zig/std/mem.zig

737 lines
22 KiB
Zig

const std = @import("index.zig");
const debug = std.debug;
const assert = debug.assert;
const math = std.math;
const builtin = @import("builtin");
const mem = this;
pub const Allocator = struct {
const Error = error{OutOfMemory};
/// Allocate byte_count bytes and return them in a slice, with the
/// slice's pointer aligned at least to alignment bytes.
/// The returned newly allocated memory is undefined.
/// `alignment` is guaranteed to be >= 1
/// `alignment` is guaranteed to be a power of 2
allocFn: fn(self: &Allocator, byte_count: usize, alignment: u29) Error![]u8,
/// If `new_byte_count > old_mem.len`:
/// * `old_mem.len` is the same as what was returned from allocFn or reallocFn.
/// * alignment >= alignment of old_mem.ptr
///
/// If `new_byte_count <= old_mem.len`:
/// * this function must return successfully.
/// * alignment <= alignment of old_mem.ptr
///
/// The returned newly allocated memory is undefined.
/// `alignment` is guaranteed to be >= 1
/// `alignment` is guaranteed to be a power of 2
reallocFn: fn(self: &Allocator, old_mem: []u8, new_byte_count: usize, alignment: u29) Error![]u8,
/// Guaranteed: `old_mem.len` is the same as what was returned from `allocFn` or `reallocFn`
freeFn: fn(self: &Allocator, old_mem: []u8) void,
fn create(self: &Allocator, comptime T: type) !&T {
if (@sizeOf(T) == 0) return &{};
const slice = try self.alloc(T, 1);
return &slice[0];
}
// TODO once #733 is solved, this will replace create
fn construct(self: &Allocator, init: var) t: {
// TODO this is a workaround for type getting parsed as Error!&const T
const T = @typeOf(init).Child;
break :t Error!&T;
} {
const T = @typeOf(init).Child;
if (@sizeOf(T) == 0) return &{};
const slice = try self.alloc(T, 1);
const ptr = &slice[0];
ptr.* = init.*;
return ptr;
}
fn destroy(self: &Allocator, ptr: var) void {
self.free(ptr[0..1]);
}
fn alloc(self: &Allocator, comptime T: type, n: usize) ![]T {
return self.alignedAlloc(T, @alignOf(T), n);
}
fn alignedAlloc(self: &Allocator, comptime T: type, comptime alignment: u29, n: usize) ![]align(alignment) T {
if (n == 0) {
return (&align(alignment) T)(undefined)[0..0];
}
const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory;
const byte_slice = try self.allocFn(self, byte_count, alignment);
assert(byte_slice.len == byte_count);
// This loop gets optimized out in ReleaseFast mode
for (byte_slice) |*byte| {
byte.* = undefined;
}
return ([]align(alignment) T)(@alignCast(alignment, byte_slice));
}
fn realloc(self: &Allocator, comptime T: type, old_mem: []T, n: usize) ![]T {
return self.alignedRealloc(T, @alignOf(T), @alignCast(@alignOf(T), old_mem), n);
}
fn alignedRealloc(self: &Allocator, comptime T: type, comptime alignment: u29, old_mem: []align(alignment) T, n: usize) ![]align(alignment) T {
if (old_mem.len == 0) {
return self.alloc(T, n);
}
if (n == 0) {
self.free(old_mem);
return (&align(alignment) T)(undefined)[0..0];
}
const old_byte_slice = ([]u8)(old_mem);
const byte_count = math.mul(usize, @sizeOf(T), n) catch return Error.OutOfMemory;
const byte_slice = try self.reallocFn(self, old_byte_slice, byte_count, alignment);
assert(byte_slice.len == byte_count);
if (n > old_mem.len) {
// This loop gets optimized out in ReleaseFast mode
for (byte_slice[old_byte_slice.len..]) |*byte| {
byte.* = undefined;
}
}
return ([]T)(@alignCast(alignment, byte_slice));
}
/// Reallocate, but `n` must be less than or equal to `old_mem.len`.
/// Unlike `realloc`, this function cannot fail.
/// Shrinking to 0 is the same as calling `free`.
fn shrink(self: &Allocator, comptime T: type, old_mem: []T, n: usize) []T {
return self.alignedShrink(T, @alignOf(T), @alignCast(@alignOf(T), old_mem), n);
}
fn alignedShrink(self: &Allocator, comptime T: type, comptime alignment: u29, old_mem: []align(alignment) T, n: usize) []align(alignment) T {
if (n == 0) {
self.free(old_mem);
return old_mem[0..0];
}
assert(n <= old_mem.len);
// Here we skip the overflow checking on the multiplication because
// n <= old_mem.len and the multiplication didn't overflow for that operation.
const byte_count = @sizeOf(T) * n;
const byte_slice = self.reallocFn(self, ([]u8)(old_mem), byte_count, alignment) catch unreachable;
assert(byte_slice.len == byte_count);
return ([]align(alignment) T)(@alignCast(alignment, byte_slice));
}
fn free(self: &Allocator, memory: var) void {
const bytes = ([]const u8)(memory);
if (bytes.len == 0) return;
const non_const_ptr = @intToPtr(&u8, @ptrToInt(bytes.ptr));
self.freeFn(self, non_const_ptr[0..bytes.len]);
}
};
/// Copy all of source into dest at position 0.
/// dest.len must be >= source.len.
pub fn copy(comptime T: type, dest: []T, source: []const T) void {
// TODO instead of manually doing this check for the whole array
// and turning off runtime safety, the compiler should detect loops like
// this and automatically omit safety checks for loops
@setRuntimeSafety(false);
assert(dest.len >= source.len);
for (source) |s, i|
dest[i] = s;
}
pub fn set(comptime T: type, dest: []T, value: T) void {
for (dest) |*d|
d.* = value;
}
/// Returns true if lhs < rhs, false otherwise
pub fn lessThan(comptime T: type, lhs: []const T, rhs: []const T) bool {
const n = math.min(lhs.len, rhs.len);
var i: usize = 0;
while (i < n) : (i += 1) {
if (lhs[i] == rhs[i]) continue;
return lhs[i] < rhs[i];
}
return lhs.len < rhs.len;
}
test "mem.lessThan" {
assert(lessThan(u8, "abcd", "bee"));
assert(!lessThan(u8, "abc", "abc"));
assert(lessThan(u8, "abc", "abc0"));
assert(!lessThan(u8, "", ""));
assert(lessThan(u8, "", "a"));
}
/// Compares two slices and returns whether they are equal.
pub fn eql(comptime T: type, a: []const T, b: []const T) bool {
if (a.len != b.len) return false;
for (a) |item, index| {
if (b[index] != item) return false;
}
return true;
}
/// Returns true if all elements in a slice are equal to the scalar value provided
pub fn allEqual(comptime T: type, slice: []const T, scalar: T) bool {
for (slice) |item| {
if (item != scalar) return false;
}
return true;
}
/// Copies ::m to newly allocated memory. Caller is responsible to free it.
pub fn dupe(allocator: &Allocator, comptime T: type, m: []const T) ![]T {
const new_buf = try allocator.alloc(T, m.len);
copy(T, new_buf, m);
return new_buf;
}
/// Remove values from the beginning of a slice.
pub fn trimLeft(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
var begin: usize = 0;
while (begin < slice.len and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
return slice[begin..];
}
/// Remove values from the end of a slice.
pub fn trimRight(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
var end: usize = slice.len;
while (end > 0 and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
return slice[0..end];
}
/// Remove values from the beginning and end of a slice.
pub fn trim(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
var begin: usize = 0;
var end: usize = slice.len;
while (begin < end and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
while (end > begin and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
return slice[begin..end];
}
test "mem.trim" {
assert(eql(u8, trimLeft(u8, " foo\n ", " \n"), "foo\n "));
assert(eql(u8, trimRight(u8, " foo\n ", " \n"), " foo"));
assert(eql(u8, trim(u8, " foo\n ", " \n"), "foo"));
assert(eql(u8, trim(u8, "foo", " \n"), "foo"));
}
/// Linear search for the index of a scalar value inside a slice.
pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
return indexOfScalarPos(T, slice, 0, value);
}
/// Linear search for the last index of a scalar value inside a slice.
pub fn lastIndexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
var i: usize = slice.len;
while (i != 0) {
i -= 1;
if (slice[i] == value) return i;
}
return null;
}
pub fn indexOfScalarPos(comptime T: type, slice: []const T, start_index: usize, value: T) ?usize {
var i: usize = start_index;
while (i < slice.len) : (i += 1) {
if (slice[i] == value) return i;
}
return null;
}
pub fn indexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
return indexOfAnyPos(T, slice, 0, values);
}
pub fn lastIndexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
var i: usize = slice.len;
while (i != 0) {
i -= 1;
for (values) |value| {
if (slice[i] == value) return i;
}
}
return null;
}
pub fn indexOfAnyPos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize {
var i: usize = start_index;
while (i < slice.len) : (i += 1) {
for (values) |value| {
if (slice[i] == value) return i;
}
}
return null;
}
pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
return indexOfPos(T, haystack, 0, needle);
}
/// Find the index in a slice of a sub-slice, searching from the end backwards.
/// To start looking at a different index, slice the haystack first.
/// TODO is there even a better algorithm for this?
pub fn lastIndexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
if (needle.len > haystack.len) return null;
var i: usize = haystack.len - needle.len;
while (true) : (i -= 1) {
if (mem.eql(T, haystack[i..i + needle.len], needle)) return i;
if (i == 0) return null;
}
}
// TODO boyer-moore algorithm
pub fn indexOfPos(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize {
if (needle.len > haystack.len) return null;
var i: usize = start_index;
const end = haystack.len - needle.len;
while (i <= end) : (i += 1) {
if (eql(T, haystack[i..i + needle.len], needle)) return i;
}
return null;
}
test "mem.indexOf" {
assert(??indexOf(u8, "one two three four", "four") == 14);
assert(??lastIndexOf(u8, "one two three two four", "two") == 14);
assert(indexOf(u8, "one two three four", "gour") == null);
assert(lastIndexOf(u8, "one two three four", "gour") == null);
assert(??indexOf(u8, "foo", "foo") == 0);
assert(??lastIndexOf(u8, "foo", "foo") == 0);
assert(indexOf(u8, "foo", "fool") == null);
assert(lastIndexOf(u8, "foo", "lfoo") == null);
assert(lastIndexOf(u8, "foo", "fool") == null);
assert(??indexOf(u8, "foo foo", "foo") == 0);
assert(??lastIndexOf(u8, "foo foo", "foo") == 4);
assert(??lastIndexOfAny(u8, "boo, cat", "abo") == 6);
assert(??lastIndexOfScalar(u8, "boo", 'o') == 2);
}
/// Reads an integer from memory with size equal to bytes.len.
/// T specifies the return type, which must be large enough to store
/// the result.
/// See also ::readIntBE or ::readIntLE.
pub fn readInt(bytes: []const u8, comptime T: type, endian: builtin.Endian) T {
if (T.bit_count == 8) {
return bytes[0];
}
var result: T = 0;
switch (endian) {
builtin.Endian.Big => {
for (bytes) |b| {
result = (result << 8) | b;
}
},
builtin.Endian.Little => {
const ShiftType = math.Log2Int(T);
for (bytes) |b, index| {
result = result | (T(b) << ShiftType(index * 8));
}
},
}
return result;
}
/// Reads a big-endian int of type T from bytes.
/// bytes.len must be exactly @sizeOf(T).
pub fn readIntBE(comptime T: type, bytes: []const u8) T {
if (T.is_signed) {
return @bitCast(T, readIntBE(@IntType(false, T.bit_count), bytes));
}
assert(bytes.len == @sizeOf(T));
var result: T = 0;
{
comptime var i = 0;
inline while (i < @sizeOf(T)) : (i += 1) {
result = (result << 8) | T(bytes[i]);
}
}
return result;
}
/// Reads a little-endian int of type T from bytes.
/// bytes.len must be exactly @sizeOf(T).
pub fn readIntLE(comptime T: type, bytes: []const u8) T {
if (T.is_signed) {
return @bitCast(T, readIntLE(@IntType(false, T.bit_count), bytes));
}
assert(bytes.len == @sizeOf(T));
var result: T = 0;
{
comptime var i = 0;
inline while (i < @sizeOf(T)) : (i += 1) {
result |= T(bytes[i]) << i * 8;
}
}
return result;
}
/// Writes an integer to memory with size equal to bytes.len. Pads with zeroes
/// to fill the entire buffer provided.
/// value must be an integer.
pub fn writeInt(buf: []u8, value: var, endian: builtin.Endian) void {
const uint = @IntType(false, @typeOf(value).bit_count);
var bits = @truncate(uint, value);
switch (endian) {
builtin.Endian.Big => {
var index: usize = buf.len;
while (index != 0) {
index -= 1;
buf[index] = @truncate(u8, bits);
bits >>= 8;
}
},
builtin.Endian.Little => {
for (buf) |*b| {
b.* = @truncate(u8, bits);
bits >>= 8;
}
},
}
assert(bits == 0);
}
pub fn hash_slice_u8(k: []const u8) u32 {
// FNV 32-bit hash
var h: u32 = 2166136261;
for (k) |b| {
h = (h ^ b) *% 16777619;
}
return h;
}
pub fn eql_slice_u8(a: []const u8, b: []const u8) bool {
return eql(u8, a, b);
}
/// Returns an iterator that iterates over the slices of `buffer` that are not
/// any of the bytes in `split_bytes`.
/// split(" abc def ghi ", " ")
/// Will return slices for "abc", "def", "ghi", null, in that order.
pub fn split(buffer: []const u8, split_bytes: []const u8) SplitIterator {
return SplitIterator{
.index = 0,
.buffer = buffer,
.split_bytes = split_bytes,
};
}
test "mem.split" {
var it = split(" abc def ghi ", " ");
assert(eql(u8, ??it.next(), "abc"));
assert(eql(u8, ??it.next(), "def"));
assert(eql(u8, ??it.next(), "ghi"));
assert(it.next() == null);
}
pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
return if (needle.len > haystack.len) false else eql(T, haystack[0..needle.len], needle);
}
test "mem.startsWith" {
assert(startsWith(u8, "Bob", "Bo"));
assert(!startsWith(u8, "Needle in haystack", "haystack"));
}
pub fn endsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
return if (needle.len > haystack.len) false else eql(T, haystack[haystack.len - needle.len..], needle);
}
test "mem.endsWith" {
assert(endsWith(u8, "Needle in haystack", "haystack"));
assert(!endsWith(u8, "Bob", "Bo"));
}
pub const SplitIterator = struct {
buffer: []const u8,
split_bytes: []const u8,
index: usize,
pub fn next(self: &SplitIterator) ?[]const u8 {
// move to beginning of token
while (self.index < self.buffer.len and self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {}
const start = self.index;
if (start == self.buffer.len) {
return null;
}
// move to end of token
while (self.index < self.buffer.len and !self.isSplitByte(self.buffer[self.index])) : (self.index += 1) {}
const end = self.index;
return self.buffer[start..end];
}
/// Returns a slice of the remaining bytes. Does not affect iterator state.
pub fn rest(self: &const SplitIterator) []const u8 {
// move to beginning of token
var index: usize = self.index;
while (index < self.buffer.len and self.isSplitByte(self.buffer[index])) : (index += 1) {}
return self.buffer[index..];
}
fn isSplitByte(self: &const SplitIterator, byte: u8) bool {
for (self.split_bytes) |split_byte| {
if (byte == split_byte) {
return true;
}
}
return false;
}
};
/// Naively combines a series of strings with a separator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn join(allocator: &Allocator, sep: u8, strings: ...) ![]u8 {
comptime assert(strings.len >= 1);
var total_strings_len: usize = strings.len; // 1 sep per string
{
comptime var string_i = 0;
inline while (string_i < strings.len) : (string_i += 1) {
const arg = ([]const u8)(strings[string_i]);
total_strings_len += arg.len;
}
}
const buf = try allocator.alloc(u8, total_strings_len);
errdefer allocator.free(buf);
var buf_index: usize = 0;
comptime var string_i = 0;
inline while (true) {
const arg = ([]const u8)(strings[string_i]);
string_i += 1;
copy(u8, buf[buf_index..], arg);
buf_index += arg.len;
if (string_i >= strings.len) break;
if (buf[buf_index - 1] != sep) {
buf[buf_index] = sep;
buf_index += 1;
}
}
return buf[0..buf_index];
}
test "mem.join" {
assert(eql(u8, try join(debug.global_allocator, ',', "a", "b", "c"), "a,b,c"));
assert(eql(u8, try join(debug.global_allocator, ',', "a"), "a"));
}
test "testStringEquality" {
assert(eql(u8, "abcd", "abcd"));
assert(!eql(u8, "abcdef", "abZdef"));
assert(!eql(u8, "abcdefg", "abcdef"));
}
test "testReadInt" {
testReadIntImpl();
comptime testReadIntImpl();
}
fn testReadIntImpl() void {
{
const bytes = []u8{
0x12,
0x34,
0x56,
0x78,
};
assert(readInt(bytes, u32, builtin.Endian.Big) == 0x12345678);
assert(readIntBE(u32, bytes) == 0x12345678);
assert(readIntBE(i32, bytes) == 0x12345678);
assert(readInt(bytes, u32, builtin.Endian.Little) == 0x78563412);
assert(readIntLE(u32, bytes) == 0x78563412);
assert(readIntLE(i32, bytes) == 0x78563412);
}
{
const buf = []u8{
0x00,
0x00,
0x12,
0x34,
};
const answer = readInt(buf, u64, builtin.Endian.Big);
assert(answer == 0x00001234);
}
{
const buf = []u8{
0x12,
0x34,
0x00,
0x00,
};
const answer = readInt(buf, u64, builtin.Endian.Little);
assert(answer == 0x00003412);
}
{
const bytes = []u8{
0xff,
0xfe,
};
assert(readIntBE(u16, bytes) == 0xfffe);
assert(readIntBE(i16, bytes) == -0x0002);
assert(readIntLE(u16, bytes) == 0xfeff);
assert(readIntLE(i16, bytes) == -0x0101);
}
}
test "testWriteInt" {
testWriteIntImpl();
comptime testWriteIntImpl();
}
fn testWriteIntImpl() void {
var bytes: [4]u8 = undefined;
writeInt(bytes[0..], u32(0x12345678), builtin.Endian.Big);
assert(eql(u8, bytes, []u8{
0x12,
0x34,
0x56,
0x78,
}));
writeInt(bytes[0..], u32(0x78563412), builtin.Endian.Little);
assert(eql(u8, bytes, []u8{
0x12,
0x34,
0x56,
0x78,
}));
writeInt(bytes[0..], u16(0x1234), builtin.Endian.Big);
assert(eql(u8, bytes, []u8{
0x00,
0x00,
0x12,
0x34,
}));
writeInt(bytes[0..], u16(0x1234), builtin.Endian.Little);
assert(eql(u8, bytes, []u8{
0x34,
0x12,
0x00,
0x00,
}));
}
pub fn min(comptime T: type, slice: []const T) T {
var best = slice[0];
for (slice[1..]) |item| {
best = math.min(best, item);
}
return best;
}
test "mem.min" {
assert(min(u8, "abcdefg") == 'a');
}
pub fn max(comptime T: type, slice: []const T) T {
var best = slice[0];
for (slice[1..]) |item| {
best = math.max(best, item);
}
return best;
}
test "mem.max" {
assert(max(u8, "abcdefg") == 'g');
}
pub fn swap(comptime T: type, a: &T, b: &T) void {
const tmp = a.*;
a.* = b.*;
b.* = tmp;
}
/// In-place order reversal of a slice
pub fn reverse(comptime T: type, items: []T) void {
var i: usize = 0;
const end = items.len / 2;
while (i < end) : (i += 1) {
swap(T, &items[i], &items[items.len - i - 1]);
}
}
test "std.mem.reverse" {
var arr = []i32{
5,
3,
1,
2,
4,
};
reverse(i32, arr[0..]);
assert(eql(i32, arr, []i32{
4,
2,
1,
3,
5,
}));
}
/// In-place rotation of the values in an array ([0 1 2 3] becomes [1 2 3 0] if we rotate by 1)
/// Assumes 0 <= amount <= items.len
pub fn rotate(comptime T: type, items: []T, amount: usize) void {
reverse(T, items[0..amount]);
reverse(T, items[amount..]);
reverse(T, items);
}
test "std.mem.rotate" {
var arr = []i32{
5,
3,
1,
2,
4,
};
rotate(i32, arr[0..], 2);
assert(eql(i32, arr, []i32{
1,
2,
4,
5,
3,
}));
}
// TODO: When https://github.com/ziglang/zig/issues/649 is solved these can be done by
// endian-casting the pointer and then dereferencing
pub fn endianSwapIfLe(comptime T: type, x: T) T {
return endianSwapIf(builtin.Endian.Little, T, x);
}
pub fn endianSwapIfBe(comptime T: type, x: T) T {
return endianSwapIf(builtin.Endian.Big, T, x);
}
pub fn endianSwapIf(endian: builtin.Endian, comptime T: type, x: T) T {
return if (builtin.endian == endian) endianSwap(T, x) else x;
}
pub fn endianSwap(comptime T: type, x: T) T {
var buf: [@sizeOf(T)]u8 = undefined;
mem.writeInt(buf[0..], x, builtin.Endian.Little);
return mem.readInt(buf, T, builtin.Endian.Big);
}
test "std.mem.endianSwap" {
assert(endianSwap(u32, 0xDEADBEEF) == 0xEFBEADDE);
}