zig/lib/std/crypto/blake2.zig
Frank Denis 26793453a7 std/crypto/blake2b: allow the initial output length to be set
BLAKE2 includes the expected output length in the initial state.

This length is actually distinct from the actual output length
used at finalization.

BLAKE2b-256/128 is thus not the same as BLAKE2b-128.

This behavior can be a little bit surprising, and has been "fixed"
in BLAKE3.

In order to support this, we may want to provide an option to set the
length used for domain separation.

In Zig, there is another reason to allow this: we assume that the
output length is defined at comptime.

But BLAKE2 doesn't have a fixed output length. For an output length that
is not known at comptime, we can't take the full block size and
truncate it due to the reason above.

What we can do now is set that length as an option to get the correct
initial state, and truncate the output if necessary.
2020-10-29 15:18:37 -04:00

721 lines
24 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("../std.zig");
const mem = std.mem;
const math = std.math;
const debug = std.debug;
const htest = @import("test.zig");
const RoundParam = struct {
a: usize,
b: usize,
c: usize,
d: usize,
x: usize,
y: usize,
};
fn roundParam(a: usize, b: usize, c: usize, d: usize, x: usize, y: usize) RoundParam {
return RoundParam{
.a = a,
.b = b,
.c = c,
.d = d,
.x = x,
.y = y,
};
}
/////////////////////
// Blake2s
pub const Blake2s128 = Blake2s(128);
pub const Blake2s224 = Blake2s(224);
pub const Blake2s256 = Blake2s(256);
pub fn Blake2s(comptime out_bits: usize) type {
return struct {
const Self = @This();
pub const block_length = 64;
pub const digest_length = out_bits / 8;
pub const key_length_min = 0;
pub const key_length_max = 32;
pub const key_length = 32; // recommended key length
pub const Options = struct { key: ?[]const u8 = null, salt: ?[8]u8 = null, context: ?[8]u8 = null, expected_out_bits: usize = out_bits };
const iv = [8]u32{
0x6A09E667,
0xBB67AE85,
0x3C6EF372,
0xA54FF53A,
0x510E527F,
0x9B05688C,
0x1F83D9AB,
0x5BE0CD19,
};
const sigma = [10][16]u8{
[_]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
[_]u8{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
[_]u8{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
[_]u8{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
[_]u8{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
[_]u8{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
[_]u8{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
[_]u8{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
[_]u8{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
[_]u8{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
};
h: [8]u32,
t: u64,
// Streaming cache
buf: [64]u8,
buf_len: u8,
pub fn init(options: Options) Self {
comptime debug.assert(8 <= out_bits and out_bits <= 256);
var d: Self = undefined;
mem.copy(u32, d.h[0..], iv[0..]);
const key_len = if (options.key) |key| key.len else 0;
// default parameters
d.h[0] ^= 0x01010000 ^ @truncate(u32, key_len << 8) ^ @intCast(u32, options.expected_out_bits >> 3);
d.t = 0;
d.buf_len = 0;
if (options.salt) |salt| {
d.h[4] ^= mem.readIntLittle(u32, salt[0..4]);
d.h[5] ^= mem.readIntLittle(u32, salt[4..8]);
}
if (options.context) |context| {
d.h[6] ^= mem.readIntLittle(u32, context[0..4]);
d.h[7] ^= mem.readIntLittle(u32, context[4..8]);
}
if (key_len > 0) {
mem.set(u8, d.buf[key_len..], 0);
d.update(options.key.?);
d.buf_len = 64;
}
return d;
}
pub fn hash(b: []const u8, out: *[digest_length]u8, options: Options) void {
var d = Self.init(options);
d.update(b);
d.final(out);
}
pub fn update(d: *Self, b: []const u8) void {
var off: usize = 0;
// Partial buffer exists from previous update. Copy into buffer then hash.
if (d.buf_len != 0 and d.buf_len + b.len > 64) {
off += 64 - d.buf_len;
mem.copy(u8, d.buf[d.buf_len..], b[0..off]);
d.t += 64;
d.round(d.buf[0..], false);
d.buf_len = 0;
}
// Full middle blocks.
while (off + 64 < b.len) : (off += 64) {
d.t += 64;
d.round(b[off..][0..64], false);
}
// Copy any remainder for next pass.
mem.copy(u8, d.buf[d.buf_len..], b[off..]);
d.buf_len += @intCast(u8, b[off..].len);
}
pub fn final(d: *Self, out: *[digest_length]u8) void {
mem.set(u8, d.buf[d.buf_len..], 0);
d.t += d.buf_len;
d.round(d.buf[0..], true);
const rr = d.h[0 .. digest_length / 4];
for (rr) |s, j| {
mem.writeIntSliceLittle(u32, out[4 * j ..], s);
}
}
fn round(d: *Self, b: *const [64]u8, last: bool) void {
var m: [16]u32 = undefined;
var v: [16]u32 = undefined;
for (m) |*r, i| {
r.* = mem.readIntLittle(u32, b[4 * i ..][0..4]);
}
var k: usize = 0;
while (k < 8) : (k += 1) {
v[k] = d.h[k];
v[k + 8] = iv[k];
}
v[12] ^= @truncate(u32, d.t);
v[13] ^= @intCast(u32, d.t >> 32);
if (last) v[14] = ~v[14];
const rounds = comptime [_]RoundParam{
roundParam(0, 4, 8, 12, 0, 1),
roundParam(1, 5, 9, 13, 2, 3),
roundParam(2, 6, 10, 14, 4, 5),
roundParam(3, 7, 11, 15, 6, 7),
roundParam(0, 5, 10, 15, 8, 9),
roundParam(1, 6, 11, 12, 10, 11),
roundParam(2, 7, 8, 13, 12, 13),
roundParam(3, 4, 9, 14, 14, 15),
};
comptime var j: usize = 0;
inline while (j < 10) : (j += 1) {
inline for (rounds) |r| {
v[r.a] = v[r.a] +% v[r.b] +% m[sigma[j][r.x]];
v[r.d] = math.rotr(u32, v[r.d] ^ v[r.a], @as(usize, 16));
v[r.c] = v[r.c] +% v[r.d];
v[r.b] = math.rotr(u32, v[r.b] ^ v[r.c], @as(usize, 12));
v[r.a] = v[r.a] +% v[r.b] +% m[sigma[j][r.y]];
v[r.d] = math.rotr(u32, v[r.d] ^ v[r.a], @as(usize, 8));
v[r.c] = v[r.c] +% v[r.d];
v[r.b] = math.rotr(u32, v[r.b] ^ v[r.c], @as(usize, 7));
}
}
for (d.h) |*r, i| {
r.* ^= v[i] ^ v[i + 8];
}
}
};
}
test "blake2s224 single" {
const h1 = "1fa1291e65248b37b3433475b2a0dd63d54a11ecc4e3e034e7bc1ef4";
htest.assertEqualHash(Blake2s224, h1, "");
const h2 = "0b033fc226df7abde29f67a05d3dc62cf271ef3dfea4d387407fbd55";
htest.assertEqualHash(Blake2s224, h2, "abc");
const h3 = "e4e5cb6c7cae41982b397bf7b7d2d9d1949823ae78435326e8db4912";
htest.assertEqualHash(Blake2s224, h3, "The quick brown fox jumps over the lazy dog");
const h4 = "557381a78facd2b298640f4e32113e58967d61420af1aa939d0cfe01";
htest.assertEqualHash(Blake2s224, h4, "a" ** 32 ++ "b" ** 32);
}
test "blake2s224 streaming" {
var h = Blake2s224.init(.{});
var out: [28]u8 = undefined;
const h1 = "1fa1291e65248b37b3433475b2a0dd63d54a11ecc4e3e034e7bc1ef4";
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
const h2 = "0b033fc226df7abde29f67a05d3dc62cf271ef3dfea4d387407fbd55";
h = Blake2s224.init(.{});
h.update("abc");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
h = Blake2s224.init(.{});
h.update("a");
h.update("b");
h.update("c");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
const h3 = "557381a78facd2b298640f4e32113e58967d61420af1aa939d0cfe01";
h = Blake2s224.init(.{});
h.update("a" ** 32);
h.update("b" ** 32);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
h = Blake2s224.init(.{});
h.update("a" ** 32 ++ "b" ** 32);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
const h4 = "a4d6a9d253441b80e5dfd60a04db169ffab77aec56a2855c402828c3";
h = Blake2s224.init(.{ .context = [_]u8{0x69} ** 8, .salt = [_]u8{0x42} ** 8 });
h.update("a" ** 32);
h.update("b" ** 32);
h.final(out[0..]);
htest.assertEqual(h4, out[0..]);
h = Blake2s224.init(.{ .context = [_]u8{0x69} ** 8, .salt = [_]u8{0x42} ** 8 });
h.update("a" ** 32 ++ "b" ** 32);
h.final(out[0..]);
htest.assertEqual(h4, out[0..]);
}
test "comptime blake2s224" {
comptime {
@setEvalBranchQuota(6000);
var block = [_]u8{0} ** Blake2s224.block_length;
var out: [Blake2s224.digest_length]u8 = undefined;
const h1 = "86b7611563293f8c73627df7a6d6ba25ca0548c2a6481f7d116ee576";
htest.assertEqualHash(Blake2s224, h1, block[0..]);
var h = Blake2s224.init(.{});
h.update(&block);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
}
}
test "blake2s256 single" {
const h1 = "69217a3079908094e11121d042354a7c1f55b6482ca1a51e1b250dfd1ed0eef9";
htest.assertEqualHash(Blake2s256, h1, "");
const h2 = "508c5e8c327c14e2e1a72ba34eeb452f37458b209ed63a294d999b4c86675982";
htest.assertEqualHash(Blake2s256, h2, "abc");
const h3 = "606beeec743ccbeff6cbcdf5d5302aa855c256c29b88c8ed331ea1a6bf3c8812";
htest.assertEqualHash(Blake2s256, h3, "The quick brown fox jumps over the lazy dog");
const h4 = "8d8711dade07a6b92b9a3ea1f40bee9b2c53ff3edd2a273dec170b0163568977";
htest.assertEqualHash(Blake2s256, h4, "a" ** 32 ++ "b" ** 32);
}
test "blake2s256 streaming" {
var h = Blake2s256.init(.{});
var out: [32]u8 = undefined;
const h1 = "69217a3079908094e11121d042354a7c1f55b6482ca1a51e1b250dfd1ed0eef9";
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
const h2 = "508c5e8c327c14e2e1a72ba34eeb452f37458b209ed63a294d999b4c86675982";
h = Blake2s256.init(.{});
h.update("abc");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
h = Blake2s256.init(.{});
h.update("a");
h.update("b");
h.update("c");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
const h3 = "8d8711dade07a6b92b9a3ea1f40bee9b2c53ff3edd2a273dec170b0163568977";
h = Blake2s256.init(.{});
h.update("a" ** 32);
h.update("b" ** 32);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
h = Blake2s256.init(.{});
h.update("a" ** 32 ++ "b" ** 32);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
}
test "blake2s256 keyed" {
var out: [32]u8 = undefined;
const h1 = "10f918da4d74fab3302e48a5d67d03804b1ec95372a62a0f33b7c9fa28ba1ae6";
const key = "secret_key";
Blake2s256.hash("a" ** 64 ++ "b" ** 64, &out, .{ .key = key });
htest.assertEqual(h1, out[0..]);
var h = Blake2s256.init(.{ .key = key });
h.update("a" ** 64 ++ "b" ** 64);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
h = Blake2s256.init(.{ .key = key });
h.update("a" ** 64);
h.update("b" ** 64);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
}
test "comptime blake2s256" {
comptime {
@setEvalBranchQuota(6000);
var block = [_]u8{0} ** Blake2s256.block_length;
var out: [Blake2s256.digest_length]u8 = undefined;
const h1 = "ae09db7cd54f42b490ef09b6bc541af688e4959bb8c53f359a6f56e38ab454a3";
htest.assertEqualHash(Blake2s256, h1, block[0..]);
var h = Blake2s256.init(.{});
h.update(&block);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
}
}
/////////////////////
// Blake2b
pub const Blake2b128 = Blake2b(128);
pub const Blake2b256 = Blake2b(256);
pub const Blake2b384 = Blake2b(384);
pub const Blake2b512 = Blake2b(512);
pub fn Blake2b(comptime out_bits: usize) type {
return struct {
const Self = @This();
pub const block_length = 128;
pub const digest_length = out_bits / 8;
pub const key_length_min = 0;
pub const key_length_max = 64;
pub const key_length = 32; // recommended key length
pub const Options = struct { key: ?[]const u8 = null, salt: ?[16]u8 = null, context: ?[16]u8 = null, expected_out_bits: usize = out_bits };
const iv = [8]u64{
0x6a09e667f3bcc908,
0xbb67ae8584caa73b,
0x3c6ef372fe94f82b,
0xa54ff53a5f1d36f1,
0x510e527fade682d1,
0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b,
0x5be0cd19137e2179,
};
const sigma = [12][16]u8{
[_]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
[_]u8{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
[_]u8{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
[_]u8{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
[_]u8{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
[_]u8{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
[_]u8{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
[_]u8{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
[_]u8{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
[_]u8{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
[_]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
[_]u8{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
};
h: [8]u64,
t: u128,
// Streaming cache
buf: [128]u8,
buf_len: u8,
pub fn init(options: Options) Self {
comptime debug.assert(8 <= out_bits and out_bits <= 512);
var d: Self = undefined;
mem.copy(u64, d.h[0..], iv[0..]);
const key_len = if (options.key) |key| key.len else 0;
// default parameters
d.h[0] ^= 0x01010000 ^ (key_len << 8) ^ (options.expected_out_bits >> 3);
d.t = 0;
d.buf_len = 0;
if (options.salt) |salt| {
d.h[4] ^= mem.readIntLittle(u64, salt[0..8]);
d.h[5] ^= mem.readIntLittle(u64, salt[8..16]);
}
if (options.context) |context| {
d.h[6] ^= mem.readIntLittle(u64, context[0..8]);
d.h[7] ^= mem.readIntLittle(u64, context[8..16]);
}
if (key_len > 0) {
mem.set(u8, d.buf[key_len..], 0);
d.update(options.key.?);
d.buf_len = 128;
}
return d;
}
pub fn hash(b: []const u8, out: *[digest_length]u8, options: Options) void {
var d = Self.init(options);
d.update(b);
d.final(out);
}
pub fn update(d: *Self, b: []const u8) void {
var off: usize = 0;
// Partial buffer exists from previous update. Copy into buffer then hash.
if (d.buf_len != 0 and d.buf_len + b.len > 128) {
off += 128 - d.buf_len;
mem.copy(u8, d.buf[d.buf_len..], b[0..off]);
d.t += 128;
d.round(d.buf[0..], false);
d.buf_len = 0;
}
// Full middle blocks.
while (off + 128 < b.len) : (off += 128) {
d.t += 128;
d.round(b[off..][0..128], false);
}
// Copy any remainder for next pass.
mem.copy(u8, d.buf[d.buf_len..], b[off..]);
d.buf_len += @intCast(u8, b[off..].len);
}
pub fn final(d: *Self, out: *[digest_length]u8) void {
mem.set(u8, d.buf[d.buf_len..], 0);
d.t += d.buf_len;
d.round(d.buf[0..], true);
const rr = d.h[0 .. digest_length / 8];
for (rr) |s, j| {
mem.writeIntSliceLittle(u64, out[8 * j ..], s);
}
}
fn round(d: *Self, b: *const [128]u8, last: bool) void {
var m: [16]u64 = undefined;
var v: [16]u64 = undefined;
for (m) |*r, i| {
r.* = mem.readIntLittle(u64, b[8 * i ..][0..8]);
}
var k: usize = 0;
while (k < 8) : (k += 1) {
v[k] = d.h[k];
v[k + 8] = iv[k];
}
v[12] ^= @truncate(u64, d.t);
v[13] ^= @intCast(u64, d.t >> 64);
if (last) v[14] = ~v[14];
const rounds = comptime [_]RoundParam{
roundParam(0, 4, 8, 12, 0, 1),
roundParam(1, 5, 9, 13, 2, 3),
roundParam(2, 6, 10, 14, 4, 5),
roundParam(3, 7, 11, 15, 6, 7),
roundParam(0, 5, 10, 15, 8, 9),
roundParam(1, 6, 11, 12, 10, 11),
roundParam(2, 7, 8, 13, 12, 13),
roundParam(3, 4, 9, 14, 14, 15),
};
comptime var j: usize = 0;
inline while (j < 12) : (j += 1) {
inline for (rounds) |r| {
v[r.a] = v[r.a] +% v[r.b] +% m[sigma[j][r.x]];
v[r.d] = math.rotr(u64, v[r.d] ^ v[r.a], @as(usize, 32));
v[r.c] = v[r.c] +% v[r.d];
v[r.b] = math.rotr(u64, v[r.b] ^ v[r.c], @as(usize, 24));
v[r.a] = v[r.a] +% v[r.b] +% m[sigma[j][r.y]];
v[r.d] = math.rotr(u64, v[r.d] ^ v[r.a], @as(usize, 16));
v[r.c] = v[r.c] +% v[r.d];
v[r.b] = math.rotr(u64, v[r.b] ^ v[r.c], @as(usize, 63));
}
}
for (d.h) |*r, i| {
r.* ^= v[i] ^ v[i + 8];
}
}
};
}
test "blake2b384 single" {
const h1 = "b32811423377f52d7862286ee1a72ee540524380fda1724a6f25d7978c6fd3244a6caf0498812673c5e05ef583825100";
htest.assertEqualHash(Blake2b384, h1, "");
const h2 = "6f56a82c8e7ef526dfe182eb5212f7db9df1317e57815dbda46083fc30f54ee6c66ba83be64b302d7cba6ce15bb556f4";
htest.assertEqualHash(Blake2b384, h2, "abc");
const h3 = "b7c81b228b6bd912930e8f0b5387989691c1cee1e65aade4da3b86a3c9f678fc8018f6ed9e2906720c8d2a3aeda9c03d";
htest.assertEqualHash(Blake2b384, h3, "The quick brown fox jumps over the lazy dog");
const h4 = "b7283f0172fecbbd7eca32ce10d8a6c06b453cb3cf675b33eb4246f0da2bb94a6c0bdd6eec0b5fd71ec4fd51be80bf4c";
htest.assertEqualHash(Blake2b384, h4, "a" ** 64 ++ "b" ** 64);
}
test "blake2b384 streaming" {
var h = Blake2b384.init(.{});
var out: [48]u8 = undefined;
const h1 = "b32811423377f52d7862286ee1a72ee540524380fda1724a6f25d7978c6fd3244a6caf0498812673c5e05ef583825100";
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
const h2 = "6f56a82c8e7ef526dfe182eb5212f7db9df1317e57815dbda46083fc30f54ee6c66ba83be64b302d7cba6ce15bb556f4";
h = Blake2b384.init(.{});
h.update("abc");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
h = Blake2b384.init(.{});
h.update("a");
h.update("b");
h.update("c");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
const h3 = "b7283f0172fecbbd7eca32ce10d8a6c06b453cb3cf675b33eb4246f0da2bb94a6c0bdd6eec0b5fd71ec4fd51be80bf4c";
h = Blake2b384.init(.{});
h.update("a" ** 64 ++ "b" ** 64);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
h = Blake2b384.init(.{});
h.update("a" ** 64);
h.update("b" ** 64);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
h = Blake2b384.init(.{});
h.update("a" ** 64);
h.update("b" ** 64);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
const h4 = "934c48fcb197031c71f583d92f98703510805e72142e0b46f5752d1e971bc86c355d556035613ff7a4154b4de09dac5c";
h = Blake2b384.init(.{ .context = [_]u8{0x69} ** 16, .salt = [_]u8{0x42} ** 16 });
h.update("a" ** 64);
h.update("b" ** 64);
h.final(out[0..]);
htest.assertEqual(h4, out[0..]);
h = Blake2b384.init(.{ .context = [_]u8{0x69} ** 16, .salt = [_]u8{0x42} ** 16 });
h.update("a" ** 64);
h.update("b" ** 64);
h.final(out[0..]);
htest.assertEqual(h4, out[0..]);
}
test "comptime blake2b384" {
comptime {
@setEvalBranchQuota(7000);
var block = [_]u8{0} ** Blake2b384.block_length;
var out: [Blake2b384.digest_length]u8 = undefined;
const h1 = "e8aa1931ea0422e4446fecdd25c16cf35c240b10cb4659dd5c776eddcaa4d922397a589404b46eb2e53d78132d05fd7d";
htest.assertEqualHash(Blake2b384, h1, block[0..]);
var h = Blake2b384.init(.{});
h.update(&block);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
}
}
test "blake2b512 single" {
const h1 = "786a02f742015903c6c6fd852552d272912f4740e15847618a86e217f71f5419d25e1031afee585313896444934eb04b903a685b1448b755d56f701afe9be2ce";
htest.assertEqualHash(Blake2b512, h1, "");
const h2 = "ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d17d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923";
htest.assertEqualHash(Blake2b512, h2, "abc");
const h3 = "a8add4bdddfd93e4877d2746e62817b116364a1fa7bc148d95090bc7333b3673f82401cf7aa2e4cb1ecd90296e3f14cb5413f8ed77be73045b13914cdcd6a918";
htest.assertEqualHash(Blake2b512, h3, "The quick brown fox jumps over the lazy dog");
const h4 = "049980af04d6a2cf16b4b49793c3ed7e40732073788806f2c989ebe9547bda0541d63abe298ec8955d08af48ae731f2e8a0bd6d201655a5473b4aa79d211b920";
htest.assertEqualHash(Blake2b512, h4, "a" ** 64 ++ "b" ** 64);
}
test "blake2b512 streaming" {
var h = Blake2b512.init(.{});
var out: [64]u8 = undefined;
const h1 = "786a02f742015903c6c6fd852552d272912f4740e15847618a86e217f71f5419d25e1031afee585313896444934eb04b903a685b1448b755d56f701afe9be2ce";
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
const h2 = "ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d17d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923";
h = Blake2b512.init(.{});
h.update("abc");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
h = Blake2b512.init(.{});
h.update("a");
h.update("b");
h.update("c");
h.final(out[0..]);
htest.assertEqual(h2, out[0..]);
const h3 = "049980af04d6a2cf16b4b49793c3ed7e40732073788806f2c989ebe9547bda0541d63abe298ec8955d08af48ae731f2e8a0bd6d201655a5473b4aa79d211b920";
h = Blake2b512.init(.{});
h.update("a" ** 64 ++ "b" ** 64);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
h = Blake2b512.init(.{});
h.update("a" ** 64);
h.update("b" ** 64);
h.final(out[0..]);
htest.assertEqual(h3, out[0..]);
}
test "blake2b512 keyed" {
var out: [64]u8 = undefined;
const h1 = "8a978060ccaf582f388f37454363071ac9a67e3a704585fd879fb8a419a447e389c7c6de790faa20a7a7dccf197de736bc5b40b98a930b36df5bee7555750c4d";
const key = "secret_key";
Blake2b512.hash("a" ** 64 ++ "b" ** 64, &out, .{ .key = key });
htest.assertEqual(h1, out[0..]);
var h = Blake2b512.init(.{ .key = key });
h.update("a" ** 64 ++ "b" ** 64);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
h = Blake2b512.init(.{ .key = key });
h.update("a" ** 64);
h.update("b" ** 64);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
}
test "comptime blake2b512" {
comptime {
@setEvalBranchQuota(8000);
var block = [_]u8{0} ** Blake2b512.block_length;
var out: [Blake2b512.digest_length]u8 = undefined;
const h1 = "865939e120e6805438478841afb739ae4250cf372653078a065cdcfffca4caf798e6d462b65d658fc165782640eded70963449ae1500fb0f24981d7727e22c41";
htest.assertEqualHash(Blake2b512, h1, block[0..]);
var h = Blake2b512.init(.{});
h.update(&block);
h.final(out[0..]);
htest.assertEqual(h1, out[0..]);
}
}