zig/lib/std/zig/system.zig
2020-10-12 18:56:25 -04:00

947 lines
43 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("../std.zig");
const elf = std.elf;
const mem = std.mem;
const fs = std.fs;
const Allocator = std.mem.Allocator;
const ArrayList = std.ArrayList;
const assert = std.debug.assert;
const process = std.process;
const Target = std.Target;
const CrossTarget = std.zig.CrossTarget;
const macos = @import("system/macos.zig");
const is_windows = Target.current.os.tag == .windows;
pub const NativePaths = struct {
include_dirs: ArrayList([:0]u8),
lib_dirs: ArrayList([:0]u8),
rpaths: ArrayList([:0]u8),
warnings: ArrayList([:0]u8),
pub fn detect(allocator: *Allocator) !NativePaths {
var self: NativePaths = .{
.include_dirs = ArrayList([:0]u8).init(allocator),
.lib_dirs = ArrayList([:0]u8).init(allocator),
.rpaths = ArrayList([:0]u8).init(allocator),
.warnings = ArrayList([:0]u8).init(allocator),
};
errdefer self.deinit();
var is_nix = false;
if (process.getEnvVarOwned(allocator, "NIX_CFLAGS_COMPILE")) |nix_cflags_compile| {
defer allocator.free(nix_cflags_compile);
is_nix = true;
var it = mem.tokenize(nix_cflags_compile, " ");
while (true) {
const word = it.next() orelse break;
if (mem.eql(u8, word, "-isystem")) {
const include_path = it.next() orelse {
try self.addWarning("Expected argument after -isystem in NIX_CFLAGS_COMPILE");
break;
};
try self.addIncludeDir(include_path);
} else {
try self.addWarningFmt("Unrecognized C flag from NIX_CFLAGS_COMPILE: {}", .{word});
break;
}
}
} else |err| switch (err) {
error.InvalidUtf8 => {},
error.EnvironmentVariableNotFound => {},
error.OutOfMemory => |e| return e,
}
if (process.getEnvVarOwned(allocator, "NIX_LDFLAGS")) |nix_ldflags| {
defer allocator.free(nix_ldflags);
is_nix = true;
var it = mem.tokenize(nix_ldflags, " ");
while (true) {
const word = it.next() orelse break;
if (mem.eql(u8, word, "-rpath")) {
const rpath = it.next() orelse {
try self.addWarning("Expected argument after -rpath in NIX_LDFLAGS");
break;
};
try self.addRPath(rpath);
} else if (word.len > 2 and word[0] == '-' and word[1] == 'L') {
const lib_path = word[2..];
try self.addLibDir(lib_path);
} else {
try self.addWarningFmt("Unrecognized C flag from NIX_LDFLAGS: {}", .{word});
break;
}
}
} else |err| switch (err) {
error.InvalidUtf8 => {},
error.EnvironmentVariableNotFound => {},
error.OutOfMemory => |e| return e,
}
if (is_nix) {
return self;
}
if (!is_windows) {
const triple = try Target.current.linuxTriple(allocator);
const qual = Target.current.cpu.arch.ptrBitWidth();
// TODO: $ ld --verbose | grep SEARCH_DIR
// the output contains some paths that end with lib64, maybe include them too?
// TODO: what is the best possible order of things?
// TODO: some of these are suspect and should only be added on some systems. audit needed.
try self.addIncludeDir("/usr/local/include");
try self.addLibDirFmt("/usr/local/lib{}", .{qual});
try self.addLibDir("/usr/local/lib");
try self.addIncludeDirFmt("/usr/include/{}", .{triple});
try self.addLibDirFmt("/usr/lib/{}", .{triple});
try self.addIncludeDir("/usr/include");
try self.addLibDirFmt("/lib{}", .{qual});
try self.addLibDir("/lib");
try self.addLibDirFmt("/usr/lib{}", .{qual});
try self.addLibDir("/usr/lib");
// example: on a 64-bit debian-based linux distro, with zlib installed from apt:
// zlib.h is in /usr/include (added above)
// libz.so.1 is in /lib/x86_64-linux-gnu (added here)
try self.addLibDirFmt("/lib/{}", .{triple});
}
return self;
}
pub fn deinit(self: *NativePaths) void {
deinitArray(&self.include_dirs);
deinitArray(&self.lib_dirs);
deinitArray(&self.rpaths);
deinitArray(&self.warnings);
self.* = undefined;
}
fn deinitArray(array: *ArrayList([:0]u8)) void {
for (array.span()) |item| {
array.allocator.free(item);
}
array.deinit();
}
pub fn addIncludeDir(self: *NativePaths, s: []const u8) !void {
return self.appendArray(&self.include_dirs, s);
}
pub fn addIncludeDirFmt(self: *NativePaths, comptime fmt: []const u8, args: anytype) !void {
const item = try std.fmt.allocPrint0(self.include_dirs.allocator, fmt, args);
errdefer self.include_dirs.allocator.free(item);
try self.include_dirs.append(item);
}
pub fn addLibDir(self: *NativePaths, s: []const u8) !void {
return self.appendArray(&self.lib_dirs, s);
}
pub fn addLibDirFmt(self: *NativePaths, comptime fmt: []const u8, args: anytype) !void {
const item = try std.fmt.allocPrint0(self.lib_dirs.allocator, fmt, args);
errdefer self.lib_dirs.allocator.free(item);
try self.lib_dirs.append(item);
}
pub fn addWarning(self: *NativePaths, s: []const u8) !void {
return self.appendArray(&self.warnings, s);
}
pub fn addWarningFmt(self: *NativePaths, comptime fmt: []const u8, args: anytype) !void {
const item = try std.fmt.allocPrint0(self.warnings.allocator, fmt, args);
errdefer self.warnings.allocator.free(item);
try self.warnings.append(item);
}
pub fn addRPath(self: *NativePaths, s: []const u8) !void {
return self.appendArray(&self.rpaths, s);
}
fn appendArray(self: *NativePaths, array: *ArrayList([:0]u8), s: []const u8) !void {
const item = try array.allocator.dupeZ(u8, s);
errdefer array.allocator.free(item);
try array.append(item);
}
};
pub const NativeTargetInfo = struct {
target: Target,
dynamic_linker: DynamicLinker = DynamicLinker{},
/// Only some architectures have CPU detection implemented. This field reveals whether
/// CPU detection actually occurred. When this is `true` it means that the reported
/// CPU is baseline only because of a missing implementation for that architecture.
cpu_detection_unimplemented: bool = false,
pub const DynamicLinker = Target.DynamicLinker;
pub const DetectError = error{
OutOfMemory,
FileSystem,
SystemResources,
SymLinkLoop,
ProcessFdQuotaExceeded,
SystemFdQuotaExceeded,
DeviceBusy,
};
/// Given a `CrossTarget`, which specifies in detail which parts of the target should be detected
/// natively, which should be standard or default, and which are provided explicitly, this function
/// resolves the native components by detecting the native system, and then resolves standard/default parts
/// relative to that.
/// Any resources this function allocates are released before returning, and so there is no
/// deinitialization method.
/// TODO Remove the Allocator requirement from this function.
pub fn detect(allocator: *Allocator, cross_target: CrossTarget) DetectError!NativeTargetInfo {
var os = cross_target.getOsTag().defaultVersionRange();
if (cross_target.os_tag == null) {
switch (Target.current.os.tag) {
.linux => {
const uts = std.os.uname();
const release = mem.spanZ(&uts.release);
// The release field may have several other fields after the
// kernel version
const kernel_version = if (mem.indexOfScalar(u8, release, '-')) |pos|
release[0..pos]
else if (mem.indexOfScalar(u8, release, '_')) |pos|
release[0..pos]
else
release;
if (std.builtin.Version.parse(kernel_version)) |ver| {
os.version_range.linux.range.min = ver;
os.version_range.linux.range.max = ver;
} else |err| switch (err) {
error.Overflow => {},
error.InvalidCharacter => {},
error.InvalidVersion => {},
}
},
.windows => {
var version_info: std.os.windows.RTL_OSVERSIONINFOW = undefined;
version_info.dwOSVersionInfoSize = @sizeOf(@TypeOf(version_info));
switch (std.os.windows.ntdll.RtlGetVersion(&version_info)) {
.SUCCESS => {},
else => unreachable,
}
// Starting from the system infos build a NTDDI-like version
// constant whose format is:
// B0 B1 B2 B3
// `---` `` ``--> Sub-version (Starting from Windows 10 onwards)
// \ `--> Service pack (Always zero in the constants defined)
// `--> OS version (Major & minor)
const os_ver: u16 = //
@intCast(u16, version_info.dwMajorVersion & 0xff) << 8 |
@intCast(u16, version_info.dwMinorVersion & 0xff);
const sp_ver: u8 = 0;
const sub_ver: u8 = if (os_ver >= 0x0A00) subver: {
// There's no other way to obtain this info beside
// checking the build number against a known set of
// values
const known_build_numbers = [_]u32{
10240, 10586, 14393, 15063, 16299, 17134, 17763,
18362, 19041,
};
var last_idx: usize = 0;
for (known_build_numbers) |build, i| {
if (version_info.dwBuildNumber >= build)
last_idx = i;
}
break :subver @truncate(u8, last_idx);
} else 0;
const version: u32 = @as(u32, os_ver) << 16 | @as(u32, sp_ver) << 8 | sub_ver;
os.version_range.windows.max = @intToEnum(Target.Os.WindowsVersion, version);
os.version_range.windows.min = @intToEnum(Target.Os.WindowsVersion, version);
},
.macos => {
var scbuf: [32]u8 = undefined;
var size: usize = undefined;
// The osproductversion sysctl was introduced first with 10.13.4 High Sierra.
const key_osproductversion = "kern.osproductversion"; // eg. "10.15.4"
size = scbuf.len;
if (std.os.sysctlbynameZ(key_osproductversion, &scbuf, &size, null, 0)) |_| {
const string_version = scbuf[0 .. size - 1];
if (std.builtin.Version.parse(string_version)) |ver| {
os.version_range.semver.min = ver;
os.version_range.semver.max = ver;
} else |err| switch (err) {
error.Overflow => {},
error.InvalidCharacter => {},
error.InvalidVersion => {},
}
} else |err| switch (err) {
error.UnknownName => {
const key_osversion = "kern.osversion"; // eg. "19E287"
size = scbuf.len;
std.os.sysctlbynameZ(key_osversion, &scbuf, &size, null, 0) catch {
@panic("unable to detect macOS version: " ++ key_osversion);
};
if (macos.version_from_build(scbuf[0 .. size - 1])) |ver| {
os.version_range.semver.min = ver;
os.version_range.semver.max = ver;
} else |_| {}
},
else => @panic("unable to detect macOS version: " ++ key_osproductversion),
}
},
.freebsd => {
var osreldate: u32 = undefined;
var len: usize = undefined;
std.os.sysctlbynameZ("kern.osreldate", &osreldate, &len, null, 0) catch |err| switch (err) {
error.NameTooLong => unreachable, // constant, known good value
error.PermissionDenied => unreachable, // only when setting values,
error.SystemResources => unreachable, // memory already on the stack
error.UnknownName => unreachable, // constant, known good value
error.Unexpected => unreachable, // EFAULT: stack should be safe, EISDIR/ENOTDIR: constant, known good value
};
// https://www.freebsd.org/doc/en_US.ISO8859-1/books/porters-handbook/versions.html
// Major * 100,000 has been convention since FreeBSD 2.2 (1997)
// Minor * 1(0),000 summed has been convention since FreeBSD 2.2 (1997)
// e.g. 492101 = 4.11-STABLE = 4.(9+2)
const major = osreldate / 100_000;
const minor1 = osreldate % 100_000 / 10_000; // usually 0 since 5.1
const minor2 = osreldate % 10_000 / 1_000; // 0 before 5.1, minor version since
const patch = osreldate % 1_000;
os.version_range.semver.min = .{ .major = major, .minor = minor1 + minor2, .patch = patch };
os.version_range.semver.max = .{ .major = major, .minor = minor1 + minor2, .patch = patch };
},
else => {
// Unimplemented, fall back to default version range.
},
}
}
if (cross_target.os_version_min) |min| switch (min) {
.none => {},
.semver => |semver| switch (cross_target.getOsTag()) {
.linux => os.version_range.linux.range.min = semver,
else => os.version_range.semver.min = semver,
},
.windows => |win_ver| os.version_range.windows.min = win_ver,
};
if (cross_target.os_version_max) |max| switch (max) {
.none => {},
.semver => |semver| switch (cross_target.getOsTag()) {
.linux => os.version_range.linux.range.max = semver,
else => os.version_range.semver.max = semver,
},
.windows => |win_ver| os.version_range.windows.max = win_ver,
};
if (cross_target.glibc_version) |glibc| {
assert(cross_target.isGnuLibC());
os.version_range.linux.glibc = glibc;
}
var cpu_detection_unimplemented = false;
// Until https://github.com/ziglang/zig/issues/4592 is implemented (support detecting the
// native CPU architecture as being different than the current target), we use this:
const cpu_arch = cross_target.getCpuArch();
var cpu = switch (cross_target.cpu_model) {
.native => detectNativeCpuAndFeatures(cpu_arch, os, cross_target),
.baseline => Target.Cpu.baseline(cpu_arch),
.determined_by_cpu_arch => if (cross_target.cpu_arch == null)
detectNativeCpuAndFeatures(cpu_arch, os, cross_target)
else
Target.Cpu.baseline(cpu_arch),
.explicit => |model| model.toCpu(cpu_arch),
} orelse backup_cpu_detection: {
cpu_detection_unimplemented = true;
break :backup_cpu_detection Target.Cpu.baseline(cpu_arch);
};
cross_target.updateCpuFeatures(&cpu.features);
var target = try detectAbiAndDynamicLinker(allocator, cpu, os, cross_target);
target.cpu_detection_unimplemented = cpu_detection_unimplemented;
return target;
}
/// First we attempt to use the executable's own binary. If it is dynamically
/// linked, then it should answer both the C ABI question and the dynamic linker question.
/// If it is statically linked, then we try /usr/bin/env. If that does not provide the answer, then
/// we fall back to the defaults.
/// TODO Remove the Allocator requirement from this function.
fn detectAbiAndDynamicLinker(
allocator: *Allocator,
cpu: Target.Cpu,
os: Target.Os,
cross_target: CrossTarget,
) DetectError!NativeTargetInfo {
const native_target_has_ld = comptime Target.current.hasDynamicLinker();
const is_linux = Target.current.os.tag == .linux;
const have_all_info = cross_target.dynamic_linker.get() != null and
cross_target.abi != null and (!is_linux or cross_target.abi.?.isGnu());
const os_is_non_native = cross_target.os_tag != null;
if (!native_target_has_ld or have_all_info or os_is_non_native) {
return defaultAbiAndDynamicLinker(cpu, os, cross_target);
}
if (cross_target.abi) |abi| {
if (abi.isMusl()) {
// musl implies static linking.
return defaultAbiAndDynamicLinker(cpu, os, cross_target);
}
}
// The current target's ABI cannot be relied on for this. For example, we may build the zig
// compiler for target riscv64-linux-musl and provide a tarball for users to download.
// A user could then run that zig compiler on riscv64-linux-gnu. This use case is well-defined
// and supported by Zig. But that means that we must detect the system ABI here rather than
// relying on `Target.current`.
const all_abis = comptime blk: {
assert(@enumToInt(Target.Abi.none) == 0);
const fields = std.meta.fields(Target.Abi)[1..];
var array: [fields.len]Target.Abi = undefined;
inline for (fields) |field, i| {
array[i] = @field(Target.Abi, field.name);
}
break :blk array;
};
var ld_info_list_buffer: [all_abis.len]LdInfo = undefined;
var ld_info_list_len: usize = 0;
for (all_abis) |abi| {
// This may be a nonsensical parameter. We detect this with error.UnknownDynamicLinkerPath and
// skip adding it to `ld_info_list`.
const target: Target = .{
.cpu = cpu,
.os = os,
.abi = abi,
};
const ld = target.standardDynamicLinkerPath();
if (ld.get() == null) continue;
ld_info_list_buffer[ld_info_list_len] = .{
.ld = ld,
.abi = abi,
};
ld_info_list_len += 1;
}
const ld_info_list = ld_info_list_buffer[0..ld_info_list_len];
if (cross_target.dynamic_linker.get()) |explicit_ld| {
const explicit_ld_basename = fs.path.basename(explicit_ld);
for (ld_info_list) |ld_info| {
const standard_ld_basename = fs.path.basename(ld_info.ld.get().?);
}
}
// Best case scenario: the executable is dynamically linked, and we can iterate
// over our own shared objects and find a dynamic linker.
self_exe: {
const lib_paths = try std.process.getSelfExeSharedLibPaths(allocator);
defer {
for (lib_paths) |lib_path| {
allocator.free(lib_path);
}
allocator.free(lib_paths);
}
var found_ld_info: LdInfo = undefined;
var found_ld_path: [:0]const u8 = undefined;
// Look for dynamic linker.
// This is O(N^M) but typical case here is N=2 and M=10.
find_ld: for (lib_paths) |lib_path| {
for (ld_info_list) |ld_info| {
const standard_ld_basename = fs.path.basename(ld_info.ld.get().?);
if (std.mem.endsWith(u8, lib_path, standard_ld_basename)) {
found_ld_info = ld_info;
found_ld_path = lib_path;
break :find_ld;
}
}
} else break :self_exe;
// Look for glibc version.
var os_adjusted = os;
if (Target.current.os.tag == .linux and found_ld_info.abi.isGnu() and
cross_target.glibc_version == null)
{
for (lib_paths) |lib_path| {
if (std.mem.endsWith(u8, lib_path, glibc_so_basename)) {
os_adjusted.version_range.linux.glibc = glibcVerFromSO(lib_path) catch |err| switch (err) {
error.UnrecognizedGnuLibCFileName => continue,
error.InvalidGnuLibCVersion => continue,
error.GnuLibCVersionUnavailable => continue,
else => |e| return e,
};
break;
}
}
}
var result: NativeTargetInfo = .{
.target = .{
.cpu = cpu,
.os = os_adjusted,
.abi = cross_target.abi orelse found_ld_info.abi,
},
.dynamic_linker = if (cross_target.dynamic_linker.get() == null)
DynamicLinker.init(found_ld_path)
else
cross_target.dynamic_linker,
};
return result;
}
const env_file = std.fs.openFileAbsoluteZ("/usr/bin/env", .{}) catch |err| switch (err) {
error.NoSpaceLeft => unreachable,
error.NameTooLong => unreachable,
error.PathAlreadyExists => unreachable,
error.SharingViolation => unreachable,
error.InvalidUtf8 => unreachable,
error.BadPathName => unreachable,
error.PipeBusy => unreachable,
error.FileLocksNotSupported => unreachable,
error.WouldBlock => unreachable,
error.IsDir,
error.NotDir,
error.AccessDenied,
error.NoDevice,
error.FileNotFound,
error.FileTooBig,
error.Unexpected,
=> return defaultAbiAndDynamicLinker(cpu, os, cross_target),
else => |e| return e,
};
defer env_file.close();
// If Zig is statically linked, such as via distributed binary static builds, the above
// trick won't work. The next thing we fall back to is the same thing, but for /usr/bin/env.
// Since that path is hard-coded into the shebang line of many portable scripts, it's a
// reasonably reliable path to check for.
return abiAndDynamicLinkerFromFile(env_file, cpu, os, ld_info_list, cross_target) catch |err| switch (err) {
error.FileSystem,
error.SystemResources,
error.SymLinkLoop,
error.ProcessFdQuotaExceeded,
error.SystemFdQuotaExceeded,
=> |e| return e,
error.UnableToReadElfFile,
error.InvalidElfClass,
error.InvalidElfVersion,
error.InvalidElfEndian,
error.InvalidElfFile,
error.InvalidElfMagic,
error.Unexpected,
error.UnexpectedEndOfFile,
error.NameTooLong,
// Finally, we fall back on the standard path.
=> defaultAbiAndDynamicLinker(cpu, os, cross_target),
};
}
const glibc_so_basename = "libc.so.6";
fn glibcVerFromSO(so_path: [:0]const u8) !std.builtin.Version {
var link_buf: [std.os.PATH_MAX]u8 = undefined;
const link_name = std.os.readlinkZ(so_path.ptr, &link_buf) catch |err| switch (err) {
error.AccessDenied => return error.GnuLibCVersionUnavailable,
error.FileSystem => return error.FileSystem,
error.SymLinkLoop => return error.SymLinkLoop,
error.NameTooLong => unreachable,
error.FileNotFound => return error.GnuLibCVersionUnavailable,
error.SystemResources => return error.SystemResources,
error.NotDir => return error.GnuLibCVersionUnavailable,
error.Unexpected => return error.GnuLibCVersionUnavailable,
error.InvalidUtf8 => unreachable, // Windows only
error.BadPathName => unreachable, // Windows only
error.UnsupportedReparsePointType => unreachable, // Windows only
};
return glibcVerFromLinkName(link_name);
}
fn glibcVerFromLinkName(link_name: []const u8) !std.builtin.Version {
// example: "libc-2.3.4.so"
// example: "libc-2.27.so"
const prefix = "libc-";
const suffix = ".so";
if (!mem.startsWith(u8, link_name, prefix) or !mem.endsWith(u8, link_name, suffix)) {
return error.UnrecognizedGnuLibCFileName;
}
// chop off "libc-" and ".so"
const link_name_chopped = link_name[prefix.len .. link_name.len - suffix.len];
return std.builtin.Version.parse(link_name_chopped) catch |err| switch (err) {
error.Overflow => return error.InvalidGnuLibCVersion,
error.InvalidCharacter => return error.InvalidGnuLibCVersion,
error.InvalidVersion => return error.InvalidGnuLibCVersion,
};
}
pub const AbiAndDynamicLinkerFromFileError = error{
FileSystem,
SystemResources,
SymLinkLoop,
ProcessFdQuotaExceeded,
SystemFdQuotaExceeded,
UnableToReadElfFile,
InvalidElfClass,
InvalidElfVersion,
InvalidElfEndian,
InvalidElfFile,
InvalidElfMagic,
Unexpected,
UnexpectedEndOfFile,
NameTooLong,
};
pub fn abiAndDynamicLinkerFromFile(
file: fs.File,
cpu: Target.Cpu,
os: Target.Os,
ld_info_list: []const LdInfo,
cross_target: CrossTarget,
) AbiAndDynamicLinkerFromFileError!NativeTargetInfo {
var hdr_buf: [@sizeOf(elf.Elf64_Ehdr)]u8 align(@alignOf(elf.Elf64_Ehdr)) = undefined;
_ = try preadMin(file, &hdr_buf, 0, hdr_buf.len);
const hdr32 = @ptrCast(*elf.Elf32_Ehdr, &hdr_buf);
const hdr64 = @ptrCast(*elf.Elf64_Ehdr, &hdr_buf);
if (!mem.eql(u8, hdr32.e_ident[0..4], "\x7fELF")) return error.InvalidElfMagic;
const elf_endian: std.builtin.Endian = switch (hdr32.e_ident[elf.EI_DATA]) {
elf.ELFDATA2LSB => .Little,
elf.ELFDATA2MSB => .Big,
else => return error.InvalidElfEndian,
};
const need_bswap = elf_endian != std.builtin.endian;
if (hdr32.e_ident[elf.EI_VERSION] != 1) return error.InvalidElfVersion;
const is_64 = switch (hdr32.e_ident[elf.EI_CLASS]) {
elf.ELFCLASS32 => false,
elf.ELFCLASS64 => true,
else => return error.InvalidElfClass,
};
var phoff = elfInt(is_64, need_bswap, hdr32.e_phoff, hdr64.e_phoff);
const phentsize = elfInt(is_64, need_bswap, hdr32.e_phentsize, hdr64.e_phentsize);
const phnum = elfInt(is_64, need_bswap, hdr32.e_phnum, hdr64.e_phnum);
var result: NativeTargetInfo = .{
.target = .{
.cpu = cpu,
.os = os,
.abi = cross_target.abi orelse Target.Abi.default(cpu.arch, os),
},
.dynamic_linker = cross_target.dynamic_linker,
};
var rpath_offset: ?u64 = null; // Found inside PT_DYNAMIC
const look_for_ld = cross_target.dynamic_linker.get() == null;
var ph_buf: [16 * @sizeOf(elf.Elf64_Phdr)]u8 align(@alignOf(elf.Elf64_Phdr)) = undefined;
if (phentsize > @sizeOf(elf.Elf64_Phdr)) return error.InvalidElfFile;
var ph_i: u16 = 0;
while (ph_i < phnum) {
// Reserve some bytes so that we can deref the 64-bit struct fields
// even when the ELF file is 32-bits.
const ph_reserve: usize = @sizeOf(elf.Elf64_Phdr) - @sizeOf(elf.Elf32_Phdr);
const ph_read_byte_len = try preadMin(file, ph_buf[0 .. ph_buf.len - ph_reserve], phoff, phentsize);
var ph_buf_i: usize = 0;
while (ph_buf_i < ph_read_byte_len and ph_i < phnum) : ({
ph_i += 1;
phoff += phentsize;
ph_buf_i += phentsize;
}) {
const ph32 = @ptrCast(*elf.Elf32_Phdr, @alignCast(@alignOf(elf.Elf32_Phdr), &ph_buf[ph_buf_i]));
const ph64 = @ptrCast(*elf.Elf64_Phdr, @alignCast(@alignOf(elf.Elf64_Phdr), &ph_buf[ph_buf_i]));
const p_type = elfInt(is_64, need_bswap, ph32.p_type, ph64.p_type);
switch (p_type) {
elf.PT_INTERP => if (look_for_ld) {
const p_offset = elfInt(is_64, need_bswap, ph32.p_offset, ph64.p_offset);
const p_filesz = elfInt(is_64, need_bswap, ph32.p_filesz, ph64.p_filesz);
if (p_filesz > result.dynamic_linker.buffer.len) return error.NameTooLong;
const filesz = @intCast(usize, p_filesz);
_ = try preadMin(file, result.dynamic_linker.buffer[0..filesz], p_offset, filesz);
// PT_INTERP includes a null byte in filesz.
const len = filesz - 1;
// dynamic_linker.max_byte is "max", not "len".
// We know it will fit in u8 because we check against dynamic_linker.buffer.len above.
result.dynamic_linker.max_byte = @intCast(u8, len - 1);
// Use it to determine ABI.
const full_ld_path = result.dynamic_linker.buffer[0..len];
for (ld_info_list) |ld_info| {
const standard_ld_basename = fs.path.basename(ld_info.ld.get().?);
if (std.mem.endsWith(u8, full_ld_path, standard_ld_basename)) {
result.target.abi = ld_info.abi;
break;
}
}
},
// We only need this for detecting glibc version.
elf.PT_DYNAMIC => if (Target.current.os.tag == .linux and result.target.isGnuLibC() and
cross_target.glibc_version == null)
{
var dyn_off = elfInt(is_64, need_bswap, ph32.p_offset, ph64.p_offset);
const p_filesz = elfInt(is_64, need_bswap, ph32.p_filesz, ph64.p_filesz);
const dyn_size: usize = if (is_64) @sizeOf(elf.Elf64_Dyn) else @sizeOf(elf.Elf32_Dyn);
const dyn_num = p_filesz / dyn_size;
var dyn_buf: [16 * @sizeOf(elf.Elf64_Dyn)]u8 align(@alignOf(elf.Elf64_Dyn)) = undefined;
var dyn_i: usize = 0;
dyn: while (dyn_i < dyn_num) {
// Reserve some bytes so that we can deref the 64-bit struct fields
// even when the ELF file is 32-bits.
const dyn_reserve: usize = @sizeOf(elf.Elf64_Dyn) - @sizeOf(elf.Elf32_Dyn);
const dyn_read_byte_len = try preadMin(
file,
dyn_buf[0 .. dyn_buf.len - dyn_reserve],
dyn_off,
dyn_size,
);
var dyn_buf_i: usize = 0;
while (dyn_buf_i < dyn_read_byte_len and dyn_i < dyn_num) : ({
dyn_i += 1;
dyn_off += dyn_size;
dyn_buf_i += dyn_size;
}) {
const dyn32 = @ptrCast(
*elf.Elf32_Dyn,
@alignCast(@alignOf(elf.Elf32_Dyn), &dyn_buf[dyn_buf_i]),
);
const dyn64 = @ptrCast(
*elf.Elf64_Dyn,
@alignCast(@alignOf(elf.Elf64_Dyn), &dyn_buf[dyn_buf_i]),
);
const tag = elfInt(is_64, need_bswap, dyn32.d_tag, dyn64.d_tag);
const val = elfInt(is_64, need_bswap, dyn32.d_val, dyn64.d_val);
if (tag == elf.DT_RUNPATH) {
rpath_offset = val;
break :dyn;
}
}
}
},
else => continue,
}
}
}
if (Target.current.os.tag == .linux and result.target.isGnuLibC() and cross_target.glibc_version == null) {
if (rpath_offset) |rpoff| {
const shstrndx = elfInt(is_64, need_bswap, hdr32.e_shstrndx, hdr64.e_shstrndx);
var shoff = elfInt(is_64, need_bswap, hdr32.e_shoff, hdr64.e_shoff);
const shentsize = elfInt(is_64, need_bswap, hdr32.e_shentsize, hdr64.e_shentsize);
const str_section_off = shoff + @as(u64, shentsize) * @as(u64, shstrndx);
var sh_buf: [16 * @sizeOf(elf.Elf64_Shdr)]u8 align(@alignOf(elf.Elf64_Shdr)) = undefined;
if (sh_buf.len < shentsize) return error.InvalidElfFile;
_ = try preadMin(file, &sh_buf, str_section_off, shentsize);
const shstr32 = @ptrCast(*elf.Elf32_Shdr, @alignCast(@alignOf(elf.Elf32_Shdr), &sh_buf));
const shstr64 = @ptrCast(*elf.Elf64_Shdr, @alignCast(@alignOf(elf.Elf64_Shdr), &sh_buf));
const shstrtab_off = elfInt(is_64, need_bswap, shstr32.sh_offset, shstr64.sh_offset);
const shstrtab_size = elfInt(is_64, need_bswap, shstr32.sh_size, shstr64.sh_size);
var strtab_buf: [4096:0]u8 = undefined;
const shstrtab_len = std.math.min(shstrtab_size, strtab_buf.len);
const shstrtab_read_len = try preadMin(file, &strtab_buf, shstrtab_off, shstrtab_len);
const shstrtab = strtab_buf[0..shstrtab_read_len];
const shnum = elfInt(is_64, need_bswap, hdr32.e_shnum, hdr64.e_shnum);
var sh_i: u16 = 0;
const dynstr: ?struct { offset: u64, size: u64 } = find_dyn_str: while (sh_i < shnum) {
// Reserve some bytes so that we can deref the 64-bit struct fields
// even when the ELF file is 32-bits.
const sh_reserve: usize = @sizeOf(elf.Elf64_Shdr) - @sizeOf(elf.Elf32_Shdr);
const sh_read_byte_len = try preadMin(
file,
sh_buf[0 .. sh_buf.len - sh_reserve],
shoff,
shentsize,
);
var sh_buf_i: usize = 0;
while (sh_buf_i < sh_read_byte_len and sh_i < shnum) : ({
sh_i += 1;
shoff += shentsize;
sh_buf_i += shentsize;
}) {
const sh32 = @ptrCast(
*elf.Elf32_Shdr,
@alignCast(@alignOf(elf.Elf32_Shdr), &sh_buf[sh_buf_i]),
);
const sh64 = @ptrCast(
*elf.Elf64_Shdr,
@alignCast(@alignOf(elf.Elf64_Shdr), &sh_buf[sh_buf_i]),
);
const sh_name_off = elfInt(is_64, need_bswap, sh32.sh_name, sh64.sh_name);
// TODO this pointer cast should not be necessary
const sh_name = mem.spanZ(@ptrCast([*:0]u8, shstrtab[sh_name_off..].ptr));
if (mem.eql(u8, sh_name, ".dynstr")) {
break :find_dyn_str .{
.offset = elfInt(is_64, need_bswap, sh32.sh_offset, sh64.sh_offset),
.size = elfInt(is_64, need_bswap, sh32.sh_size, sh64.sh_size),
};
}
}
} else null;
if (dynstr) |ds| {
const strtab_len = std.math.min(ds.size, strtab_buf.len);
const strtab_read_len = try preadMin(file, &strtab_buf, ds.offset, shstrtab_len);
const strtab = strtab_buf[0..strtab_read_len];
// TODO this pointer cast should not be necessary
const rpoff_usize = std.math.cast(usize, rpoff) catch |err| switch (err) {
error.Overflow => return error.InvalidElfFile,
};
const rpath_list = mem.spanZ(@ptrCast([*:0]u8, strtab[rpoff_usize..].ptr));
var it = mem.tokenize(rpath_list, ":");
while (it.next()) |rpath| {
var dir = fs.cwd().openDir(rpath, .{}) catch |err| switch (err) {
error.NameTooLong => unreachable,
error.InvalidUtf8 => unreachable,
error.BadPathName => unreachable,
error.DeviceBusy => unreachable,
error.FileNotFound,
error.NotDir,
error.AccessDenied,
error.NoDevice,
=> continue,
error.ProcessFdQuotaExceeded,
error.SystemFdQuotaExceeded,
error.SystemResources,
error.SymLinkLoop,
error.Unexpected,
=> |e| return e,
};
defer dir.close();
var link_buf: [std.os.PATH_MAX]u8 = undefined;
const link_name = std.os.readlinkatZ(
dir.fd,
glibc_so_basename,
&link_buf,
) catch |err| switch (err) {
error.NameTooLong => unreachable,
error.InvalidUtf8 => unreachable, // Windows only
error.BadPathName => unreachable, // Windows only
error.UnsupportedReparsePointType => unreachable, // Windows only
error.AccessDenied,
error.FileNotFound,
error.NotDir,
=> continue,
error.SystemResources,
error.FileSystem,
error.SymLinkLoop,
error.Unexpected,
=> |e| return e,
};
result.target.os.version_range.linux.glibc = glibcVerFromLinkName(
link_name,
) catch |err| switch (err) {
error.UnrecognizedGnuLibCFileName,
error.InvalidGnuLibCVersion,
=> continue,
};
break;
}
}
}
}
return result;
}
fn preadMin(file: fs.File, buf: []u8, offset: u64, min_read_len: usize) !usize {
var i: usize = 0;
while (i < min_read_len) {
const len = file.pread(buf[i .. buf.len - i], offset + i) catch |err| switch (err) {
error.OperationAborted => unreachable, // Windows-only
error.WouldBlock => unreachable, // Did not request blocking mode
error.NotOpenForReading => unreachable,
error.SystemResources => return error.SystemResources,
error.IsDir => return error.UnableToReadElfFile,
error.BrokenPipe => return error.UnableToReadElfFile,
error.Unseekable => return error.UnableToReadElfFile,
error.ConnectionResetByPeer => return error.UnableToReadElfFile,
error.ConnectionTimedOut => return error.UnableToReadElfFile,
error.Unexpected => return error.Unexpected,
error.InputOutput => return error.FileSystem,
error.AccessDenied => return error.Unexpected,
};
if (len == 0) return error.UnexpectedEndOfFile;
i += len;
}
return i;
}
fn defaultAbiAndDynamicLinker(cpu: Target.Cpu, os: Target.Os, cross_target: CrossTarget) !NativeTargetInfo {
const target: Target = .{
.cpu = cpu,
.os = os,
.abi = cross_target.abi orelse Target.Abi.default(cpu.arch, os),
};
return NativeTargetInfo{
.target = target,
.dynamic_linker = if (cross_target.dynamic_linker.get() == null)
target.standardDynamicLinkerPath()
else
cross_target.dynamic_linker,
};
}
pub const LdInfo = struct {
ld: DynamicLinker,
abi: Target.Abi,
};
pub fn elfInt(is_64: bool, need_bswap: bool, int_32: anytype, int_64: anytype) @TypeOf(int_64) {
if (is_64) {
if (need_bswap) {
return @byteSwap(@TypeOf(int_64), int_64);
} else {
return int_64;
}
} else {
if (need_bswap) {
return @byteSwap(@TypeOf(int_32), int_32);
} else {
return int_32;
}
}
}
fn detectNativeCpuAndFeatures(cpu_arch: Target.Cpu.Arch, os: Target.Os, cross_target: CrossTarget) ?Target.Cpu {
// Here we switch on a comptime value rather than `cpu_arch`. This is valid because `cpu_arch`,
// although it is a runtime value, is guaranteed to be one of the architectures in the set
// of the respective switch prong.
switch (std.Target.current.cpu.arch) {
.x86_64, .i386 => {
return @import("system/x86.zig").detectNativeCpuAndFeatures(cpu_arch, os, cross_target);
},
else => {
// This architecture does not have CPU model & feature detection yet.
// See https://github.com/ziglang/zig/issues/4591
return null;
},
}
}
};
test "" {
_ = @import("system/macos.zig");
}