* introduce std.ArrayListUnmanaged for when you have the allocator stored elsewhere * move std.heap.ArenaAllocator implementation to its own file. extract the main state into std.heap.ArenaAllocator.State, which can be stored as an alternative to storing the entire ArenaAllocator, saving 24 bytes per ArenaAllocator on 64 bit targets. * std.LinkedList.Node pointer field now defaults to being null initialized. * Rework self-hosted compiler Package API * Delete almost all the bitrotted self-hosted compiler code. The only bit rotted code left is in main.zig and compilation.zig * Add call instruction to ZIR * self-hosted compiler ir API and link API are reworked to support a long-running compiler that incrementally updates declarations * Introduce the concept of scopes to ZIR semantic analysis * ZIR text format supports referencing named decls that are declared later in the file * Figure out how memory management works for the long-running compiler and incremental compilation. The main roots are top level declarations. There is a table of decls. The key is a cryptographic hash of the fully qualified decl name. Each decl has an arena allocator where all of the memory related to that decl is stored. Each code block has its own arena allocator for the lifetime of the block. Values that want to survive when going out of scope in a block must get copied into the outer block. Finally, values must get copied into the Decl arena to be long-lived. * Delete the unused MemoryCell struct. Instead, comptime pointers are based on references to Decl structs. * Figure out how caching works. Each Decl will store a set of other Decls which must be recompiled when it changes. This branch is still work-in-progress; this commit breaks the build.
528 lines
16 KiB
Zig
528 lines
16 KiB
Zig
const std = @import("std.zig");
|
|
const debug = std.debug;
|
|
const assert = debug.assert;
|
|
const testing = std.testing;
|
|
const mem = std.mem;
|
|
const Allocator = mem.Allocator;
|
|
|
|
/// A singly-linked list is headed by a single forward pointer. The elements
|
|
/// are singly linked for minimum space and pointer manipulation overhead at
|
|
/// the expense of O(n) removal for arbitrary elements. New elements can be
|
|
/// added to the list after an existing element or at the head of the list.
|
|
/// A singly-linked list may only be traversed in the forward direction.
|
|
/// Singly-linked lists are ideal for applications with large datasets and
|
|
/// few or no removals or for implementing a LIFO queue.
|
|
pub fn SinglyLinkedList(comptime T: type) type {
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Node inside the linked list wrapping the actual data.
|
|
pub const Node = struct {
|
|
next: ?*Node = null,
|
|
data: T,
|
|
|
|
pub fn init(data: T) Node {
|
|
return Node{
|
|
.data = data,
|
|
};
|
|
}
|
|
|
|
/// Insert a new node after the current one.
|
|
///
|
|
/// Arguments:
|
|
/// new_node: Pointer to the new node to insert.
|
|
pub fn insertAfter(node: *Node, new_node: *Node) void {
|
|
new_node.next = node.next;
|
|
node.next = new_node;
|
|
}
|
|
|
|
/// Remove a node from the list.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to the node to be removed.
|
|
/// Returns:
|
|
/// node removed
|
|
pub fn removeNext(node: *Node) ?*Node {
|
|
const next_node = node.next orelse return null;
|
|
node.next = next_node.next;
|
|
return next_node;
|
|
}
|
|
};
|
|
|
|
first: ?*Node = null,
|
|
|
|
/// Initialize a linked list.
|
|
///
|
|
/// Returns:
|
|
/// An empty linked list.
|
|
pub fn init() Self {
|
|
return Self{
|
|
.first = null,
|
|
};
|
|
}
|
|
|
|
/// Insert a new node after an existing one.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to a node in the list.
|
|
/// new_node: Pointer to the new node to insert.
|
|
pub fn insertAfter(list: *Self, node: *Node, new_node: *Node) void {
|
|
node.insertAfter(new_node);
|
|
}
|
|
|
|
/// Insert a new node at the head.
|
|
///
|
|
/// Arguments:
|
|
/// new_node: Pointer to the new node to insert.
|
|
pub fn prepend(list: *Self, new_node: *Node) void {
|
|
new_node.next = list.first;
|
|
list.first = new_node;
|
|
}
|
|
|
|
/// Remove a node from the list.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to the node to be removed.
|
|
pub fn remove(list: *Self, node: *Node) void {
|
|
if (list.first == node) {
|
|
list.first = node.next;
|
|
} else {
|
|
var current_elm = list.first.?;
|
|
while (current_elm.next != node) {
|
|
current_elm = current_elm.next.?;
|
|
}
|
|
current_elm.next = node.next;
|
|
}
|
|
}
|
|
|
|
/// Remove and return the first node in the list.
|
|
///
|
|
/// Returns:
|
|
/// A pointer to the first node in the list.
|
|
pub fn popFirst(list: *Self) ?*Node {
|
|
const first = list.first orelse return null;
|
|
list.first = first.next;
|
|
return first;
|
|
}
|
|
|
|
/// Allocate a new node.
|
|
///
|
|
/// Arguments:
|
|
/// allocator: Dynamic memory allocator.
|
|
///
|
|
/// Returns:
|
|
/// A pointer to the new node.
|
|
pub fn allocateNode(list: *Self, allocator: *Allocator) !*Node {
|
|
return allocator.create(Node);
|
|
}
|
|
|
|
/// Deallocate a node.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to the node to deallocate.
|
|
/// allocator: Dynamic memory allocator.
|
|
pub fn destroyNode(list: *Self, node: *Node, allocator: *Allocator) void {
|
|
allocator.destroy(node);
|
|
}
|
|
|
|
/// Allocate and initialize a node and its data.
|
|
///
|
|
/// Arguments:
|
|
/// data: The data to put inside the node.
|
|
/// allocator: Dynamic memory allocator.
|
|
///
|
|
/// Returns:
|
|
/// A pointer to the new node.
|
|
pub fn createNode(list: *Self, data: T, allocator: *Allocator) !*Node {
|
|
var node = try list.allocateNode(allocator);
|
|
node.* = Node.init(data);
|
|
return node;
|
|
}
|
|
};
|
|
}
|
|
|
|
test "basic SinglyLinkedList test" {
|
|
const allocator = testing.allocator;
|
|
var list = SinglyLinkedList(u32).init();
|
|
|
|
var one = try list.createNode(1, allocator);
|
|
var two = try list.createNode(2, allocator);
|
|
var three = try list.createNode(3, allocator);
|
|
var four = try list.createNode(4, allocator);
|
|
var five = try list.createNode(5, allocator);
|
|
defer {
|
|
list.destroyNode(one, allocator);
|
|
list.destroyNode(two, allocator);
|
|
list.destroyNode(three, allocator);
|
|
list.destroyNode(four, allocator);
|
|
list.destroyNode(five, allocator);
|
|
}
|
|
|
|
list.prepend(two); // {2}
|
|
list.insertAfter(two, five); // {2, 5}
|
|
list.prepend(one); // {1, 2, 5}
|
|
list.insertAfter(two, three); // {1, 2, 3, 5}
|
|
list.insertAfter(three, four); // {1, 2, 3, 4, 5}
|
|
|
|
// Traverse forwards.
|
|
{
|
|
var it = list.first;
|
|
var index: u32 = 1;
|
|
while (it) |node| : (it = node.next) {
|
|
testing.expect(node.data == index);
|
|
index += 1;
|
|
}
|
|
}
|
|
|
|
_ = list.popFirst(); // {2, 3, 4, 5}
|
|
_ = list.remove(five); // {2, 3, 4}
|
|
_ = two.removeNext(); // {2, 4}
|
|
|
|
testing.expect(list.first.?.data == 2);
|
|
testing.expect(list.first.?.next.?.data == 4);
|
|
testing.expect(list.first.?.next.?.next == null);
|
|
}
|
|
|
|
/// A tail queue is headed by a pair of pointers, one to the head of the
|
|
/// list and the other to the tail of the list. The elements are doubly
|
|
/// linked so that an arbitrary element can be removed without a need to
|
|
/// traverse the list. New elements can be added to the list before or
|
|
/// after an existing element, at the head of the list, or at the end of
|
|
/// the list. A tail queue may be traversed in either direction.
|
|
pub fn TailQueue(comptime T: type) type {
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Node inside the linked list wrapping the actual data.
|
|
pub const Node = struct {
|
|
prev: ?*Node = null,
|
|
next: ?*Node = null,
|
|
data: T,
|
|
|
|
pub fn init(data: T) Node {
|
|
return Node{
|
|
.data = data,
|
|
};
|
|
}
|
|
};
|
|
|
|
first: ?*Node,
|
|
last: ?*Node,
|
|
len: usize,
|
|
|
|
/// Initialize a linked list.
|
|
///
|
|
/// Returns:
|
|
/// An empty linked list.
|
|
pub fn init() Self {
|
|
return Self{
|
|
.first = null,
|
|
.last = null,
|
|
.len = 0,
|
|
};
|
|
}
|
|
|
|
/// Insert a new node after an existing one.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to a node in the list.
|
|
/// new_node: Pointer to the new node to insert.
|
|
pub fn insertAfter(list: *Self, node: *Node, new_node: *Node) void {
|
|
new_node.prev = node;
|
|
if (node.next) |next_node| {
|
|
// Intermediate node.
|
|
new_node.next = next_node;
|
|
next_node.prev = new_node;
|
|
} else {
|
|
// Last element of the list.
|
|
new_node.next = null;
|
|
list.last = new_node;
|
|
}
|
|
node.next = new_node;
|
|
|
|
list.len += 1;
|
|
}
|
|
|
|
/// Insert a new node before an existing one.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to a node in the list.
|
|
/// new_node: Pointer to the new node to insert.
|
|
pub fn insertBefore(list: *Self, node: *Node, new_node: *Node) void {
|
|
new_node.next = node;
|
|
if (node.prev) |prev_node| {
|
|
// Intermediate node.
|
|
new_node.prev = prev_node;
|
|
prev_node.next = new_node;
|
|
} else {
|
|
// First element of the list.
|
|
new_node.prev = null;
|
|
list.first = new_node;
|
|
}
|
|
node.prev = new_node;
|
|
|
|
list.len += 1;
|
|
}
|
|
|
|
/// Concatenate list2 onto the end of list1, removing all entries from the former.
|
|
///
|
|
/// Arguments:
|
|
/// list1: the list to concatenate onto
|
|
/// list2: the list to be concatenated
|
|
pub fn concatByMoving(list1: *Self, list2: *Self) void {
|
|
const l2_first = list2.first orelse return;
|
|
if (list1.last) |l1_last| {
|
|
l1_last.next = list2.first;
|
|
l2_first.prev = list1.last;
|
|
list1.len += list2.len;
|
|
} else {
|
|
// list1 was empty
|
|
list1.first = list2.first;
|
|
list1.len = list2.len;
|
|
}
|
|
list1.last = list2.last;
|
|
list2.first = null;
|
|
list2.last = null;
|
|
list2.len = 0;
|
|
}
|
|
|
|
/// Insert a new node at the end of the list.
|
|
///
|
|
/// Arguments:
|
|
/// new_node: Pointer to the new node to insert.
|
|
pub fn append(list: *Self, new_node: *Node) void {
|
|
if (list.last) |last| {
|
|
// Insert after last.
|
|
list.insertAfter(last, new_node);
|
|
} else {
|
|
// Empty list.
|
|
list.prepend(new_node);
|
|
}
|
|
}
|
|
|
|
/// Insert a new node at the beginning of the list.
|
|
///
|
|
/// Arguments:
|
|
/// new_node: Pointer to the new node to insert.
|
|
pub fn prepend(list: *Self, new_node: *Node) void {
|
|
if (list.first) |first| {
|
|
// Insert before first.
|
|
list.insertBefore(first, new_node);
|
|
} else {
|
|
// Empty list.
|
|
list.first = new_node;
|
|
list.last = new_node;
|
|
new_node.prev = null;
|
|
new_node.next = null;
|
|
|
|
list.len = 1;
|
|
}
|
|
}
|
|
|
|
/// Remove a node from the list.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to the node to be removed.
|
|
pub fn remove(list: *Self, node: *Node) void {
|
|
if (node.prev) |prev_node| {
|
|
// Intermediate node.
|
|
prev_node.next = node.next;
|
|
} else {
|
|
// First element of the list.
|
|
list.first = node.next;
|
|
}
|
|
|
|
if (node.next) |next_node| {
|
|
// Intermediate node.
|
|
next_node.prev = node.prev;
|
|
} else {
|
|
// Last element of the list.
|
|
list.last = node.prev;
|
|
}
|
|
|
|
list.len -= 1;
|
|
assert(list.len == 0 or (list.first != null and list.last != null));
|
|
}
|
|
|
|
/// Remove and return the last node in the list.
|
|
///
|
|
/// Returns:
|
|
/// A pointer to the last node in the list.
|
|
pub fn pop(list: *Self) ?*Node {
|
|
const last = list.last orelse return null;
|
|
list.remove(last);
|
|
return last;
|
|
}
|
|
|
|
/// Remove and return the first node in the list.
|
|
///
|
|
/// Returns:
|
|
/// A pointer to the first node in the list.
|
|
pub fn popFirst(list: *Self) ?*Node {
|
|
const first = list.first orelse return null;
|
|
list.remove(first);
|
|
return first;
|
|
}
|
|
|
|
/// Allocate a new node.
|
|
///
|
|
/// Arguments:
|
|
/// allocator: Dynamic memory allocator.
|
|
///
|
|
/// Returns:
|
|
/// A pointer to the new node.
|
|
pub fn allocateNode(list: *Self, allocator: *Allocator) !*Node {
|
|
return allocator.create(Node);
|
|
}
|
|
|
|
/// Deallocate a node.
|
|
///
|
|
/// Arguments:
|
|
/// node: Pointer to the node to deallocate.
|
|
/// allocator: Dynamic memory allocator.
|
|
pub fn destroyNode(list: *Self, node: *Node, allocator: *Allocator) void {
|
|
allocator.destroy(node);
|
|
}
|
|
|
|
/// Allocate and initialize a node and its data.
|
|
///
|
|
/// Arguments:
|
|
/// data: The data to put inside the node.
|
|
/// allocator: Dynamic memory allocator.
|
|
///
|
|
/// Returns:
|
|
/// A pointer to the new node.
|
|
pub fn createNode(list: *Self, data: T, allocator: *Allocator) !*Node {
|
|
var node = try list.allocateNode(allocator);
|
|
node.* = Node.init(data);
|
|
return node;
|
|
}
|
|
};
|
|
}
|
|
|
|
test "basic TailQueue test" {
|
|
const allocator = testing.allocator;
|
|
var list = TailQueue(u32).init();
|
|
|
|
var one = try list.createNode(1, allocator);
|
|
var two = try list.createNode(2, allocator);
|
|
var three = try list.createNode(3, allocator);
|
|
var four = try list.createNode(4, allocator);
|
|
var five = try list.createNode(5, allocator);
|
|
defer {
|
|
list.destroyNode(one, allocator);
|
|
list.destroyNode(two, allocator);
|
|
list.destroyNode(three, allocator);
|
|
list.destroyNode(four, allocator);
|
|
list.destroyNode(five, allocator);
|
|
}
|
|
|
|
list.append(two); // {2}
|
|
list.append(five); // {2, 5}
|
|
list.prepend(one); // {1, 2, 5}
|
|
list.insertBefore(five, four); // {1, 2, 4, 5}
|
|
list.insertAfter(two, three); // {1, 2, 3, 4, 5}
|
|
|
|
// Traverse forwards.
|
|
{
|
|
var it = list.first;
|
|
var index: u32 = 1;
|
|
while (it) |node| : (it = node.next) {
|
|
testing.expect(node.data == index);
|
|
index += 1;
|
|
}
|
|
}
|
|
|
|
// Traverse backwards.
|
|
{
|
|
var it = list.last;
|
|
var index: u32 = 1;
|
|
while (it) |node| : (it = node.prev) {
|
|
testing.expect(node.data == (6 - index));
|
|
index += 1;
|
|
}
|
|
}
|
|
|
|
var first = list.popFirst(); // {2, 3, 4, 5}
|
|
var last = list.pop(); // {2, 3, 4}
|
|
list.remove(three); // {2, 4}
|
|
|
|
testing.expect(list.first.?.data == 2);
|
|
testing.expect(list.last.?.data == 4);
|
|
testing.expect(list.len == 2);
|
|
}
|
|
|
|
test "TailQueue concatenation" {
|
|
const allocator = testing.allocator;
|
|
var list1 = TailQueue(u32).init();
|
|
var list2 = TailQueue(u32).init();
|
|
|
|
var one = try list1.createNode(1, allocator);
|
|
defer list1.destroyNode(one, allocator);
|
|
var two = try list1.createNode(2, allocator);
|
|
defer list1.destroyNode(two, allocator);
|
|
var three = try list1.createNode(3, allocator);
|
|
defer list1.destroyNode(three, allocator);
|
|
var four = try list1.createNode(4, allocator);
|
|
defer list1.destroyNode(four, allocator);
|
|
var five = try list1.createNode(5, allocator);
|
|
defer list1.destroyNode(five, allocator);
|
|
|
|
list1.append(one);
|
|
list1.append(two);
|
|
list2.append(three);
|
|
list2.append(four);
|
|
list2.append(five);
|
|
|
|
list1.concatByMoving(&list2);
|
|
|
|
testing.expect(list1.last == five);
|
|
testing.expect(list1.len == 5);
|
|
testing.expect(list2.first == null);
|
|
testing.expect(list2.last == null);
|
|
testing.expect(list2.len == 0);
|
|
|
|
// Traverse forwards.
|
|
{
|
|
var it = list1.first;
|
|
var index: u32 = 1;
|
|
while (it) |node| : (it = node.next) {
|
|
testing.expect(node.data == index);
|
|
index += 1;
|
|
}
|
|
}
|
|
|
|
// Traverse backwards.
|
|
{
|
|
var it = list1.last;
|
|
var index: u32 = 1;
|
|
while (it) |node| : (it = node.prev) {
|
|
testing.expect(node.data == (6 - index));
|
|
index += 1;
|
|
}
|
|
}
|
|
|
|
// Swap them back, this verifies that concating to an empty list works.
|
|
list2.concatByMoving(&list1);
|
|
|
|
// Traverse forwards.
|
|
{
|
|
var it = list2.first;
|
|
var index: u32 = 1;
|
|
while (it) |node| : (it = node.next) {
|
|
testing.expect(node.data == index);
|
|
index += 1;
|
|
}
|
|
}
|
|
|
|
// Traverse backwards.
|
|
{
|
|
var it = list2.last;
|
|
var index: u32 = 1;
|
|
while (it) |node| : (it = node.prev) {
|
|
testing.expect(node.data == (6 - index));
|
|
index += 1;
|
|
}
|
|
}
|
|
}
|