zig/lib/std/parker.zig

181 lines
6.1 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const time = std.time;
const testing = std.testing;
const assert = std.debug.assert;
const SpinLock = std.SpinLock;
const linux = std.os.linux;
const windows = std.os.windows;
pub const ThreadParker = switch (builtin.os) {
.linux => if (builtin.link_libc) PosixParker else LinuxParker,
.windows => WindowsParker,
else => if (builtin.link_libc) PosixParker else SpinParker,
};
const SpinParker = struct {
pub fn init() SpinParker {
return SpinParker{};
}
pub fn deinit(self: *SpinParker) void {}
pub fn unpark(self: *SpinParker, ptr: *const u32) void {}
pub fn park(self: *SpinParker, ptr: *const u32, expected: u32) void {
var backoff = SpinLock.Backoff.init();
while (@atomicLoad(u32, ptr, .Acquire) == expected)
backoff.yield();
}
};
const LinuxParker = struct {
pub fn init() LinuxParker {
return LinuxParker{};
}
pub fn deinit(self: *LinuxParker) void {}
pub fn unpark(self: *LinuxParker, ptr: *const u32) void {
const rc = linux.futex_wake(@ptrCast(*const i32, ptr), linux.FUTEX_WAKE | linux.FUTEX_PRIVATE_FLAG, 1);
assert(linux.getErrno(rc) == 0);
}
pub fn park(self: *LinuxParker, ptr: *const u32, expected: u32) void {
const value = @intCast(i32, expected);
while (@atomicLoad(u32, ptr, .Acquire) == expected) {
const rc = linux.futex_wait(@ptrCast(*const i32, ptr), linux.FUTEX_WAIT | linux.FUTEX_PRIVATE_FLAG, value, null);
switch (linux.getErrno(rc)) {
0, linux.EAGAIN => return,
linux.EINTR => continue,
linux.EINVAL => unreachable,
else => continue,
}
}
}
};
const WindowsParker = struct {
waiters: u32,
pub fn init() WindowsParker {
return WindowsParker{ .waiters = 0 };
}
pub fn deinit(self: *WindowsParker) void {}
pub fn unpark(self: *WindowsParker, ptr: *const u32) void {
const key = @ptrCast(*const c_void, ptr);
const handle = getEventHandle() orelse return;
var waiting = @atomicLoad(u32, &self.waiters, .Monotonic);
while (waiting != 0) {
waiting = @cmpxchgWeak(u32, &self.waiters, waiting, waiting - 1, .Acquire, .Monotonic) orelse {
const rc = windows.ntdll.NtReleaseKeyedEvent(handle, key, windows.FALSE, null);
assert(rc == 0);
return;
};
}
}
pub fn park(self: *WindowsParker, ptr: *const u32, expected: u32) void {
var spin = SpinLock.Backoff.init();
const ev_handle = getEventHandle();
const key = @ptrCast(*const c_void, ptr);
while (@atomicLoad(u32, ptr, .Monotonic) == expected) {
if (ev_handle) |handle| {
_ = @atomicRmw(u32, &self.waiters, .Add, 1, .Release);
const rc = windows.ntdll.NtWaitForKeyedEvent(handle, key, windows.FALSE, null);
assert(rc == 0);
} else {
spin.yield();
}
}
}
var event_handle = std.lazyInit(windows.HANDLE);
fn getEventHandle() ?windows.HANDLE {
if (event_handle.get()) |handle_ptr|
return handle_ptr.*;
defer event_handle.resolve();
const access_mask = windows.GENERIC_READ | windows.GENERIC_WRITE;
if (windows.ntdll.NtCreateKeyedEvent(&event_handle.data, access_mask, null, 0) != 0)
return null;
return event_handle.data;
}
};
const PosixParker = struct {
cond: c.pthread_cond_t,
mutex: c.pthread_mutex_t,
const c = std.c;
pub fn init() PosixParker {
return PosixParker{
.cond = c.PTHREAD_COND_INITIALIZER,
.mutex = c.PTHREAD_MUTEX_INITIALIZER,
};
}
pub fn deinit(self: *PosixParker) void {
// On dragonfly, the destroy functions return EINVAL if they were initialized statically.
const retm = c.pthread_mutex_destroy(&self.mutex);
assert(retm == 0 or retm == (if (builtin.os == .dragonfly) os.EINVAL else 0));
const retc = c.pthread_cond_destroy(&self.cond);
assert(retc == 0 or retc == (if (builtin.os == .dragonfly) os.EINVAL else 0));
}
pub fn unpark(self: *PosixParker, ptr: *const u32) void {
assert(c.pthread_mutex_lock(&self.mutex) == 0);
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
assert(c.pthread_cond_signal(&self.cond) == 0);
}
pub fn park(self: *PosixParker, ptr: *const u32, expected: u32) void {
assert(c.pthread_mutex_lock(&self.mutex) == 0);
defer assert(c.pthread_mutex_unlock(&self.mutex) == 0);
while (@atomicLoad(u32, ptr, .Acquire) == expected)
assert(c.pthread_cond_wait(&self.cond, &self.mutex) == 0);
}
};
test "std.ThreadParker" {
if (builtin.single_threaded)
return error.SkipZigTest;
const Context = struct {
parker: ThreadParker,
data: u32,
fn receiver(self: *@This()) void {
self.parker.park(&self.data, 0); // receives 1
assert(@atomicRmw(u32, &self.data, .Xchg, 2, .SeqCst) == 1); // sends 2
self.parker.unpark(&self.data); // wakes up waiters on 2
self.parker.park(&self.data, 2); // receives 3
assert(@atomicRmw(u32, &self.data, .Xchg, 4, .SeqCst) == 3); // sends 4
self.parker.unpark(&self.data); // wakes up waiters on 4
}
fn sender(self: *@This()) void {
assert(@atomicRmw(u32, &self.data, .Xchg, 1, .SeqCst) == 0); // sends 1
self.parker.unpark(&self.data); // wakes up waiters on 1
self.parker.park(&self.data, 1); // receives 2
assert(@atomicRmw(u32, &self.data, .Xchg, 3, .SeqCst) == 2); // sends 3
self.parker.unpark(&self.data); // wakes up waiters on 3
self.parker.park(&self.data, 3); // receives 4
}
};
var context = Context{
.parker = ThreadParker.init(),
.data = 0,
};
defer context.parker.deinit();
var receiver = try std.Thread.spawn(&context, Context.receiver);
defer receiver.wait();
context.sender();
}