Drive;
},
WindowsPath.Kind.NetworkShare => {
result_disk_designator = parsed.disk_designator;
have_drive_kind = WindowsPath.Kind.NetworkShare;
},
WindowsPath.Kind.None => {},
}
max_size += p.len + 1;
}
// if we will result with a disk designator, loop again to determine
// which is the last time the disk designator is absolutely specified, if any
// and count up the max bytes for paths related to this disk designator
if (have_drive_kind != WindowsPath.Kind.None) {
have_abs_path = false;
first_index = 0;
max_size = result_disk_designator.len;
var correct_disk_designator = false;
for (paths) |p, i| {
const parsed = windowsParsePath(p);
if (parsed.kind != WindowsPath.Kind.None) {
if (parsed.kind == have_drive_kind) {
correct_disk_designator = compareDiskDesignators(have_drive_kind, result_disk_designator, parsed.disk_designator);
} else {
continue;
}
}
if (!correct_disk_designator) {
continue;
}
if (parsed.is_abs) {
first_index = i;
max_size = result_disk_designator.len;
have_abs_path = true;
}
max_size += p.len + 1;
}
}
// Allocate result and fill in the disk designator, calling getCwd if we have to.
var result: []u8 = undefined;
var result_index: usize = 0;
if (have_abs_path) {
switch (have_drive_kind) {
WindowsPath.Kind.Drive => {
result = try allocator.alloc(u8, max_size);
mem.copy(u8, result, result_disk_designator);
result_index += result_disk_designator.len;
},
WindowsPath.Kind.NetworkShare => {
result = try allocator.alloc(u8, max_size);
var it = mem.tokenize(paths[first_index], "/\\");
const server_name = it.next().?;
const other_name = it.next().?;
result[result_index] = '\\';
result_index += 1;
result[result_index] = '\\';
result_index += 1;
mem.copy(u8, result[result_index..], server_name);
result_index += server_name.len;
result[result_index] = '\\';
result_index += 1;
mem.copy(u8, result[result_index..], other_name);
result_index += other_name.len;
result_disk_designator = result[0..result_index];
},
WindowsPath.Kind.None => {
assert(windows.is_the_target); // resolveWindows called on non windows can't use getCwd
const cwd = try process.getCwdAlloc(allocator);
defer allocator.free(cwd);
const parsed_cwd = windowsParsePath(cwd);
result = try allocator.alloc(u8, max_size + parsed_cwd.disk_designator.len + 1);
mem.copy(u8, result, parsed_cwd.disk_designator);
result_index += parsed_cwd.disk_designator.len;
result_disk_designator = result[0..parsed_cwd.disk_designator.len];
if (parsed_cwd.kind == WindowsPath.Kind.Drive) {
result[0] = asciiUpper(result[0]);
}
have_drive_kind = parsed_cwd.kind;
},
}
} else {
assert(windows.is_the_target); // resolveWindows called on non windows can't use getCwd
// TODO call get cwd for the result_disk_designator instead of the global one
const cwd = try process.getCwdAlloc(allocator);
defer allocator.free(cwd);
result = try allocator.alloc(u8, max_size + cwd.len + 1);
mem.copy(u8, result, cwd);
result_index += cwd.len;
const parsed_cwd = windowsParsePath(result[0..result_index]);
result_disk_designator = parsed_cwd.disk_designator;
if (parsed_cwd.kind == WindowsPath.Kind.Drive) {
result[0] = asciiUpper(result[0]);
}
have_drive_kind = parsed_cwd.kind;
}
errdefer allocator.free(result);
// Now we know the disk designator to use, if any, and what kind it is. And our result
// is big enough to append all the paths to.
var correct_disk_designator = true;
for (paths[first_index..]) |p, i| {
const parsed = windowsParsePath(p);
if (parsed.kind != WindowsPath.Kind.None) {
if (parsed.kind == have_drive_kind) {
correct_disk_designator = compareDiskDesignators(have_drive_kind, result_disk_designator, parsed.disk_designator);
} else {
continue;
}
}
if (!correct_disk_designator) {
continue;
}
var it = mem.tokenize(p[parsed.disk_designator.len..], "/\\");
while (it.next()) |component| {
if (mem.eql(u8, component, ".")) {
continue;
} else if (mem.eql(u8, component, "..")) {
while (true) {
if (result_index == 0 or result_index == result_disk_designator.len)
break;
result_index -= 1;
if (result[result_index] == '\\' or result[result_index] == '/')
break;
}
} else {
result[result_index] = sep_windows;
result_index += 1;
mem.copy(u8, result[result_index..], component);
result_index += component.len;
}
}
}
if (result_index == result_disk_designator.len) {
result[result_index] = '\\';
result_index += 1;
}
return allocator.shrink(result, result_index);
}
/// This function is like a series of `cd` statements executed one after another.
/// It resolves "." and "..".
/// The result does not have a trailing path separator.
/// If all paths are relative it uses the current working directory as a starting point.
/// Note: all usage of this function should be audited due to the existence of symlinks.
/// Without performing actual syscalls, resolving `..` could be incorrect.
pub fn resolvePosix(allocator: *Allocator, paths: []const []const u8) ![]u8 {
if (paths.len == 0) {
assert(!windows.is_the_target); // resolvePosix called on windows can't use getCwd
return process.getCwdAlloc(allocator);
}
var first_index: usize = 0;
var have_abs = false;
var max_size: usize = 0;
for (paths) |p, i| {
if (isAbsolutePosix(p)) {
first_index = i;
have_abs = true;
max_size = 0;
}
max_size += p.len + 1;
}
var result: []u8 = undefined;
var result_index: usize = 0;
if (have_abs) {
result = try allocator.alloc(u8, max_size);
} else {
assert(!windows.is_the_target); // resolvePosix called on windows can't use getCwd
const cwd = try process.getCwdAlloc(allocator);
defer allocator.free(cwd);
result = try allocator.alloc(u8, max_size + cwd.len + 1);
mem.copy(u8, result, cwd);
result_index += cwd.len;
}
errdefer allocator.free(result);
for (paths[first_index..]) |p, i| {
var it = mem.tokenize(p, "/");
while (it.next()) |component| {
if (mem.eql(u8, component, ".")) {
continue;
} else if (mem.eql(u8, component, "..")) {
while (true) {
if (result_index == 0)
break;
result_index -= 1;
if (result[result_index] == '/')
break;
}
} else {
result[result_index] = '/';
result_index += 1;
mem.copy(u8, result[result_index..], component);
result_index += component.len;
}
}
}
if (result_index == 0) {
result[0] = '/';
result_index += 1;
}
return allocator.shrink(result, result_index);
}
test "resolve" {
const cwd = try process.getCwdAlloc(debug.global_allocator);
if (windows.is_the_target) {
if (windowsParsePath(cwd).kind == WindowsPath.Kind.Drive) {
cwd[0] = asciiUpper(cwd[0]);
}
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{"."}), cwd));
} else {
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "a/b/c/", "../../.." }), cwd));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{"."}), cwd));
}
}
test "resolveWindows" {
if (windows.is_the_target) {
const cwd = try process.getCwdAlloc(debug.global_allocator);
const parsed_cwd = windowsParsePath(cwd);
{
const result = testResolveWindows([_][]const u8{ "/usr/local", "lib\\zig\\std\\array_list.zig" });
const expected = try join(debug.global_allocator, [_][]const u8{
parsed_cwd.disk_designator,
"usr\\local\\lib\\zig\\std\\array_list.zig",
});
if (parsed_cwd.kind == WindowsPath.Kind.Drive) {
expected[0] = asciiUpper(parsed_cwd.disk_designator[0]);
}
testing.expect(mem.eql(u8, result, expected));
}
{
const result = testResolveWindows([_][]const u8{ "usr/local", "lib\\zig" });
const expected = try join(debug.global_allocator, [_][]const u8{
cwd,
"usr\\local\\lib\\zig",
});
if (parsed_cwd.kind == WindowsPath.Kind.Drive) {
expected[0] = asciiUpper(parsed_cwd.disk_designator[0]);
}
testing.expect(mem.eql(u8, result, expected));
}
}
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:\\a\\b\\c", "/hi", "ok" }), "C:\\hi\\ok"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/blah\\blah", "d:/games", "c:../a" }), "C:\\blah\\a"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/blah\\blah", "d:/games", "C:../a" }), "C:\\blah\\a"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/ignore", "d:\\a/b\\c/d", "\\e.exe" }), "D:\\e.exe"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/ignore", "c:/some/file" }), "C:\\some\\file"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "d:/ignore", "d:some/dir//" }), "D:\\ignore\\some\\dir"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "//server/share", "..", "relative\\" }), "\\\\server\\share\\relative"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/", "//" }), "C:\\"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/", "//dir" }), "C:\\dir"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/", "//server/share" }), "\\\\server\\share\\"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/", "//server//share" }), "\\\\server\\share\\"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "c:/", "///some//dir" }), "C:\\some\\dir"));
testing.expect(mem.eql(u8, testResolveWindows([_][]const u8{ "C:\\foo\\tmp.3\\", "..\\tmp.3\\cycles\\root.js" }), "C:\\foo\\tmp.3\\cycles\\root.js"));
}
test "resolvePosix" {
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/a/b", "c" }), "/a/b/c"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/a/b", "c", "//d", "e///" }), "/d/e"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/a/b/c", "..", "../" }), "/a"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/", "..", ".." }), "/"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{"/a/b/c/"}), "/a/b/c"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/var/lib", "../", "file/" }), "/var/file"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/var/lib", "/../", "file/" }), "/file"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/some/dir", ".", "/absolute/" }), "/absolute"));
testing.expect(mem.eql(u8, testResolvePosix([_][]const u8{ "/foo/tmp.3/", "../tmp.3/cycles/root.js" }), "/foo/tmp.3/cycles/root.js"));
}
fn testResolveWindows(paths: []const []const u8) []u8 {
return resolveWindows(debug.global_allocator, paths) catch unreachable;
}
fn testResolvePosix(paths: []const []const u8) []u8 {
return resolvePosix(debug.global_allocator, paths) catch unreachable;
}
/// If the path is a file in the current directory (no directory component)
/// then returns null
pub fn dirname(path: []const u8) ?[]const u8 {
if (windows.is_the_target) {
return dirnameWindows(path);
} else {
return dirnamePosix(path);
}
}
pub fn dirnameWindows(path: []const u8) ?[]const u8 {
if (path.len == 0)
return null;
const root_slice = diskDesignatorWindows(path);
if (path.len == root_slice.len)
return path;
const have_root_slash = path.len > root_slice.len and (path[root_slice.len] == '/' or path[root_slice.len] == '\\');
var end_index: usize = path.len - 1;
while ((path[end_index] == '/' or path[end_index] == '\\') and end_index > root_slice.len) {
if (end_index == 0)
return null;
end_index -= 1;
}
while (path[end_index] != '/' and path[end_index] != '\\' and end_index > root_slice.len) {
if (end_index == 0)
return null;
end_index -= 1;
}
if (have_root_slash and end_index == root_slice.len) {
end_index += 1;
}
if (end_index == 0)
return null;
return path[0..end_index];
}
pub fn dirnamePosix(path: []const u8) ?[]const u8 {
if (path.len == 0)
return null;
var end_index: usize = path.len - 1;
while (path[end_index] == '/') {
if (end_index == 0)
return path[0..1];
end_index -= 1;
}
while (path[end_index] != '/') {
if (end_index == 0)
return null;
end_index -= 1;
}
if (end_index == 0 and path[end_index] == '/')
return path[0..1];
if (end_index == 0)
return null;
return path[0..end_index];
}
test "dirnamePosix" {
testDirnamePosix("/a/b/c", "/a/b");
testDirnamePosix("/a/b/c///", "/a/b");
testDirnamePosix("/a", "/");
testDirnamePosix("/", "/");
testDirnamePosix("////", "/");
testDirnamePosix("", null);
testDirnamePosix("a", null);
testDirnamePosix("a/", null);
testDirnamePosix("a//", null);
}
test "dirnameWindows" {
testDirnameWindows("c:\\", "c:\\");
testDirnameWindows("c:\\foo", "c:\\");
testDirnameWindows("c:\\foo\\", "c:\\");
testDirnameWindows("c:\\foo\\bar", "c:\\foo");
testDirnameWindows("c:\\foo\\bar\\", "c:\\foo");
testDirnameWindows("c:\\foo\\bar\\baz", "c:\\foo\\bar");
testDirnameWindows("\\", "\\");
testDirnameWindows("\\foo", "\\");
testDirnameWindows("\\foo\\", "\\");
testDirnameWindows("\\foo\\bar", "\\foo");
testDirnameWindows("\\foo\\bar\\", "\\foo");
testDirnameWindows("\\foo\\bar\\baz", "\\foo\\bar");
testDirnameWindows("c:", "c:");
testDirnameWindows("c:foo", "c:");
testDirnameWindows("c:foo\\", "c:");
testDirnameWindows("c:foo\\bar", "c:foo");
testDirnameWindows("c:foo\\bar\\", "c:foo");
testDirnameWindows("c:foo\\bar\\baz", "c:foo\\bar");
testDirnameWindows("file:stream", null);
testDirnameWindows("dir\\file:stream", "dir");
testDirnameWindows("\\\\unc\\share", "\\\\unc\\share");
testDirnameWindows("\\\\unc\\share\\foo", "\\\\unc\\share\\");
testDirnameWindows("\\\\unc\\share\\foo\\", "\\\\unc\\share\\");
testDirnameWindows("\\\\unc\\share\\foo\\bar", "\\\\unc\\share\\foo");
testDirnameWindows("\\\\unc\\share\\foo\\bar\\", "\\\\unc\\share\\foo");
testDirnameWindows("\\\\unc\\share\\foo\\bar\\baz", "\\\\unc\\share\\foo\\bar");
testDirnameWindows("/a/b/", "/a");
testDirnameWindows("/a/b", "/a");
testDirnameWindows("/a", "/");
testDirnameWindows("", null);
testDirnameWindows("/", "/");
testDirnameWindows("////", "/");
testDirnameWindows("foo", null);
}
fn testDirnamePosix(input: []const u8, expected_output: ?[]const u8) void {
if (dirnamePosix(input)) |output| {
testing.expect(mem.eql(u8, output, expected_output.?));
} else {
testing.expect(expected_output == null);
}
}
fn testDirnameWindows(input: []const u8, expected_output: ?[]const u8) void {
if (dirnameWindows(input)) |output| {
testing.expect(mem.eql(u8, output, expected_output.?));
} else {
testing.expect(expected_output == null);
}
}
pub fn basename(path: []const u8) []const u8 {
if (windows.is_the_target) {
return basenameWindows(path);
} else {
return basenamePosix(path);
}
}
pub fn basenamePosix(path: []const u8) []const u8 {
if (path.len == 0)
return [_]u8{};
var end_index: usize = path.len - 1;
while (path[end_index] == '/') {
if (end_index == 0)
return [_]u8{};
end_index -= 1;
}
var start_index: usize = end_index;
end_index += 1;
while (path[start_index] != '/') {
if (start_index == 0)
return path[0..end_index];
start_index -= 1;
}
return path[start_index + 1 .. end_index];
}
pub fn basenameWindows(path: []const u8) []const u8 {
if (path.len == 0)
return [_]u8{};
var end_index: usize = path.len - 1;
while (true) {
const byte = path[end_index];
if (byte == '/' or byte == '\\') {
if (end_index == 0)
return [_]u8{};
end_index -= 1;
continue;
}
if (byte == ':' and end_index == 1) {
return [_]u8{};
}
break;
}
var start_index: usize = end_index;
end_index += 1;
while (path[start_index] != '/' and path[start_index] != '\\' and
!(path[start_index] == ':' and start_index == 1))
{
if (start_index == 0)
return path[0..end_index];
start_index -= 1;
}
return path[start_index + 1 .. end_index];
}
test "basename" {
testBasename("", "");
testBasename("/", "");
testBasename("/dir/basename.ext", "basename.ext");
testBasename("/basename.ext", "basename.ext");
testBasename("basename.ext", "basename.ext");
testBasename("basename.ext/", "basename.ext");
testBasename("basename.ext//", "basename.ext");
testBasename("/aaa/bbb", "bbb");
testBasename("/aaa/", "aaa");
testBasename("/aaa/b", "b");
testBasename("/a/b", "b");
testBasename("//a", "a");
testBasenamePosix("\\dir\\basename.ext", "\\dir\\basename.ext");
testBasenamePosix("\\basename.ext", "\\basename.ext");
testBasenamePosix("basename.ext", "basename.ext");
testBasenamePosix("basename.ext\\", "basename.ext\\");
testBasenamePosix("basename.ext\\\\", "basename.ext\\\\");
testBasenamePosix("foo", "foo");
testBasenameWindows("\\dir\\basename.ext", "basename.ext");
testBasenameWindows("\\basename.ext", "basename.ext");
testBasenameWindows("basename.ext", "basename.ext");
testBasenameWindows("basename.ext\\", "basename.ext");
testBasenameWindows("basename.ext\\\\", "basename.ext");
testBasenameWindows("foo", "foo");
testBasenameWindows("C:", "");
testBasenameWindows("C:.", ".");
testBasenameWindows("C:\\", "");
testBasenameWindows("C:\\dir\\base.ext", "base.ext");
testBasenameWindows("C:\\basename.ext", "basename.ext");
testBasenameWindows("C:basename.ext", "basename.ext");
testBasenameWindows("C:basename.ext\\", "basename.ext");
testBasenameWindows("C:basename.ext\\\\", "basename.ext");
testBasenameWindows("C:foo", "foo");
testBasenameWindows("file:stream", "file:stream");
}
fn testBasename(input: []const u8, expected_output: []const u8) void {
testing.expectEqualSlices(u8, expected_output, basename(input));
}
fn testBasenamePosix(input: []const u8, expected_output: []const u8) void {
testing.expectEqualSlices(u8, expected_output, basenamePosix(input));
}
fn testBasenameWindows(input: []const u8, expected_output: []const u8) void {
testing.expectEqualSlices(u8, expected_output, basenameWindows(input));
}
/// Returns the relative path from `from` to `to`. If `from` and `to` each
/// resolve to the same path (after calling `resolve` on each), a zero-length
/// string is returned.
/// On Windows this canonicalizes the drive to a capital letter and paths to `\\`.
pub fn relative(allocator: *Allocator, from: []const u8, to: []const u8) ![]u8 {
if (windows.is_the_target) {
return relativeWindows(allocator, from, to);
} else {
return relativePosix(allocator, from, to);
}
}
pub fn relativeWindows(allocator: *Allocator, from: []const u8, to: []const u8) ![]u8 {
const resolved_from = try resolveWindows(allocator, [_][]const u8{from});
defer allocator.free(resolved_from);
var clean_up_resolved_to = true;
const resolved_to = try resolveWindows(allocator, [_][]const u8{to});
defer if (clean_up_resolved_to) allocator.free(resolved_to);
const parsed_from = windowsParsePath(resolved_from);
const parsed_to = windowsParsePath(resolved_to);
const result_is_to = x: {
if (parsed_from.kind != parsed_to.kind) {
break :x true;
} else switch (parsed_from.kind) {
WindowsPath.Kind.NetworkShare => {
break :x !networkShareServersEql(parsed_to.disk_designator, parsed_from.disk_designator);
},
WindowsPath.Kind.Drive => {
break :x asciiUpper(parsed_from.disk_designator[0]) != asciiUpper(parsed_to.disk_designator[0]);
},
else => unreachable,
}
};
if (result_is_to) {
clean_up_resolved_to = false;
return resolved_to;
}
var from_it = mem.tokenize(resolved_from, "/\\");
var to_it = mem.tokenize(resolved_to, "/\\");
while (true) {
const from_component = from_it.next() orelse return mem.dupe(allocator, u8, to_it.rest());
const to_rest = to_it.rest();
if (to_it.next()) |to_component| {
// TODO ASCII is wrong, we actually need full unicode support to compare paths.
if (asciiEqlIgnoreCase(from_component, to_component))
continue;
}
var up_count: usize = 1;
while (from_it.next()) |_| {
up_count += 1;
}
const up_index_end = up_count * "..\\".len;
const result = try allocator.alloc(u8, up_index_end + to_rest.len);
errdefer allocator.free(result);
var result_index: usize = 0;
while (result_index < up_index_end) {
result[result_index] = '.';
result_index += 1;
result[result_index] = '.';
result_index += 1;
result[result_index] = '\\';
result_index += 1;
}
// shave off the trailing slash
result_index -= 1;
var rest_it = mem.tokenize(to_rest, "/\\");
while (rest_it.next()) |to_component| {
result[result_index] = '\\';
result_index += 1;
mem.copy(u8, result[result_index..], to_component);
result_index += to_component.len;
}
return result[0..result_index];
}
return [_]u8{};
}
pub fn relativePosix(allocator: *Allocator, from: []const u8, to: []const u8) ![]u8 {
const resolved_from = try resolvePosix(allocator, [_][]const u8{from});
defer allocator.free(resolved_from);
const resolved_to = try resolvePosix(allocator, [_][]const u8{to});
defer allocator.free(resolved_to);
var from_it = mem.tokenize(resolved_from, "/");
var to_it = mem.tokenize(resolved_to, "/");
while (true) {
const from_component = from_it.next() orelse return mem.dupe(allocator, u8, to_it.rest());
const to_rest = to_it.rest();
if (to_it.next()) |to_component| {
if (mem.eql(u8, from_component, to_component))
continue;
}
var up_count: usize = 1;
while (from_it.next()) |_| {
up_count += 1;
}
const up_index_end = up_count * "../".len;
const result = try allocator.alloc(u8, up_index_end + to_rest.len);
errdefer allocator.free(result);
var result_index: usize = 0;
while (result_index < up_index_end) {
result[result_index] = '.';
result_index += 1;
result[result_index] = '.';
result_index += 1;
result[result_index] = '/';
result_index += 1;
}
if (to_rest.len == 0) {
// shave off the trailing slash
return result[0 .. result_index - 1];
}
mem.copy(u8, result[result_index..], to_rest);
return result;
}
return [_]u8{};
}
test "relative" {
testRelativeWindows("c:/blah\\blah", "d:/games", "D:\\games");
testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa", "..");
testRelativeWindows("c:/aaaa/bbbb", "c:/cccc", "..\\..\\cccc");
testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa/bbbb", "");
testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa/cccc", "..\\cccc");
testRelativeWindows("c:/aaaa/", "c:/aaaa/cccc", "cccc");
testRelativeWindows("c:/", "c:\\aaaa\\bbbb", "aaaa\\bbbb");
testRelativeWindows("c:/aaaa/bbbb", "d:\\", "D:\\");
testRelativeWindows("c:/AaAa/bbbb", "c:/aaaa/bbbb", "");
testRelativeWindows("c:/aaaaa/", "c:/aaaa/cccc", "..\\aaaa\\cccc");
testRelativeWindows("C:\\foo\\bar\\baz\\quux", "C:\\", "..\\..\\..\\..");
testRelativeWindows("C:\\foo\\test", "C:\\foo\\test\\bar\\package.json", "bar\\package.json");
testRelativeWindows("C:\\foo\\bar\\baz-quux", "C:\\foo\\bar\\baz", "..\\baz");
testRelativeWindows("C:\\foo\\bar\\baz", "C:\\foo\\bar\\baz-quux", "..\\baz-quux");
testRelativeWindows("\\\\foo\\bar", "\\\\foo\\bar\\baz", "baz");
testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar", "..");
testRelativeWindows("\\\\foo\\bar\\baz-quux", "\\\\foo\\bar\\baz", "..\\baz");
testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz-quux", "..\\baz-quux");
testRelativeWindows("C:\\baz-quux", "C:\\baz", "..\\baz");
testRelativeWindows("C:\\baz", "C:\\baz-quux", "..\\baz-quux");
testRelativeWindows("\\\\foo\\baz-quux", "\\\\foo\\baz", "..\\baz");
testRelativeWindows("\\\\foo\\baz", "\\\\foo\\baz-quux", "..\\baz-quux");
testRelativeWindows("C:\\baz", "\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz");
testRelativeWindows("\\\\foo\\bar\\baz", "C:\\baz", "C:\\baz");
testRelativePosix("/var/lib", "/var", "..");
testRelativePosix("/var/lib", "/bin", "../../bin");
testRelativePosix("/var/lib", "/var/lib", "");
testRelativePosix("/var/lib", "/var/apache", "../apache");
testRelativePosix("/var/", "/var/lib", "lib");
testRelativePosix("/", "/var/lib", "var/lib");
testRelativePosix("/foo/test", "/foo/test/bar/package.json", "bar/package.json");
testRelativePosix("/Users/a/web/b/test/mails", "/Users/a/web/b", "../..");
testRelativePosix("/foo/bar/baz-quux", "/foo/bar/baz", "../baz");
testRelativePosix("/foo/bar/baz", "/foo/bar/baz-quux", "../baz-quux");
testRelativePosix("/baz-quux", "/baz", "../baz");
testRelativePosix("/baz", "/baz-quux", "../baz-quux");
}
fn testRelativePosix(from: []const u8, to: []const u8, expected_output: []const u8) void {
const result = relativePosix(debug.global_allocator, from, to) catch unreachable;
testing.expectEqualSlices(u8, expected_output, result);
}
fn testRelativeWindows(from: []const u8, to: []const u8, expected_output: []const u8) void {
const result = relativeWindows(debug.global_allocator, from, to) catch unreachable;
testing.expectEqualSlices(u8, expected_output, result);
}