379 lines
11 KiB
Zig
379 lines
11 KiB
Zig
const std = @import("../std.zig");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Many producer, many consumer, non-allocating, thread-safe.
|
|
/// Uses a mutex to protect access.
|
|
pub fn Queue(comptime T: type) type {
|
|
return struct {
|
|
head: ?*Node,
|
|
tail: ?*Node,
|
|
mutex: std.Mutex,
|
|
|
|
pub const Self = @This();
|
|
pub const Node = std.TailQueue(T).Node;
|
|
|
|
pub fn init() Self {
|
|
return Self{
|
|
.head = null,
|
|
.tail = null,
|
|
.mutex = std.Mutex.init(),
|
|
};
|
|
}
|
|
|
|
pub fn put(self: *Self, node: *Node) void {
|
|
node.next = null;
|
|
|
|
const held = self.mutex.acquire();
|
|
defer held.release();
|
|
|
|
node.prev = self.tail;
|
|
self.tail = node;
|
|
if (node.prev) |prev_tail| {
|
|
prev_tail.next = node;
|
|
} else {
|
|
assert(self.head == null);
|
|
self.head = node;
|
|
}
|
|
}
|
|
|
|
pub fn get(self: *Self) ?*Node {
|
|
const held = self.mutex.acquire();
|
|
defer held.release();
|
|
|
|
const head = self.head orelse return null;
|
|
self.head = head.next;
|
|
if (head.next) |new_head| {
|
|
new_head.prev = null;
|
|
} else {
|
|
self.tail = null;
|
|
}
|
|
// This way, a get() and a remove() are thread-safe with each other.
|
|
head.prev = null;
|
|
head.next = null;
|
|
return head;
|
|
}
|
|
|
|
pub fn unget(self: *Self, node: *Node) void {
|
|
node.prev = null;
|
|
|
|
const held = self.mutex.acquire();
|
|
defer held.release();
|
|
|
|
const opt_head = self.head;
|
|
self.head = node;
|
|
if (opt_head) |head| {
|
|
head.next = node;
|
|
} else {
|
|
assert(self.tail == null);
|
|
self.tail = node;
|
|
}
|
|
}
|
|
|
|
/// Thread-safe with get() and remove(). Returns whether node was actually removed.
|
|
pub fn remove(self: *Self, node: *Node) bool {
|
|
const held = self.mutex.acquire();
|
|
defer held.release();
|
|
|
|
if (node.prev == null and node.next == null and self.head != node) {
|
|
return false;
|
|
}
|
|
|
|
if (node.prev) |prev| {
|
|
prev.next = node.next;
|
|
} else {
|
|
self.head = node.next;
|
|
}
|
|
if (node.next) |next| {
|
|
next.prev = node.prev;
|
|
} else {
|
|
self.tail = node.prev;
|
|
}
|
|
node.prev = null;
|
|
node.next = null;
|
|
return true;
|
|
}
|
|
|
|
pub fn isEmpty(self: *Self) bool {
|
|
const held = self.mutex.acquire();
|
|
defer held.release();
|
|
return self.head == null;
|
|
}
|
|
|
|
pub fn dump(self: *Self) void {
|
|
self.dumpToStream(std.io.getStdErr().outStream()) catch return;
|
|
}
|
|
|
|
pub fn dumpToStream(self: *Self, stream: var) !void {
|
|
const S = struct {
|
|
fn dumpRecursive(
|
|
s: var,
|
|
optional_node: ?*Node,
|
|
indent: usize,
|
|
comptime depth: comptime_int,
|
|
) !void {
|
|
try s.writeByteNTimes(' ', indent);
|
|
if (optional_node) |node| {
|
|
try s.print("0x{x}={}\n", .{ @ptrToInt(node), node.data });
|
|
if (depth == 0) {
|
|
try s.print("(max depth)\n", .{});
|
|
return;
|
|
}
|
|
try dumpRecursive(s, node.next, indent + 1, depth - 1);
|
|
} else {
|
|
try s.print("(null)\n", .{});
|
|
}
|
|
}
|
|
};
|
|
const held = self.mutex.acquire();
|
|
defer held.release();
|
|
|
|
try stream.print("head: ", .{});
|
|
try S.dumpRecursive(stream, self.head, 0, 4);
|
|
try stream.print("tail: ", .{});
|
|
try S.dumpRecursive(stream, self.tail, 0, 4);
|
|
}
|
|
};
|
|
}
|
|
|
|
const Context = struct {
|
|
allocator: *std.mem.Allocator,
|
|
queue: *Queue(i32),
|
|
put_sum: isize,
|
|
get_sum: isize,
|
|
get_count: usize,
|
|
puts_done: bool,
|
|
};
|
|
|
|
// TODO add lazy evaluated build options and then put puts_per_thread behind
|
|
// some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor
|
|
// CI we would use a less aggressive setting since at 1 core, while we still
|
|
// want this test to pass, we need a smaller value since there is so much thrashing
|
|
// we would also use a less aggressive setting when running in valgrind
|
|
const puts_per_thread = 500;
|
|
const put_thread_count = 3;
|
|
|
|
test "std.atomic.Queue" {
|
|
var plenty_of_memory = try std.heap.page_allocator.alloc(u8, 300 * 1024);
|
|
defer std.heap.page_allocator.free(plenty_of_memory);
|
|
|
|
var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory);
|
|
var a = &fixed_buffer_allocator.allocator;
|
|
|
|
var queue = Queue(i32).init();
|
|
var context = Context{
|
|
.allocator = a,
|
|
.queue = &queue,
|
|
.put_sum = 0,
|
|
.get_sum = 0,
|
|
.puts_done = false,
|
|
.get_count = 0,
|
|
};
|
|
|
|
if (builtin.single_threaded) {
|
|
expect(context.queue.isEmpty());
|
|
{
|
|
var i: usize = 0;
|
|
while (i < put_thread_count) : (i += 1) {
|
|
expect(startPuts(&context) == 0);
|
|
}
|
|
}
|
|
expect(!context.queue.isEmpty());
|
|
context.puts_done = true;
|
|
{
|
|
var i: usize = 0;
|
|
while (i < put_thread_count) : (i += 1) {
|
|
expect(startGets(&context) == 0);
|
|
}
|
|
}
|
|
expect(context.queue.isEmpty());
|
|
} else {
|
|
expect(context.queue.isEmpty());
|
|
|
|
var putters: [put_thread_count]*std.Thread = undefined;
|
|
for (putters) |*t| {
|
|
t.* = try std.Thread.spawn(&context, startPuts);
|
|
}
|
|
var getters: [put_thread_count]*std.Thread = undefined;
|
|
for (getters) |*t| {
|
|
t.* = try std.Thread.spawn(&context, startGets);
|
|
}
|
|
|
|
for (putters) |t|
|
|
t.wait();
|
|
@atomicStore(bool, &context.puts_done, true, .SeqCst);
|
|
for (getters) |t|
|
|
t.wait();
|
|
|
|
expect(context.queue.isEmpty());
|
|
}
|
|
|
|
if (context.put_sum != context.get_sum) {
|
|
std.debug.panic("failure\nput_sum:{} != get_sum:{}", .{ context.put_sum, context.get_sum });
|
|
}
|
|
|
|
if (context.get_count != puts_per_thread * put_thread_count) {
|
|
std.debug.panic("failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}", .{
|
|
context.get_count,
|
|
@as(u32, puts_per_thread),
|
|
@as(u32, put_thread_count),
|
|
});
|
|
}
|
|
}
|
|
|
|
fn startPuts(ctx: *Context) u8 {
|
|
var put_count: usize = puts_per_thread;
|
|
var r = std.rand.DefaultPrng.init(0xdeadbeef);
|
|
while (put_count != 0) : (put_count -= 1) {
|
|
std.time.sleep(1); // let the os scheduler be our fuzz
|
|
const x = @bitCast(i32, r.random.scalar(u32));
|
|
const node = ctx.allocator.create(Queue(i32).Node) catch unreachable;
|
|
node.* = .{
|
|
.prev = undefined,
|
|
.next = undefined,
|
|
.data = x,
|
|
};
|
|
ctx.queue.put(node);
|
|
_ = @atomicRmw(isize, &ctx.put_sum, .Add, x, .SeqCst);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
fn startGets(ctx: *Context) u8 {
|
|
while (true) {
|
|
const last = @atomicLoad(bool, &ctx.puts_done, .SeqCst);
|
|
|
|
while (ctx.queue.get()) |node| {
|
|
std.time.sleep(1); // let the os scheduler be our fuzz
|
|
_ = @atomicRmw(isize, &ctx.get_sum, .Add, node.data, .SeqCst);
|
|
_ = @atomicRmw(usize, &ctx.get_count, .Add, 1, .SeqCst);
|
|
}
|
|
|
|
if (last) return 0;
|
|
}
|
|
}
|
|
|
|
test "std.atomic.Queue single-threaded" {
|
|
var queue = Queue(i32).init();
|
|
expect(queue.isEmpty());
|
|
|
|
var node_0 = Queue(i32).Node{
|
|
.data = 0,
|
|
.next = undefined,
|
|
.prev = undefined,
|
|
};
|
|
queue.put(&node_0);
|
|
expect(!queue.isEmpty());
|
|
|
|
var node_1 = Queue(i32).Node{
|
|
.data = 1,
|
|
.next = undefined,
|
|
.prev = undefined,
|
|
};
|
|
queue.put(&node_1);
|
|
expect(!queue.isEmpty());
|
|
|
|
expect(queue.get().?.data == 0);
|
|
expect(!queue.isEmpty());
|
|
|
|
var node_2 = Queue(i32).Node{
|
|
.data = 2,
|
|
.next = undefined,
|
|
.prev = undefined,
|
|
};
|
|
queue.put(&node_2);
|
|
expect(!queue.isEmpty());
|
|
|
|
var node_3 = Queue(i32).Node{
|
|
.data = 3,
|
|
.next = undefined,
|
|
.prev = undefined,
|
|
};
|
|
queue.put(&node_3);
|
|
expect(!queue.isEmpty());
|
|
|
|
expect(queue.get().?.data == 1);
|
|
expect(!queue.isEmpty());
|
|
|
|
expect(queue.get().?.data == 2);
|
|
expect(!queue.isEmpty());
|
|
|
|
var node_4 = Queue(i32).Node{
|
|
.data = 4,
|
|
.next = undefined,
|
|
.prev = undefined,
|
|
};
|
|
queue.put(&node_4);
|
|
expect(!queue.isEmpty());
|
|
|
|
expect(queue.get().?.data == 3);
|
|
node_3.next = null;
|
|
expect(!queue.isEmpty());
|
|
|
|
expect(queue.get().?.data == 4);
|
|
expect(queue.isEmpty());
|
|
|
|
expect(queue.get() == null);
|
|
expect(queue.isEmpty());
|
|
}
|
|
|
|
test "std.atomic.Queue dump" {
|
|
const mem = std.mem;
|
|
var buffer: [1024]u8 = undefined;
|
|
var expected_buffer: [1024]u8 = undefined;
|
|
var fbs = std.io.fixedBufferStream(&buffer);
|
|
|
|
var queue = Queue(i32).init();
|
|
|
|
// Test empty stream
|
|
fbs.reset();
|
|
try queue.dumpToStream(fbs.outStream());
|
|
expect(mem.eql(u8, buffer[0..fbs.pos],
|
|
\\head: (null)
|
|
\\tail: (null)
|
|
\\
|
|
));
|
|
|
|
// Test a stream with one element
|
|
var node_0 = Queue(i32).Node{
|
|
.data = 1,
|
|
.next = undefined,
|
|
.prev = undefined,
|
|
};
|
|
queue.put(&node_0);
|
|
|
|
fbs.reset();
|
|
try queue.dumpToStream(fbs.outStream());
|
|
|
|
var expected = try std.fmt.bufPrint(expected_buffer[0..],
|
|
\\head: 0x{x}=1
|
|
\\ (null)
|
|
\\tail: 0x{x}=1
|
|
\\ (null)
|
|
\\
|
|
, .{ @ptrToInt(queue.head), @ptrToInt(queue.tail) });
|
|
expect(mem.eql(u8, buffer[0..fbs.pos], expected));
|
|
|
|
// Test a stream with two elements
|
|
var node_1 = Queue(i32).Node{
|
|
.data = 2,
|
|
.next = undefined,
|
|
.prev = undefined,
|
|
};
|
|
queue.put(&node_1);
|
|
|
|
fbs.reset();
|
|
try queue.dumpToStream(fbs.outStream());
|
|
|
|
expected = try std.fmt.bufPrint(expected_buffer[0..],
|
|
\\head: 0x{x}=1
|
|
\\ 0x{x}=2
|
|
\\ (null)
|
|
\\tail: 0x{x}=2
|
|
\\ (null)
|
|
\\
|
|
, .{ @ptrToInt(queue.head), @ptrToInt(queue.head.?.next), @ptrToInt(queue.tail) });
|
|
expect(mem.eql(u8, buffer[0..fbs.pos], expected));
|
|
}
|