zig/src-self-hosted/ir/text.zig

1066 lines
39 KiB
Zig

//! This file has to do with parsing and rendering the ZIR text format.
const std = @import("std");
const mem = std.mem;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const BigInt = std.math.big.Int;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const ir = @import("../ir.zig");
/// These are instructions that correspond to the ZIR text format. See `ir.Inst` for
/// in-memory, analyzed instructions with types and values.
pub const Inst = struct {
tag: Tag,
/// Byte offset into the source.
src: usize,
/// These names are used directly as the instruction names in the text format.
pub const Tag = enum {
str,
int,
ptrtoint,
fieldptr,
deref,
as,
@"asm",
@"unreachable",
@"fn",
@"export",
primitive,
fntype,
intcast,
};
pub fn TagToType(tag: Tag) type {
return switch (tag) {
.str => Str,
.int => Int,
.ptrtoint => PtrToInt,
.fieldptr => FieldPtr,
.deref => Deref,
.as => As,
.@"asm" => Asm,
.@"unreachable" => Unreachable,
.@"fn" => Fn,
.@"export" => Export,
.primitive => Primitive,
.fntype => FnType,
.intcast => IntCast,
};
}
pub fn cast(base: *Inst, comptime T: type) ?*T {
if (base.tag != T.base_tag)
return null;
return @fieldParentPtr(T, "base", base);
}
pub const Str = struct {
pub const base_tag = Tag.str;
base: Inst,
positionals: struct {
bytes: []const u8,
},
kw_args: struct {},
};
pub const Int = struct {
pub const base_tag = Tag.int;
base: Inst,
positionals: struct {
int: BigInt,
},
kw_args: struct {},
};
pub const PtrToInt = struct {
pub const base_tag = Tag.ptrtoint;
base: Inst,
positionals: struct {
ptr: *Inst,
},
kw_args: struct {},
};
pub const FieldPtr = struct {
pub const base_tag = Tag.fieldptr;
base: Inst,
positionals: struct {
object_ptr: *Inst,
field_name: *Inst,
},
kw_args: struct {},
};
pub const Deref = struct {
pub const base_tag = Tag.deref;
base: Inst,
positionals: struct {
ptr: *Inst,
},
kw_args: struct {},
};
pub const As = struct {
pub const base_tag = Tag.as;
base: Inst,
positionals: struct {
dest_type: *Inst,
value: *Inst,
},
kw_args: struct {},
};
pub const Asm = struct {
pub const base_tag = Tag.@"asm";
base: Inst,
positionals: struct {
asm_source: *Inst,
return_type: *Inst,
},
kw_args: struct {
@"volatile": bool = false,
output: ?*Inst = null,
inputs: []*Inst = &[0]*Inst{},
clobbers: []*Inst = &[0]*Inst{},
args: []*Inst = &[0]*Inst{},
},
};
pub const Unreachable = struct {
pub const base_tag = Tag.@"unreachable";
base: Inst,
positionals: struct {},
kw_args: struct {},
};
pub const Fn = struct {
pub const base_tag = Tag.@"fn";
base: Inst,
positionals: struct {
fn_type: *Inst,
body: Body,
},
kw_args: struct {},
pub const Body = struct {
instructions: []*Inst,
};
};
pub const Export = struct {
pub const base_tag = Tag.@"export";
base: Inst,
positionals: struct {
symbol_name: *Inst,
value: *Inst,
},
kw_args: struct {},
};
pub const Primitive = struct {
pub const base_tag = Tag.primitive;
base: Inst,
positionals: struct {
tag: BuiltinType,
},
kw_args: struct {},
pub const BuiltinType = enum {
@"isize",
@"usize",
@"c_short",
@"c_ushort",
@"c_int",
@"c_uint",
@"c_long",
@"c_ulong",
@"c_longlong",
@"c_ulonglong",
@"c_longdouble",
@"c_void",
@"f16",
@"f32",
@"f64",
@"f128",
@"bool",
@"void",
@"noreturn",
@"type",
@"anyerror",
@"comptime_int",
@"comptime_float",
fn toType(self: BuiltinType) Type {
return switch (self) {
.@"isize" => Type.initTag(.@"isize"),
.@"usize" => Type.initTag(.@"usize"),
.@"c_short" => Type.initTag(.@"c_short"),
.@"c_ushort" => Type.initTag(.@"c_ushort"),
.@"c_int" => Type.initTag(.@"c_int"),
.@"c_uint" => Type.initTag(.@"c_uint"),
.@"c_long" => Type.initTag(.@"c_long"),
.@"c_ulong" => Type.initTag(.@"c_ulong"),
.@"c_longlong" => Type.initTag(.@"c_longlong"),
.@"c_ulonglong" => Type.initTag(.@"c_ulonglong"),
.@"c_longdouble" => Type.initTag(.@"c_longdouble"),
.@"c_void" => Type.initTag(.@"c_void"),
.@"f16" => Type.initTag(.@"f16"),
.@"f32" => Type.initTag(.@"f32"),
.@"f64" => Type.initTag(.@"f64"),
.@"f128" => Type.initTag(.@"f128"),
.@"bool" => Type.initTag(.@"bool"),
.@"void" => Type.initTag(.@"void"),
.@"noreturn" => Type.initTag(.@"noreturn"),
.@"type" => Type.initTag(.@"type"),
.@"anyerror" => Type.initTag(.@"anyerror"),
.@"comptime_int" => Type.initTag(.@"comptime_int"),
.@"comptime_float" => Type.initTag(.@"comptime_float"),
};
}
};
};
pub const FnType = struct {
pub const base_tag = Tag.fntype;
base: Inst,
positionals: struct {
param_types: []*Inst,
return_type: *Inst,
},
kw_args: struct {
cc: std.builtin.CallingConvention = .Unspecified,
},
};
pub const IntCast = struct {
pub const base_tag = Tag.intcast;
base: Inst,
positionals: struct {
dest_type: *Inst,
value: *Inst,
},
kw_args: struct {},
};
};
pub const ErrorMsg = struct {
byte_offset: usize,
msg: []const u8,
};
pub const Module = struct {
decls: []*Inst,
errors: []ErrorMsg,
arena: std.heap.ArenaAllocator,
pub fn deinit(self: *Module, allocator: *Allocator) void {
allocator.free(self.decls);
allocator.free(self.errors);
self.arena.deinit();
self.* = undefined;
}
/// This is a debugging utility for rendering the tree to stderr.
pub fn dump(self: Module) void {
self.writeToStream(std.heap.page_allocator, std.io.getStdErr().outStream()) catch {};
}
const InstPtrTable = std.AutoHashMap(*Inst, struct { index: usize, fn_body: ?*Inst.Fn.Body });
/// The allocator is used for temporary storage, but this function always returns
/// with no resources allocated.
pub fn writeToStream(self: Module, allocator: *Allocator, stream: var) !void {
// First, build a map of *Inst to @ or % indexes
var inst_table = InstPtrTable.init(allocator);
defer inst_table.deinit();
try inst_table.ensureCapacity(self.decls.len);
for (self.decls) |decl, decl_i| {
try inst_table.putNoClobber(decl, .{ .index = decl_i, .fn_body = null });
if (decl.cast(Inst.Fn)) |fn_inst| {
for (fn_inst.positionals.body.instructions) |inst, inst_i| {
try inst_table.putNoClobber(inst, .{ .index = inst_i, .fn_body = &fn_inst.positionals.body });
}
}
}
for (self.decls) |decl, i| {
try stream.print("@{} ", .{i});
try self.writeInstToStream(stream, decl, &inst_table);
try stream.writeByte('\n');
}
}
fn writeInstToStream(
self: Module,
stream: var,
decl: *Inst,
inst_table: *const InstPtrTable,
) @TypeOf(stream).Error!void {
// TODO I tried implementing this with an inline for loop and hit a compiler bug
switch (decl.tag) {
.str => return self.writeInstToStreamGeneric(stream, .str, decl, inst_table),
.int => return self.writeInstToStreamGeneric(stream, .int, decl, inst_table),
.ptrtoint => return self.writeInstToStreamGeneric(stream, .ptrtoint, decl, inst_table),
.fieldptr => return self.writeInstToStreamGeneric(stream, .fieldptr, decl, inst_table),
.deref => return self.writeInstToStreamGeneric(stream, .deref, decl, inst_table),
.as => return self.writeInstToStreamGeneric(stream, .as, decl, inst_table),
.@"asm" => return self.writeInstToStreamGeneric(stream, .@"asm", decl, inst_table),
.@"unreachable" => return self.writeInstToStreamGeneric(stream, .@"unreachable", decl, inst_table),
.@"fn" => return self.writeInstToStreamGeneric(stream, .@"fn", decl, inst_table),
.@"export" => return self.writeInstToStreamGeneric(stream, .@"export", decl, inst_table),
.primitive => return self.writeInstToStreamGeneric(stream, .primitive, decl, inst_table),
.fntype => return self.writeInstToStreamGeneric(stream, .fntype, decl, inst_table),
.intcast => return self.writeInstToStreamGeneric(stream, .intcast, decl, inst_table),
}
}
fn writeInstToStreamGeneric(
self: Module,
stream: var,
comptime inst_tag: Inst.Tag,
base: *Inst,
inst_table: *const InstPtrTable,
) !void {
const SpecificInst = Inst.TagToType(inst_tag);
const inst = @fieldParentPtr(SpecificInst, "base", base);
const Positionals = @TypeOf(inst.positionals);
try stream.writeAll("= " ++ @tagName(inst_tag) ++ "(");
const pos_fields = @typeInfo(Positionals).Struct.fields;
inline for (pos_fields) |arg_field, i| {
if (i != 0) {
try stream.writeAll(", ");
}
try self.writeParamToStream(stream, @field(inst.positionals, arg_field.name), inst_table);
}
comptime var need_comma = pos_fields.len != 0;
const KW_Args = @TypeOf(inst.kw_args);
inline for (@typeInfo(KW_Args).Struct.fields) |arg_field, i| {
if (@typeInfo(arg_field.field_type) == .Optional) {
if (@field(inst.kw_args, arg_field.name)) |non_optional| {
if (need_comma) try stream.writeAll(", ");
try stream.print("{}=", .{arg_field.name});
try self.writeParamToStream(stream, non_optional, inst_table);
need_comma = true;
}
} else {
if (need_comma) try stream.writeAll(", ");
try stream.print("{}=", .{arg_field.name});
try self.writeParamToStream(stream, @field(inst.kw_args, arg_field.name), inst_table);
need_comma = true;
}
}
try stream.writeByte(')');
}
fn writeParamToStream(self: Module, stream: var, param: var, inst_table: *const InstPtrTable) !void {
if (@typeInfo(@TypeOf(param)) == .Enum) {
return stream.writeAll(@tagName(param));
}
switch (@TypeOf(param)) {
*Inst => return self.writeInstParamToStream(stream, param, inst_table),
[]*Inst => {
try stream.writeByte('[');
for (param) |inst, i| {
if (i != 0) {
try stream.writeAll(", ");
}
try self.writeInstParamToStream(stream, inst, inst_table);
}
try stream.writeByte(']');
},
Inst.Fn.Body => {
try stream.writeAll("{\n");
for (param.instructions) |inst, i| {
try stream.print(" %{} ", .{i});
try self.writeInstToStream(stream, inst, inst_table);
try stream.writeByte('\n');
}
try stream.writeByte('}');
},
bool => return stream.writeByte("01"[@boolToInt(param)]),
[]u8, []const u8 => return std.zig.renderStringLiteral(param, stream),
BigInt => return stream.print("{}", .{param}),
else => |T| @compileError("unimplemented: rendering parameter of type " ++ @typeName(T)),
}
}
fn writeInstParamToStream(self: Module, stream: var, inst: *Inst, inst_table: *const InstPtrTable) !void {
const info = inst_table.getValue(inst).?;
const prefix = if (info.fn_body == null) "@" else "%";
try stream.print("{}{}", .{ prefix, info.index });
}
};
pub fn parse(allocator: *Allocator, source: [:0]const u8) Allocator.Error!Module {
var global_name_map = std.StringHashMap(usize).init(allocator);
defer global_name_map.deinit();
var parser: Parser = .{
.allocator = allocator,
.arena = std.heap.ArenaAllocator.init(allocator),
.i = 0,
.source = source,
.decls = std.ArrayList(*Inst).init(allocator),
.errors = std.ArrayList(ErrorMsg).init(allocator),
.global_name_map = &global_name_map,
};
errdefer parser.arena.deinit();
parser.parseRoot() catch |err| switch (err) {
error.ParseFailure => {
assert(parser.errors.items.len != 0);
},
else => |e| return e,
};
return Module{
.decls = parser.decls.toOwnedSlice(),
.errors = parser.errors.toOwnedSlice(),
.arena = parser.arena,
};
}
const Parser = struct {
allocator: *Allocator,
arena: std.heap.ArenaAllocator,
i: usize,
source: [:0]const u8,
errors: std.ArrayList(ErrorMsg),
decls: std.ArrayList(*Inst),
global_name_map: *std.StringHashMap(usize),
const Body = struct {
instructions: std.ArrayList(*Inst),
name_map: std.StringHashMap(usize),
};
fn parseBody(self: *Parser) !Inst.Fn.Body {
var body_context = Body{
.instructions = std.ArrayList(*Inst).init(self.allocator),
.name_map = std.StringHashMap(usize).init(self.allocator),
};
defer body_context.instructions.deinit();
defer body_context.name_map.deinit();
try requireEatBytes(self, "{");
skipSpace(self);
while (true) : (self.i += 1) switch (self.source[self.i]) {
';' => _ = try skipToAndOver(self, '\n'),
'%' => {
self.i += 1;
const ident = try skipToAndOver(self, ' ');
skipSpace(self);
try requireEatBytes(self, "=");
skipSpace(self);
const inst = try parseInstruction(self, &body_context);
const ident_index = body_context.instructions.items.len;
if (try body_context.name_map.put(ident, ident_index)) |_| {
return self.fail("redefinition of identifier '{}'", .{ident});
}
try body_context.instructions.append(inst);
continue;
},
' ', '\n' => continue,
'}' => {
self.i += 1;
break;
},
else => |byte| return self.failByte(byte),
};
return Inst.Fn.Body{
.instructions = body_context.instructions.toOwnedSlice(),
};
}
fn parseStringLiteral(self: *Parser) ![]u8 {
const start = self.i;
try self.requireEatBytes("\"");
while (true) : (self.i += 1) switch (self.source[self.i]) {
'"' => {
self.i += 1;
const span = self.source[start..self.i];
var bad_index: usize = undefined;
const parsed = std.zig.parseStringLiteral(&self.arena.allocator, span, &bad_index) catch |err| switch (err) {
error.InvalidCharacter => {
self.i = start + bad_index;
const bad_byte = self.source[self.i];
return self.fail("invalid string literal character: '{c}'\n", .{bad_byte});
},
else => |e| return e,
};
return parsed;
},
'\\' => {
self.i += 1;
continue;
},
0 => return self.failByte(0),
else => continue,
};
}
fn parseIntegerLiteral(self: *Parser) !BigInt {
const start = self.i;
if (self.source[self.i] == '-') self.i += 1;
while (true) : (self.i += 1) switch (self.source[self.i]) {
'0'...'9' => continue,
else => break,
};
const number_text = self.source[start..self.i];
var result = try BigInt.init(&self.arena.allocator);
result.setString(10, number_text) catch |err| {
self.i = start;
switch (err) {
error.InvalidBase => unreachable,
error.InvalidCharForDigit => return self.fail("invalid digit in integer literal", .{}),
error.DigitTooLargeForBase => return self.fail("digit too large in integer literal", .{}),
else => |e| return e,
}
};
return result;
}
fn parseRoot(self: *Parser) !void {
// The IR format is designed so that it can be tokenized and parsed at the same time.
while (true) : (self.i += 1) switch (self.source[self.i]) {
';' => _ = try skipToAndOver(self, '\n'),
'@' => {
self.i += 1;
const ident = try skipToAndOver(self, ' ');
skipSpace(self);
try requireEatBytes(self, "=");
skipSpace(self);
const inst = try parseInstruction(self, null);
const ident_index = self.decls.items.len;
if (try self.global_name_map.put(ident, ident_index)) |_| {
return self.fail("redefinition of identifier '{}'", .{ident});
}
try self.decls.append(inst);
continue;
},
' ', '\n' => continue,
0 => break,
else => |byte| return self.fail("unexpected byte: '{c}'", .{byte}),
};
}
fn eatByte(self: *Parser, byte: u8) bool {
if (self.source[self.i] != byte) return false;
self.i += 1;
return true;
}
fn skipSpace(self: *Parser) void {
while (self.source[self.i] == ' ' or self.source[self.i] == '\n') {
self.i += 1;
}
}
fn requireEatBytes(self: *Parser, bytes: []const u8) !void {
const start = self.i;
for (bytes) |byte| {
if (self.source[self.i] != byte) {
self.i = start;
return self.fail("expected '{}'", .{bytes});
}
self.i += 1;
}
}
fn skipToAndOver(self: *Parser, byte: u8) ![]const u8 {
const start_i = self.i;
while (self.source[self.i] != 0) : (self.i += 1) {
if (self.source[self.i] == byte) {
const result = self.source[start_i..self.i];
self.i += 1;
return result;
}
}
return self.fail("unexpected EOF", .{});
}
/// ParseFailure is an internal error code; handled in `parse`.
const InnerError = error{ ParseFailure, OutOfMemory };
fn failByte(self: *Parser, byte: u8) InnerError {
if (byte == 0) {
return self.fail("unexpected EOF", .{});
} else {
return self.fail("unexpected byte: '{c}'", .{byte});
}
}
fn fail(self: *Parser, comptime format: []const u8, args: var) InnerError {
@setCold(true);
const msg = try std.fmt.allocPrint(&self.arena.allocator, format, args);
(try self.errors.addOne()).* = .{
.byte_offset = self.i,
.msg = msg,
};
return error.ParseFailure;
}
fn parseInstruction(self: *Parser, body_ctx: ?*Body) InnerError!*Inst {
const fn_name = try skipToAndOver(self, '(');
inline for (@typeInfo(Inst.Tag).Enum.fields) |field| {
if (mem.eql(u8, field.name, fn_name)) {
const tag = @field(Inst.Tag, field.name);
return parseInstructionGeneric(self, field.name, Inst.TagToType(tag), body_ctx);
}
}
return self.fail("unknown instruction '{}'", .{fn_name});
}
fn parseInstructionGeneric(
self: *Parser,
comptime fn_name: []const u8,
comptime InstType: type,
body_ctx: ?*Body,
) !*Inst {
const inst_specific = try self.arena.allocator.create(InstType);
inst_specific.base = .{
.src = self.i,
.tag = InstType.base_tag,
};
if (@hasField(InstType, "ty")) {
inst_specific.ty = opt_type orelse {
return self.fail("instruction '" ++ fn_name ++ "' requires type", .{});
};
}
const Positionals = @TypeOf(inst_specific.positionals);
inline for (@typeInfo(Positionals).Struct.fields) |arg_field| {
if (self.source[self.i] == ',') {
self.i += 1;
skipSpace(self);
} else if (self.source[self.i] == ')') {
return self.fail("expected positional parameter '{}'", .{arg_field.name});
}
@field(inst_specific.positionals, arg_field.name) = try parseParameterGeneric(
self,
arg_field.field_type,
body_ctx,
);
skipSpace(self);
}
const KW_Args = @TypeOf(inst_specific.kw_args);
inst_specific.kw_args = .{}; // assign defaults
skipSpace(self);
while (eatByte(self, ',')) {
skipSpace(self);
const name = try skipToAndOver(self, '=');
inline for (@typeInfo(KW_Args).Struct.fields) |arg_field| {
const field_name = arg_field.name;
if (mem.eql(u8, name, field_name)) {
const NonOptional = switch (@typeInfo(arg_field.field_type)) {
.Optional => |info| info.child,
else => arg_field.field_type,
};
@field(inst_specific.kw_args, field_name) = try parseParameterGeneric(self, NonOptional, body_ctx);
break;
}
} else {
return self.fail("unrecognized keyword parameter: '{}'", .{name});
}
skipSpace(self);
}
try requireEatBytes(self, ")");
return &inst_specific.base;
}
fn parseParameterGeneric(self: *Parser, comptime T: type, body_ctx: ?*Body) !T {
if (@typeInfo(T) == .Enum) {
const start = self.i;
while (true) : (self.i += 1) switch (self.source[self.i]) {
' ', '\n', ',', ')' => {
const enum_name = self.source[start..self.i];
return std.meta.stringToEnum(T, enum_name) orelse {
return self.fail("tag '{}' not a member of enum '{}'", .{ enum_name, @typeName(T) });
};
},
0 => return self.failByte(0),
else => continue,
};
}
switch (T) {
Inst.Fn.Body => return parseBody(self),
bool => {
const bool_value = switch (self.source[self.i]) {
'0' => false,
'1' => true,
else => |byte| return self.fail("expected '0' or '1' for boolean value, found {c}", .{byte}),
};
self.i += 1;
return bool_value;
},
[]*Inst => {
try requireEatBytes(self, "[");
skipSpace(self);
if (eatByte(self, ']')) return &[0]*Inst{};
var instructions = std.ArrayList(*Inst).init(&self.arena.allocator);
while (true) {
skipSpace(self);
try instructions.append(try parseParameterInst(self, body_ctx));
skipSpace(self);
if (!eatByte(self, ',')) break;
}
try requireEatBytes(self, "]");
return instructions.toOwnedSlice();
},
*Inst => return parseParameterInst(self, body_ctx),
[]u8, []const u8 => return self.parseStringLiteral(),
BigInt => return self.parseIntegerLiteral(),
else => @compileError("Unimplemented: ir parseParameterGeneric for type " ++ @typeName(T)),
}
return self.fail("TODO parse parameter {}", .{@typeName(T)});
}
fn parseParameterInst(self: *Parser, body_ctx: ?*Body) !*Inst {
const local_ref = switch (self.source[self.i]) {
'@' => false,
'%' => true,
else => |byte| return self.fail("unexpected byte: '{c}'", .{byte}),
};
const map = if (local_ref)
if (body_ctx) |bc|
&bc.name_map
else
return self.fail("referencing a % instruction in global scope", .{})
else
self.global_name_map;
self.i += 1;
const name_start = self.i;
while (true) : (self.i += 1) switch (self.source[self.i]) {
0, ' ', '\n', ',', ')', ']' => break,
else => continue,
};
const ident = self.source[name_start..self.i];
const kv = map.get(ident) orelse {
const bad_name = self.source[name_start - 1 .. self.i];
self.i = name_start - 1;
return self.fail("unrecognized identifier: {}", .{bad_name});
};
if (local_ref) {
return body_ctx.?.instructions.items[kv.value];
} else {
return self.decls.items[kv.value];
}
}
};
pub fn emit_zir(allocator: *Allocator, old_module: ir.Module) !Module {
var ctx: EmitZIR = .{
.allocator = allocator,
.decls = std.ArrayList(*Inst).init(allocator),
.decl_table = std.AutoHashMap(*ir.Inst, *Inst).init(allocator),
.arena = std.heap.ArenaAllocator.init(allocator),
.old_module = &old_module,
};
defer ctx.decls.deinit();
defer ctx.decl_table.deinit();
errdefer ctx.arena.deinit();
try ctx.emit();
return Module{
.decls = ctx.decls.toOwnedSlice(),
.arena = ctx.arena,
.errors = &[0]ErrorMsg{},
};
}
const EmitZIR = struct {
allocator: *Allocator,
arena: std.heap.ArenaAllocator,
old_module: *const ir.Module,
decls: std.ArrayList(*Inst),
decl_table: std.AutoHashMap(*ir.Inst, *Inst),
fn emit(self: *EmitZIR) !void {
for (self.old_module.exports) |module_export| {
const export_value = try self.emitTypedValue(module_export.src, module_export.typed_value);
const symbol_name = try self.emitStringLiteral(module_export.src, module_export.name);
const export_inst = try self.arena.allocator.create(Inst.Export);
export_inst.* = .{
.base = .{ .src = module_export.src, .tag = Inst.Export.base_tag },
.positionals = .{
.symbol_name = symbol_name,
.value = export_value,
},
.kw_args = .{},
};
try self.decls.append(&export_inst.base);
}
}
fn resolveInst(self: *EmitZIR, inst_table: *const std.AutoHashMap(*ir.Inst, *Inst), inst: *ir.Inst) !*Inst {
if (inst.cast(ir.Inst.Constant)) |const_inst| {
if (self.decl_table.getValue(inst)) |decl| {
return decl;
}
const new_decl = try self.emitTypedValue(inst.src, .{ .ty = inst.ty, .val = const_inst.val });
try self.decl_table.putNoClobber(inst, new_decl);
return new_decl;
} else {
return inst_table.getValue(inst).?;
}
}
fn emitComptimeIntVal(self: *EmitZIR, src: usize, val: Value) !*Inst {
const int_inst = try self.arena.allocator.create(Inst.Int);
int_inst.* = .{
.base = .{ .src = src, .tag = Inst.Int.base_tag },
.positionals = .{
.int = try val.toBigInt(&self.arena.allocator),
},
.kw_args = .{},
};
try self.decls.append(&int_inst.base);
return &int_inst.base;
}
fn emitTypedValue(self: *EmitZIR, src: usize, typed_value: ir.TypedValue) Allocator.Error!*Inst {
switch (typed_value.ty.zigTypeTag()) {
.Pointer => {
const ptr_elem_type = typed_value.ty.elemType();
switch (ptr_elem_type.zigTypeTag()) {
.Array => {
// TODO more checks to make sure this can be emitted as a string literal
//const array_elem_type = ptr_elem_type.elemType();
//if (array_elem_type.eql(Type.initTag(.u8)) and
// ptr_elem_type.hasSentinel(Value.initTag(.zero)))
//{
//}
const bytes = try typed_value.val.toAllocatedBytes(&self.arena.allocator);
return self.emitStringLiteral(src, bytes);
},
else => |t| std.debug.panic("TODO implement emitTypedValue for pointer to {}", .{@tagName(t)}),
}
},
.ComptimeInt => return self.emitComptimeIntVal(src, typed_value.val),
.Int => {
const as_inst = try self.arena.allocator.create(Inst.As);
as_inst.* = .{
.base = .{ .src = src, .tag = Inst.As.base_tag },
.positionals = .{
.dest_type = try self.emitType(src, typed_value.ty),
.value = try self.emitComptimeIntVal(src, typed_value.val),
},
.kw_args = .{},
};
try self.decls.append(&as_inst.base);
return &as_inst.base;
},
.Type => {
const ty = typed_value.val.toType();
return self.emitType(src, ty);
},
.Fn => {
const index = typed_value.val.cast(Value.Payload.Function).?.index;
const module_fn = self.old_module.fns[index];
var inst_table = std.AutoHashMap(*ir.Inst, *Inst).init(self.allocator);
defer inst_table.deinit();
var instructions = std.ArrayList(*Inst).init(self.allocator);
defer instructions.deinit();
for (module_fn.body) |inst| {
const new_inst = switch (inst.tag) {
.unreach => blk: {
const unreach_inst = try self.arena.allocator.create(Inst.Unreachable);
unreach_inst.* = .{
.base = .{ .src = inst.src, .tag = Inst.Unreachable.base_tag },
.positionals = .{},
.kw_args = .{},
};
break :blk &unreach_inst.base;
},
.constant => unreachable, // excluded from function bodies
.assembly => blk: {
const old_inst = inst.cast(ir.Inst.Assembly).?;
const new_inst = try self.arena.allocator.create(Inst.Asm);
const inputs = try self.arena.allocator.alloc(*Inst, old_inst.args.inputs.len);
for (inputs) |*elem, i| {
elem.* = try self.emitStringLiteral(inst.src, old_inst.args.inputs[i]);
}
const clobbers = try self.arena.allocator.alloc(*Inst, old_inst.args.clobbers.len);
for (clobbers) |*elem, i| {
elem.* = try self.emitStringLiteral(inst.src, old_inst.args.clobbers[i]);
}
const args = try self.arena.allocator.alloc(*Inst, old_inst.args.args.len);
for (args) |*elem, i| {
elem.* = try self.resolveInst(&inst_table, old_inst.args.args[i]);
}
new_inst.* = .{
.base = .{ .src = inst.src, .tag = Inst.Asm.base_tag },
.positionals = .{
.asm_source = try self.emitStringLiteral(inst.src, old_inst.args.asm_source),
.return_type = try self.emitType(inst.src, inst.ty),
},
.kw_args = .{
.@"volatile" = old_inst.args.is_volatile,
.output = if (old_inst.args.output) |o|
try self.emitStringLiteral(inst.src, o)
else
null,
.inputs = inputs,
.clobbers = clobbers,
.args = args,
},
};
break :blk &new_inst.base;
},
.ptrtoint => blk: {
const old_inst = inst.cast(ir.Inst.PtrToInt).?;
const new_inst = try self.arena.allocator.create(Inst.PtrToInt);
new_inst.* = .{
.base = .{ .src = inst.src, .tag = Inst.PtrToInt.base_tag },
.positionals = .{
.ptr = try self.resolveInst(&inst_table, old_inst.args.ptr),
},
.kw_args = .{},
};
break :blk &new_inst.base;
},
};
try instructions.append(new_inst);
try inst_table.putNoClobber(inst, new_inst);
}
const fn_type = try self.emitType(src, module_fn.fn_type);
const fn_inst = try self.arena.allocator.create(Inst.Fn);
fn_inst.* = .{
.base = .{ .src = src, .tag = Inst.Fn.base_tag },
.positionals = .{
.fn_type = fn_type,
.body = .{
.instructions = instructions.toOwnedSlice(),
},
},
.kw_args = .{},
};
try self.decls.append(&fn_inst.base);
return &fn_inst.base;
},
else => |t| std.debug.panic("TODO implement emitTypedValue for {}", .{@tagName(t)}),
}
}
fn emitType(self: *EmitZIR, src: usize, ty: Type) Allocator.Error!*Inst {
switch (ty.tag()) {
.isize => return self.emitPrimitiveType(src, .isize),
.usize => return self.emitPrimitiveType(src, .usize),
.c_short => return self.emitPrimitiveType(src, .c_short),
.c_ushort => return self.emitPrimitiveType(src, .c_ushort),
.c_int => return self.emitPrimitiveType(src, .c_int),
.c_uint => return self.emitPrimitiveType(src, .c_uint),
.c_long => return self.emitPrimitiveType(src, .c_long),
.c_ulong => return self.emitPrimitiveType(src, .c_ulong),
.c_longlong => return self.emitPrimitiveType(src, .c_longlong),
.c_ulonglong => return self.emitPrimitiveType(src, .c_ulonglong),
.c_longdouble => return self.emitPrimitiveType(src, .c_longdouble),
.c_void => return self.emitPrimitiveType(src, .c_void),
.f16 => return self.emitPrimitiveType(src, .f16),
.f32 => return self.emitPrimitiveType(src, .f32),
.f64 => return self.emitPrimitiveType(src, .f64),
.f128 => return self.emitPrimitiveType(src, .f128),
.anyerror => return self.emitPrimitiveType(src, .anyerror),
else => switch (ty.zigTypeTag()) {
.Bool => return self.emitPrimitiveType(src, .bool),
.Void => return self.emitPrimitiveType(src, .void),
.NoReturn => return self.emitPrimitiveType(src, .noreturn),
.Type => return self.emitPrimitiveType(src, .type),
.ComptimeInt => return self.emitPrimitiveType(src, .comptime_int),
.ComptimeFloat => return self.emitPrimitiveType(src, .comptime_float),
.Fn => {
const param_types = try self.allocator.alloc(Type, ty.fnParamLen());
defer self.allocator.free(param_types);
ty.fnParamTypes(param_types);
const emitted_params = try self.arena.allocator.alloc(*Inst, param_types.len);
for (param_types) |param_type, i| {
emitted_params[i] = try self.emitType(src, param_type);
}
const fntype_inst = try self.arena.allocator.create(Inst.FnType);
fntype_inst.* = .{
.base = .{ .src = src, .tag = Inst.FnType.base_tag },
.positionals = .{
.param_types = emitted_params,
.return_type = try self.emitType(src, ty.fnReturnType()),
},
.kw_args = .{
.cc = ty.fnCallingConvention(),
},
};
try self.decls.append(&fntype_inst.base);
return &fntype_inst.base;
},
else => std.debug.panic("TODO implement emitType for {}", .{ty}),
},
}
}
fn emitPrimitiveType(self: *EmitZIR, src: usize, tag: Inst.Primitive.BuiltinType) !*Inst {
const primitive_inst = try self.arena.allocator.create(Inst.Primitive);
primitive_inst.* = .{
.base = .{ .src = src, .tag = Inst.Primitive.base_tag },
.positionals = .{
.tag = tag,
},
.kw_args = .{},
};
try self.decls.append(&primitive_inst.base);
return &primitive_inst.base;
}
fn emitStringLiteral(self: *EmitZIR, src: usize, str: []const u8) !*Inst {
const str_inst = try self.arena.allocator.create(Inst.Str);
str_inst.* = .{
.base = .{ .src = src, .tag = Inst.Str.base_tag },
.positionals = .{
.bytes = str,
},
.kw_args = .{},
};
try self.decls.append(&str_inst.base);
return &str_inst.base;
}
};