zig/std/io.zig

467 lines
16 KiB
Zig

const builtin = @import("builtin");
const Os = builtin.Os;
const system = switch(builtin.os) {
Os.linux => @import("os/linux.zig"),
Os.darwin => @import("os/darwin.zig"),
Os.windows => @import("os/windows/index.zig"),
else => @compileError("Unsupported OS"),
};
const errno = @import("os/errno.zig");
const math = @import("math/index.zig");
const debug = @import("debug.zig");
const assert = debug.assert;
const os = @import("os/index.zig");
const mem = @import("mem.zig");
const Buffer = @import("buffer.zig").Buffer;
const fmt = @import("fmt/index.zig");
const is_posix = builtin.os != builtin.Os.windows;
const is_windows = builtin.os == builtin.Os.windows;
pub var stdin = InStream {
.fd = if (is_posix) system.STDIN_FILENO else {},
.handle_id = if (is_windows) system.STD_INPUT_HANDLE else {},
.handle = if (is_windows) null else {},
};
pub var stdout = OutStream {
.fd = if (is_posix) system.STDOUT_FILENO else {},
.handle_id = if (is_windows) system.STD_OUTPUT_HANDLE else {},
.handle = if (is_windows) null else {},
.buffer = undefined,
.index = 0,
};
pub var stderr = OutStream {
.fd = if (is_posix) system.STDERR_FILENO else {},
.handle_id = if (is_windows) system.STD_ERROR_HANDLE else {},
.handle = if (is_windows) null else {},
.buffer = undefined,
.index = 0,
};
/// The function received invalid input at runtime. An Invalid error means a
/// bug in the program that called the function.
error Invalid;
/// When an Unexpected error occurs, code that emitted the error likely needs
/// a patch to recognize the unexpected case so that it can handle it and emit
/// a more specific error.
error Unexpected;
error DiskQuota;
error FileTooBig;
error Io;
error NoSpaceLeft;
error BadPerm;
error PipeFail;
error BadFd;
error IsDir;
error NotDir;
error SymLinkLoop;
error ProcessFdQuotaExceeded;
error SystemFdQuotaExceeded;
error NameTooLong;
error NoDevice;
error PathNotFound;
error NoMem;
error Unseekable;
error EndOfFile;
error NoStdHandles;
pub const OpenRead = 0b0001;
pub const OpenWrite = 0b0010;
pub const OpenCreate = 0b0100;
pub const OpenTruncate = 0b1000;
pub const OutStream = struct {
fd: if (is_posix) i32 else void,
handle_id: if (is_windows) system.DWORD else void,
handle: if (is_windows) ?system.HANDLE else void,
buffer: [os.page_size]u8,
index: usize,
/// Calls ::openMode with 0o666 for the mode.
pub fn open(path: []const u8, allocator: ?&mem.Allocator) -> %OutStream {
return openMode(path, 0o666, allocator);
}
/// `path` may need to be copied in memory to add a null terminating byte. In this case
/// a fixed size buffer of size std.os.max_noalloc_path_len is an attempted solution. If the fixed
/// size buffer is too small, and the provided allocator is null, error.NameTooLong is returned.
/// otherwise if the fixed size buffer is too small, allocator is used to obtain the needed memory.
/// Call close to clean up.
pub fn openMode(path: []const u8, mode: usize, allocator: ?&mem.Allocator) -> %OutStream {
if (is_posix) {
const flags = system.O_LARGEFILE|system.O_WRONLY|system.O_CREAT|system.O_CLOEXEC|system.O_TRUNC;
const fd = %return os.posixOpen(path, flags, mode, allocator);
return OutStream {
.fd = fd,
.handle = {},
.handle_id = {},
.index = 0,
.buffer = undefined,
};
} else if (is_windows) {
@compileError("TODO: windows OutStream.openMode");
} else {
@compileError("Unsupported OS");
}
}
pub fn writeByte(self: &OutStream, b: u8) -> %void {
if (self.buffer.len == self.index) %return self.flush();
self.buffer[self.index] = b;
self.index += 1;
}
pub fn write(self: &OutStream, bytes: []const u8) -> %void {
if (bytes.len >= self.buffer.len) {
%return self.flush();
return self.unbufferedWrite(bytes);
}
var src_index: usize = 0;
while (src_index < bytes.len) {
const dest_space_left = self.buffer.len - self.index;
const copy_amt = math.min(dest_space_left, bytes.len - src_index);
mem.copy(u8, self.buffer[self.index..], bytes[src_index..src_index + copy_amt]);
self.index += copy_amt;
assert(self.index <= self.buffer.len);
if (self.index == self.buffer.len) {
%return self.flush();
}
src_index += copy_amt;
}
}
/// Calls print and then flushes the buffer.
pub fn printf(self: &OutStream, comptime format: []const u8, args: ...) -> %void {
%return self.print(format, args);
%return self.flush();
}
/// Does not flush the buffer.
pub fn print(self: &OutStream, comptime format: []const u8, args: ...) -> %void {
var context = PrintContext {
.self = self,
.result = {},
};
_ = fmt.format(&context, printOutput, format, args);
return context.result;
}
const PrintContext = struct {
self: &OutStream,
result: %void,
};
fn printOutput(context: &PrintContext, bytes: []const u8) -> bool {
context.self.write(bytes) %% |err| {
context.result = err;
return false;
};
return true;
}
pub fn flush(self: &OutStream) -> %void {
if (self.index == 0)
return;
return self.unbufferedWrite(self.buffer[0..self.index]);
}
pub fn close(self: &OutStream) {
assert(self.index == 0);
os.posixClose(self.fd);
}
pub fn isTty(self: &OutStream) -> %bool {
if (is_posix) {
return system.isatty(self.fd);
} else if (is_windows) {
return os.windowsIsTty(%return self.getHandle());
} else {
@compileError("Unsupported OS");
}
}
fn getHandle(self: &OutStream) -> %system.HANDLE {
if (self.handle) |handle| return handle;
if (system.GetStdHandle(self.handle_id)) |handle| {
if (handle == system.INVALID_HANDLE_VALUE) {
return error.Unexpected;
}
self.handle = handle;
return handle;
} else {
return error.NoStdHandles;
}
}
fn unbufferedWrite(self: &OutStream, bytes: []const u8) -> %void {
if (is_posix) {
%return os.posixWrite(self.fd, self.buffer[0..self.index]);
self.index = 0;
} else if (is_windows) {
const handle = %return self.getHandle();
%return os.windowsWrite(handle, self.buffer[0..self.index]);
self.index = 0;
} else {
@compileError("Unsupported OS");
}
}
};
// TODO created a BufferedInStream struct and move some of this code there
// BufferedInStream API goes on top of minimal InStream API.
pub const InStream = struct {
fd: if (is_posix) i32 else void,
handle_id: if (is_windows) system.DWORD else void,
handle: if (is_windows) ?system.HANDLE else void,
/// `path` may need to be copied in memory to add a null terminating byte. In this case
/// a fixed size buffer of size std.os.max_noalloc_path_len is an attempted solution. If the fixed
/// size buffer is too small, and the provided allocator is null, error.NameTooLong is returned.
/// otherwise if the fixed size buffer is too small, allocator is used to obtain the needed memory.
/// Call close to clean up.
pub fn open(path: []const u8, allocator: ?&mem.Allocator) -> %InStream {
if (is_posix) {
const flags = system.O_LARGEFILE|system.O_RDONLY;
const fd = %return os.posixOpen(path, flags, 0, allocator);
return InStream {
.fd = fd,
.handle_id = {},
.handle = {},
};
} else if (is_windows) {
@compileError("TODO windows InStream.open");
} else {
@compileError("Unsupported OS");
}
}
/// Upon success, the stream is in an uninitialized state. To continue using it,
/// you must use the open() function.
pub fn close(self: &InStream) {
if (is_posix) {
os.posixClose(self.fd);
} else {
@compileError("Unsupported OS");
}
}
/// Returns the number of bytes read. If the number read is smaller than buf.len, then
/// the stream reached End Of File.
pub fn read(is: &InStream, buf: []u8) -> %usize {
if (is_posix) {
var index: usize = 0;
while (index < buf.len) {
const amt_read = system.read(is.fd, &buf[index], buf.len - index);
const read_err = system.getErrno(amt_read);
if (read_err > 0) {
switch (read_err) {
errno.EINTR => continue,
errno.EINVAL => unreachable,
errno.EFAULT => unreachable,
errno.EBADF => return error.BadFd,
errno.EIO => return error.Io,
else => return error.Unexpected,
}
}
if (amt_read == 0) return index;
index += amt_read;
}
return index;
} else if (is_windows) {
@compileError("TODO windows read impl");
} else {
@compileError("Unsupported OS");
}
}
pub fn readNoEof(is: &InStream, buf: []u8) -> %void {
const amt_read = %return is.read(buf);
if (amt_read < buf.len) return error.EndOfFile;
}
pub fn readByte(is: &InStream) -> %u8 {
var result: [1]u8 = undefined;
%return is.readNoEof(result[0..]);
return result[0];
}
pub fn readByteSigned(is: &InStream) -> %i8 {
var result: [1]i8 = undefined;
%return is.readNoEof(([]u8)(result[0..]));
return result[0];
}
pub fn readIntLe(is: &InStream, comptime T: type) -> %T {
is.readInt(false, T)
}
pub fn readIntBe(is: &InStream, comptime T: type) -> %T {
is.readInt(true, T)
}
pub fn readInt(is: &InStream, is_be: bool, comptime T: type) -> %T {
var bytes: [@sizeOf(T)]u8 = undefined;
%return is.readNoEof(bytes[0..]);
return mem.readInt(bytes, T, is_be);
}
pub fn readVarInt(is: &InStream, is_be: bool, comptime T: type, size: usize) -> %T {
assert(size <= @sizeOf(T));
assert(size <= 8);
var input_buf: [8]u8 = undefined;
const input_slice = input_buf[0..size];
%return is.readNoEof(input_slice);
return mem.readInt(input_slice, T, is_be);
}
pub fn seekForward(is: &InStream, amount: usize) -> %void {
switch (builtin.os) {
Os.linux, Os.darwin => {
const result = system.lseek(is.fd, amount, system.SEEK_CUR);
const err = system.getErrno(result);
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.EINVAL => error.Unseekable,
errno.EOVERFLOW => error.Unseekable,
errno.ESPIPE => error.Unseekable,
errno.ENXIO => error.Unseekable,
else => error.Unexpected,
};
}
},
else => @compileError("unsupported OS"),
}
}
pub fn seekTo(is: &InStream, pos: usize) -> %void {
switch (builtin.os) {
Os.linux, Os.darwin => {
const result = system.lseek(is.fd, pos, system.SEEK_SET);
const err = system.getErrno(result);
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.EINVAL => error.Unseekable,
errno.EOVERFLOW => error.Unseekable,
errno.ESPIPE => error.Unseekable,
errno.ENXIO => error.Unseekable,
else => error.Unexpected,
};
}
},
else => @compileError("unsupported OS"),
}
}
pub fn getPos(is: &InStream) -> %usize {
switch (builtin.os) {
Os.linux, Os.darwin => {
const result = system.lseek(is.fd, 0, system.SEEK_CUR);
const err = system.getErrno(result);
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.EINVAL => error.Unseekable,
errno.EOVERFLOW => error.Unseekable,
errno.ESPIPE => error.Unseekable,
errno.ENXIO => error.Unseekable,
else => error.Unexpected,
};
}
return result;
},
else => @compileError("unsupported OS"),
}
}
pub fn getEndPos(is: &InStream) -> %usize {
var stat: system.stat = undefined;
const err = system.getErrno(system.fstat(is.fd, &stat));
if (err > 0) {
return switch (err) {
errno.EBADF => error.BadFd,
errno.ENOMEM => error.NoMem,
else => error.Unexpected,
}
}
return usize(stat.size);
}
pub fn readAll(is: &InStream, buf: &Buffer) -> %void {
%return buf.resize(os.page_size);
var actual_buf_len: usize = 0;
while (true) {
const dest_slice = buf.toSlice()[actual_buf_len..];
const bytes_read = %return is.read(dest_slice);
actual_buf_len += bytes_read;
if (bytes_read != dest_slice.len) {
return buf.resize(actual_buf_len);
}
%return buf.resize(actual_buf_len + os.page_size);
}
}
pub fn isTty(self: &InStream) -> %bool {
if (is_posix) {
return system.isatty(self.fd);
} else if (is_windows) {
return os.windowsIsTty(%return self.getHandle());
} else {
@compileError("Unsupported OS");
}
}
fn getHandle(self: &InStream) -> %system.HANDLE {
if (self.handle) |handle| return handle;
if (system.GetStdHandle(self.handle_id)) |handle| {
if (handle == system.INVALID_HANDLE_VALUE) {
return error.Unexpected;
}
self.handle = handle;
return handle;
} else {
return error.NoStdHandles;
}
}
};
pub fn openSelfExe() -> %InStream {
switch (builtin.os) {
Os.linux => {
return InStream.open("/proc/self/exe", null);
},
Os.darwin => {
debug.panic("TODO: openSelfExe on Darwin");
},
else => @compileError("Unsupported OS"),
}
}
/// `path` may need to be copied in memory to add a null terminating byte. In this case
/// a fixed size buffer of size std.os.max_noalloc_path_len is an attempted solution. If the fixed
/// size buffer is too small, and the provided allocator is null, error.NameTooLong is returned.
/// otherwise if the fixed size buffer is too small, allocator is used to obtain the needed memory.
pub fn writeFile(path: []const u8, data: []const u8, allocator: ?&mem.Allocator) -> %void {
// TODO have an unbuffered File abstraction and use that here.
// Then a buffered out stream abstraction can go on top of that for
// use cases like stdout and stderr.
var out_stream = %return OutStream.open(path, allocator);
defer out_stream.close();
%return out_stream.write(data);
%return out_stream.flush();
}