zig/std/fmt/index.zig

1092 lines
39 KiB
Zig

const std = @import("../index.zig");
const math = std.math;
const debug = std.debug;
const assert = debug.assert;
const mem = std.mem;
const builtin = @import("builtin");
const errol = @import("errol/index.zig");
const max_int_digits = 65;
/// Renders fmt string with args, calling output with slices of bytes.
/// If `output` returns an error, the error is returned from `format` and
/// `output` is not called again.
pub fn format(context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void, comptime fmt: []const u8, args: ...) Errors!void {
const State = enum {
Start,
OpenBrace,
CloseBrace,
Integer,
IntegerWidth,
Float,
FloatWidth,
FloatScientific,
FloatScientificWidth,
Character,
Buf,
BufWidth,
Bytes,
BytesBase,
BytesWidth,
};
comptime var start_index = 0;
comptime var state = State.Start;
comptime var next_arg = 0;
comptime var radix = 0;
comptime var uppercase = false;
comptime var width = 0;
comptime var width_start = 0;
inline for (fmt) |c, i| {
switch (state) {
State.Start => switch (c) {
'{' => {
if (start_index < i) {
try output(context, fmt[start_index..i]);
}
state = State.OpenBrace;
},
'}' => {
if (start_index < i) {
try output(context, fmt[start_index..i]);
}
state = State.CloseBrace;
},
else => {},
},
State.OpenBrace => switch (c) {
'{' => {
state = State.Start;
start_index = i;
},
'}' => {
try formatValue(args[next_arg], context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'd' => {
radix = 10;
uppercase = false;
width = 0;
state = State.Integer;
},
'x' => {
radix = 16;
uppercase = false;
width = 0;
state = State.Integer;
},
'X' => {
radix = 16;
uppercase = true;
width = 0;
state = State.Integer;
},
'c' => {
state = State.Character;
},
's' => {
state = State.Buf;
},
'e' => {
state = State.FloatScientific;
},
'.' => {
state = State.Float;
},
'B' => {
width = 0;
radix = 1000;
state = State.Bytes;
},
else => @compileError("Unknown format character: " ++ []u8{c}),
},
State.Buf => switch (c) {
'}' => {
return output(context, args[next_arg]);
},
'0' ... '9' => {
width_start = i;
state = State.BufWidth;
},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.CloseBrace => switch (c) {
'}' => {
state = State.Start;
start_index = i;
},
else => @compileError("Single '}' encountered in format string"),
},
State.Integer => switch (c) {
'}' => {
try formatInt(args[next_arg], radix, uppercase, width, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {
width_start = i;
state = State.IntegerWidth;
},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.IntegerWidth => switch (c) {
'}' => {
width = comptime (parseUnsigned(usize, fmt[width_start..i], 10) catch unreachable);
try formatInt(args[next_arg], radix, uppercase, width, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.FloatScientific => switch (c) {
'}' => {
try formatFloatScientific(args[next_arg], null, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {
width_start = i;
state = State.FloatScientificWidth;
},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.FloatScientificWidth => switch (c) {
'}' => {
width = comptime (parseUnsigned(usize, fmt[width_start..i], 10) catch unreachable);
try formatFloatScientific(args[next_arg], width, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.Float => switch (c) {
'}' => {
try formatFloatDecimal(args[next_arg], null, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {
width_start = i;
state = State.FloatWidth;
},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.FloatWidth => switch (c) {
'}' => {
width = comptime (parseUnsigned(usize, fmt[width_start..i], 10) catch unreachable);
try formatFloatDecimal(args[next_arg], width, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.BufWidth => switch (c) {
'}' => {
width = comptime (parseUnsigned(usize, fmt[width_start..i], 10) catch unreachable);
try formatBuf(args[next_arg], width, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.Character => switch (c) {
'}' => {
try formatAsciiChar(args[next_arg], context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.Bytes => switch (c) {
'}' => {
try formatBytes(args[next_arg], 0, radix, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'i' => {
radix = 1024;
state = State.BytesBase;
},
'0' ... '9' => {
width_start = i;
state = State.BytesWidth;
},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.BytesBase => switch (c) {
'}' => {
try formatBytes(args[next_arg], 0, radix, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {
width_start = i;
state = State.BytesWidth;
},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
State.BytesWidth => switch (c) {
'}' => {
width = comptime (parseUnsigned(usize, fmt[width_start..i], 10) catch unreachable);
try formatBytes(args[next_arg], width, radix, context, Errors, output);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
'0' ... '9' => {},
else => @compileError("Unexpected character in format string: " ++ []u8{c}),
},
}
}
comptime {
if (args.len != next_arg) {
@compileError("Unused arguments");
}
if (state != State.Start) {
@compileError("Incomplete format string: " ++ fmt);
}
}
if (start_index < fmt.len) {
try output(context, fmt[start_index..]);
}
}
pub fn formatValue(value: var, context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void) Errors!void {
const T = @typeOf(value);
switch (@typeId(T)) {
builtin.TypeId.Int => {
return formatInt(value, 10, false, 0, context, Errors, output);
},
builtin.TypeId.Float => {
return formatFloatScientific(value, null, context, Errors, output);
},
builtin.TypeId.Void => {
return output(context, "void");
},
builtin.TypeId.Bool => {
return output(context, if (value) "true" else "false");
},
builtin.TypeId.Nullable => {
if (value) |payload| {
return formatValue(payload, context, Errors, output);
} else {
return output(context, "null");
}
},
builtin.TypeId.ErrorUnion => {
if (value) |payload| {
return formatValue(payload, context, Errors, output);
} else |err| {
return formatValue(err, context, Errors, output);
}
},
builtin.TypeId.ErrorSet => {
try output(context, "error.");
return output(context, @errorName(value));
},
builtin.TypeId.Pointer => {
if (@typeId(T.Child) == builtin.TypeId.Array and T.Child.Child == u8) {
return output(context, (value.*)[0..]);
} else {
return format(context, Errors, output, "{}@{x}", @typeName(T.Child), @ptrToInt(value));
}
},
else => if (@canImplicitCast([]const u8, value)) {
const casted_value = ([]const u8)(value);
return output(context, casted_value);
} else {
@compileError("Unable to format type '" ++ @typeName(T) ++ "'");
},
}
}
pub fn formatAsciiChar(c: u8, context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void) Errors!void {
return output(context, (&c)[0..1]);
}
pub fn formatBuf(buf: []const u8, width: usize, context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void) Errors!void {
try output(context, buf);
var leftover_padding = if (width > buf.len) (width - buf.len) else return;
const pad_byte: u8 = ' ';
while (leftover_padding > 0) : (leftover_padding -= 1) {
try output(context, (&pad_byte)[0..1]);
}
}
// Print a float in scientific notation to the specified precision. Null uses full precision.
// It should be the case that every full precision, printed value can be re-parsed back to the
// same type unambiguously.
pub fn formatFloatScientific(value: var, maybe_precision: ?usize, context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void) Errors!void {
var x = f64(value);
// Errol doesn't handle these special cases.
if (math.signbit(x)) {
try output(context, "-");
x = -x;
}
if (math.isNan(x)) {
return output(context, "nan");
}
if (math.isPositiveInf(x)) {
return output(context, "inf");
}
if (x == 0.0) {
try output(context, "0");
if (maybe_precision) |precision| {
if (precision != 0) {
try output(context, ".");
var i: usize = 0;
while (i < precision) : (i += 1) {
try output(context, "0");
}
}
} else {
try output(context, ".0");
}
try output(context, "e+00");
return;
}
var buffer: [32]u8 = undefined;
var float_decimal = errol.errol3(x, buffer[0..]);
if (maybe_precision) |precision| {
errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Scientific);
try output(context, float_decimal.digits[0..1]);
// {e0} case prints no `.`
if (precision != 0) {
try output(context, ".");
var printed: usize = 0;
if (float_decimal.digits.len > 1) {
const num_digits = math.min(float_decimal.digits.len, precision + 1);
try output(context, float_decimal.digits[1..num_digits]);
printed += num_digits - 1;
}
while (printed < precision) : (printed += 1) {
try output(context, "0");
}
}
} else {
try output(context, float_decimal.digits[0..1]);
try output(context, ".");
if (float_decimal.digits.len > 1) {
const num_digits = if (@typeOf(value) == f32) math.min(usize(9), float_decimal.digits.len) else float_decimal.digits.len;
try output(context, float_decimal.digits[1..num_digits]);
} else {
try output(context, "0");
}
}
try output(context, "e");
const exp = float_decimal.exp - 1;
if (exp >= 0) {
try output(context, "+");
if (exp > -10 and exp < 10) {
try output(context, "0");
}
try formatInt(exp, 10, false, 0, context, Errors, output);
} else {
try output(context, "-");
if (exp > -10 and exp < 10) {
try output(context, "0");
}
try formatInt(-exp, 10, false, 0, context, Errors, output);
}
}
// Print a float of the format x.yyyyy where the number of y is specified by the precision argument.
// By default floats are printed at full precision (no rounding).
pub fn formatFloatDecimal(value: var, maybe_precision: ?usize, context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void) Errors!void {
var x = f64(value);
// Errol doesn't handle these special cases.
if (math.signbit(x)) {
try output(context, "-");
x = -x;
}
if (math.isNan(x)) {
return output(context, "nan");
}
if (math.isPositiveInf(x)) {
return output(context, "inf");
}
if (x == 0.0) {
try output(context, "0");
if (maybe_precision) |precision| {
if (precision != 0) {
try output(context, ".");
var i: usize = 0;
while (i < precision) : (i += 1) {
try output(context, "0");
}
} else {
try output(context, ".0");
}
} else {
try output(context, "0");
}
return;
}
// non-special case, use errol3
var buffer: [32]u8 = undefined;
var float_decimal = errol.errol3(x, buffer[0..]);
if (maybe_precision) |precision| {
errol.roundToPrecision(&float_decimal, precision, errol.RoundMode.Decimal);
// exp < 0 means the leading is always 0 as errol result is normalized.
var num_digits_whole = if (float_decimal.exp > 0) usize(float_decimal.exp) else 0;
// the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this.
var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len);
if (num_digits_whole > 0) {
// We may have to zero pad, for instance 1e4 requires zero padding.
try output(context, float_decimal.digits[0..num_digits_whole_no_pad]);
var i = num_digits_whole_no_pad;
while (i < num_digits_whole) : (i += 1) {
try output(context, "0");
}
} else {
try output(context, "0");
}
// {.0} special case doesn't want a trailing '.'
if (precision == 0) {
return;
}
try output(context, ".");
// Keep track of fractional count printed for case where we pre-pad then post-pad with 0's.
var printed: usize = 0;
// Zero-fill until we reach significant digits or run out of precision.
if (float_decimal.exp <= 0) {
const zero_digit_count = usize(-float_decimal.exp);
const zeros_to_print = math.min(zero_digit_count, precision);
var i: usize = 0;
while (i < zeros_to_print) : (i += 1) {
try output(context, "0");
printed += 1;
}
if (printed >= precision) {
return;
}
}
// Remaining fractional portion, zero-padding if insufficient.
debug.assert(precision >= printed);
if (num_digits_whole_no_pad + precision - printed < float_decimal.digits.len) {
try output(context, float_decimal.digits[num_digits_whole_no_pad..num_digits_whole_no_pad + precision - printed]);
return;
} else {
try output(context, float_decimal.digits[num_digits_whole_no_pad..]);
printed += float_decimal.digits.len - num_digits_whole_no_pad;
while (printed < precision) : (printed += 1) {
try output(context, "0");
}
}
} else {
// exp < 0 means the leading is always 0 as errol result is normalized.
var num_digits_whole = if (float_decimal.exp > 0) usize(float_decimal.exp) else 0;
// the actual slice into the buffer, we may need to zero-pad between num_digits_whole and this.
var num_digits_whole_no_pad = math.min(num_digits_whole, float_decimal.digits.len);
if (num_digits_whole > 0) {
// We may have to zero pad, for instance 1e4 requires zero padding.
try output(context, float_decimal.digits[0..num_digits_whole_no_pad]);
var i = num_digits_whole_no_pad;
while (i < num_digits_whole) : (i += 1) {
try output(context, "0");
}
} else {
try output(context, "0");
}
// Omit `.` if no fractional portion
if (float_decimal.exp >= 0 and num_digits_whole_no_pad == float_decimal.digits.len) {
return;
}
try output(context, ".");
// Zero-fill until we reach significant digits or run out of precision.
if (float_decimal.exp < 0) {
const zero_digit_count = usize(-float_decimal.exp);
var i: usize = 0;
while (i < zero_digit_count) : (i += 1) {
try output(context, "0");
}
}
try output(context, float_decimal.digits[num_digits_whole_no_pad..]);
}
}
pub fn formatBytes(value: var, width: ?usize, comptime radix: usize,
context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8)Errors!void) Errors!void
{
if (value == 0) {
return output(context, "0B");
}
const mags = " KMGTPEZY";
const magnitude = switch (radix) {
1000 => math.min(math.log2(value) / comptime math.log2(1000), mags.len - 1),
1024 => math.min(math.log2(value) / 10, mags.len - 1),
else => unreachable,
};
const new_value = f64(value) / math.pow(f64, f64(radix), f64(magnitude));
const suffix = mags[magnitude];
try formatFloatDecimal(new_value, width, context, Errors, output);
if (suffix == ' ') {
return output(context, "B");
}
const buf = switch (radix) {
1000 => []u8 { suffix, 'B' },
1024 => []u8 { suffix, 'i', 'B' },
else => unreachable,
};
return output(context, buf);
}
pub fn formatInt(value: var, base: u8, uppercase: bool, width: usize,
context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8)Errors!void) Errors!void
{
if (@typeOf(value).is_signed) {
return formatIntSigned(value, base, uppercase, width, context, Errors, output);
} else {
return formatIntUnsigned(value, base, uppercase, width, context, Errors, output);
}
}
fn formatIntSigned(value: var, base: u8, uppercase: bool, width: usize, context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void) Errors!void {
const uint = @IntType(false, @typeOf(value).bit_count);
if (value < 0) {
const minus_sign: u8 = '-';
try output(context, (&minus_sign)[0..1]);
const new_value = uint(-(value + 1)) + 1;
const new_width = if (width == 0) 0 else (width - 1);
return formatIntUnsigned(new_value, base, uppercase, new_width, context, Errors, output);
} else if (width == 0) {
return formatIntUnsigned(uint(value), base, uppercase, width, context, Errors, output);
} else {
const plus_sign: u8 = '+';
try output(context, (&plus_sign)[0..1]);
const new_value = uint(value);
const new_width = if (width == 0) 0 else (width - 1);
return formatIntUnsigned(new_value, base, uppercase, new_width, context, Errors, output);
}
}
fn formatIntUnsigned(value: var, base: u8, uppercase: bool, width: usize, context: var, comptime Errors: type, output: fn(@typeOf(context), []const u8) Errors!void) Errors!void {
// max_int_digits accounts for the minus sign. when printing an unsigned
// number we don't need to do that.
var buf: [max_int_digits - 1]u8 = undefined;
var a = if (@sizeOf(@typeOf(value)) == 1) u8(value) else value;
var index: usize = buf.len;
while (true) {
const digit = a % base;
index -= 1;
buf[index] = digitToChar(u8(digit), uppercase);
a /= base;
if (a == 0) break;
}
const digits_buf = buf[index..];
const padding = if (width > digits_buf.len) (width - digits_buf.len) else 0;
if (padding > index) {
const zero_byte: u8 = '0';
var leftover_padding = padding - index;
while (true) {
try output(context, (&zero_byte)[0..1]);
leftover_padding -= 1;
if (leftover_padding == 0) break;
}
mem.set(u8, buf[0..index], '0');
return output(context, buf);
} else {
const padded_buf = buf[index - padding..];
mem.set(u8, padded_buf[0..padding], '0');
return output(context, padded_buf);
}
}
pub fn formatIntBuf(out_buf: []u8, value: var, base: u8, uppercase: bool, width: usize) usize {
var context = FormatIntBuf{
.out_buf = out_buf,
.index = 0,
};
formatInt(value, base, uppercase, width, &context, error{}, formatIntCallback) catch unreachable;
return context.index;
}
const FormatIntBuf = struct {
out_buf: []u8,
index: usize,
};
fn formatIntCallback(context: &FormatIntBuf, bytes: []const u8) (error{}!void) {
mem.copy(u8, context.out_buf[context.index..], bytes);
context.index += bytes.len;
}
pub fn parseInt(comptime T: type, buf: []const u8, radix: u8) !T {
if (!T.is_signed) return parseUnsigned(T, buf, radix);
if (buf.len == 0) return T(0);
if (buf[0] == '-') {
return math.negate(try parseUnsigned(T, buf[1..], radix));
} else if (buf[0] == '+') {
return parseUnsigned(T, buf[1..], radix);
} else {
return parseUnsigned(T, buf, radix);
}
}
test "fmt.parseInt" {
assert((parseInt(i32, "-10", 10) catch unreachable) == -10);
assert((parseInt(i32, "+10", 10) catch unreachable) == 10);
assert(if (parseInt(i32, " 10", 10)) |_| false else |err| err == error.InvalidCharacter);
assert(if (parseInt(i32, "10 ", 10)) |_| false else |err| err == error.InvalidCharacter);
assert(if (parseInt(u32, "-10", 10)) |_| false else |err| err == error.InvalidCharacter);
assert((parseInt(u8, "255", 10) catch unreachable) == 255);
assert(if (parseInt(u8, "256", 10)) |_| false else |err| err == error.Overflow);
}
const ParseUnsignedError = error{
/// The result cannot fit in the type specified
Overflow,
/// The input had a byte that was not a digit
InvalidCharacter,
};
pub fn parseUnsigned(comptime T: type, buf: []const u8, radix: u8) ParseUnsignedError!T {
var x: T = 0;
for (buf) |c| {
const digit = try charToDigit(c, radix);
x = try math.mul(T, x, radix);
x = try math.add(T, x, digit);
}
return x;
}
pub fn charToDigit(c: u8, radix: u8) (error{InvalidCharacter}!u8) {
const value = switch (c) {
'0' ... '9' => c - '0',
'A' ... 'Z' => c - 'A' + 10,
'a' ... 'z' => c - 'a' + 10,
else => return error.InvalidCharacter,
};
if (value >= radix) return error.InvalidCharacter;
return value;
}
fn digitToChar(digit: u8, uppercase: bool) u8 {
return switch (digit) {
0 ... 9 => digit + '0',
10 ... 35 => digit + ((if (uppercase) u8('A') else u8('a')) - 10),
else => unreachable,
};
}
const BufPrintContext = struct {
remaining: []u8,
};
fn bufPrintWrite(context: &BufPrintContext, bytes: []const u8) !void {
if (context.remaining.len < bytes.len) return error.BufferTooSmall;
mem.copy(u8, context.remaining, bytes);
context.remaining = context.remaining[bytes.len..];
}
pub fn bufPrint(buf: []u8, comptime fmt: []const u8, args: ...) ![]u8 {
var context = BufPrintContext{ .remaining = buf };
try format(&context, error{BufferTooSmall}, bufPrintWrite, fmt, args);
return buf[0..buf.len - context.remaining.len];
}
pub fn allocPrint(allocator: &mem.Allocator, comptime fmt: []const u8, args: ...) ![]u8 {
var size: usize = 0;
format(&size, error{}, countSize, fmt, args) catch |err| switch (err) {
};
const buf = try allocator.alloc(u8, size);
return bufPrint(buf, fmt, args);
}
fn countSize(size: &usize, bytes: []const u8) (error{}!void) {
size.* += bytes.len;
}
test "buf print int" {
var buffer: [max_int_digits]u8 = undefined;
const buf = buffer[0..];
assert(mem.eql(u8, bufPrintIntToSlice(buf, i32(-12345678), 2, false, 0), "-101111000110000101001110"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, i32(-12345678), 10, false, 0), "-12345678"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, i32(-12345678), 16, false, 0), "-bc614e"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, i32(-12345678), 16, true, 0), "-BC614E"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, u32(12345678), 10, true, 0), "12345678"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, u32(666), 10, false, 6), "000666"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, u32(0x1234), 16, false, 6), "001234"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, u32(0x1234), 16, false, 1), "1234"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, i32(42), 10, false, 3), "+42"));
assert(mem.eql(u8, bufPrintIntToSlice(buf, i32(-42), 10, false, 3), "-42"));
}
fn bufPrintIntToSlice(buf: []u8, value: var, base: u8, uppercase: bool, width: usize) []u8 {
return buf[0..formatIntBuf(buf, value, base, uppercase, width)];
}
test "parse u64 digit too big" {
_ = parseUnsigned(u64, "123a", 10) catch |err| {
if (err == error.InvalidCharacter) return;
unreachable;
};
unreachable;
}
test "parse unsigned comptime" {
comptime {
assert((try parseUnsigned(usize, "2", 10)) == 2);
}
}
test "fmt.format" {
{
const value: ?i32 = 1234;
try testFmt("nullable: 1234\n", "nullable: {}\n", value);
}
{
const value: ?i32 = null;
try testFmt("nullable: null\n", "nullable: {}\n", value);
}
{
const value: error!i32 = 1234;
try testFmt("error union: 1234\n", "error union: {}\n", value);
}
{
const value: error!i32 = error.InvalidChar;
try testFmt("error union: error.InvalidChar\n", "error union: {}\n", value);
}
{
const value: u3 = 0b101;
try testFmt("u3: 5\n", "u3: {}\n", value);
}
try testFmt("file size: 63MiB\n", "file size: {Bi}\n", usize(63 * 1024 * 1024));
try testFmt("file size: 66.06MB\n", "file size: {B2}\n", usize(63 * 1024 * 1024));
{
// Dummy field because of https://github.com/ziglang/zig/issues/557.
const Struct = struct {
unused: u8,
};
var buf1: [32]u8 = undefined;
const value = Struct{ .unused = 42 };
const result = try bufPrint(buf1[0..], "pointer: {}\n", &value);
assert(mem.startsWith(u8, result, "pointer: Struct@"));
}
{
var buf1: [32]u8 = undefined;
const value: f32 = 1.34;
const result = try bufPrint(buf1[0..], "f32: {e}\n", value);
assert(mem.eql(u8, result, "f32: 1.34000003e+00\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f32 = 12.34;
const result = try bufPrint(buf1[0..], "f32: {e}\n", value);
assert(mem.eql(u8, result, "f32: 1.23400001e+01\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = -12.34e10;
const result = try bufPrint(buf1[0..], "f64: {e}\n", value);
assert(mem.eql(u8, result, "f64: -1.234e+11\n"));
}
{
// This fails on release due to a minor rounding difference.
// --release-fast outputs 9.999960000000001e-40 vs. the expected.
if (builtin.mode == builtin.Mode.Debug) {
var buf1: [32]u8 = undefined;
const value: f64 = 9.999960e-40;
const result = try bufPrint(buf1[0..], "f64: {e}\n", value);
assert(mem.eql(u8, result, "f64: 9.99996e-40\n"));
}
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 1.409706e-42;
const result = try bufPrint(buf1[0..], "f64: {e5}\n", value);
assert(mem.eql(u8, result, "f64: 1.40971e-42\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = @bitCast(f32, u32(814313563));
const result = try bufPrint(buf1[0..], "f64: {e5}\n", value);
assert(mem.eql(u8, result, "f64: 1.00000e-09\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = @bitCast(f32, u32(1006632960));
const result = try bufPrint(buf1[0..], "f64: {e5}\n", value);
assert(mem.eql(u8, result, "f64: 7.81250e-03\n"));
}
{
// libc rounds 1.000005e+05 to 1.00000e+05 but zig does 1.00001e+05.
// In fact, libc doesn't round a lot of 5 cases up when one past the precision point.
var buf1: [32]u8 = undefined;
const value: f64 = @bitCast(f32, u32(1203982400));
const result = try bufPrint(buf1[0..], "f64: {e5}\n", value);
assert(mem.eql(u8, result, "f64: 1.00001e+05\n"));
}
{
var buf1: [32]u8 = undefined;
const result = try bufPrint(buf1[0..], "f64: {}\n", math.nan_f64);
assert(mem.eql(u8, result, "f64: nan\n"));
}
{
var buf1: [32]u8 = undefined;
const result = try bufPrint(buf1[0..], "f64: {}\n", -math.nan_f64);
assert(mem.eql(u8, result, "f64: -nan\n"));
}
{
var buf1: [32]u8 = undefined;
const result = try bufPrint(buf1[0..], "f64: {}\n", math.inf_f64);
assert(mem.eql(u8, result, "f64: inf\n"));
}
{
var buf1: [32]u8 = undefined;
const result = try bufPrint(buf1[0..], "f64: {}\n", -math.inf_f64);
assert(mem.eql(u8, result, "f64: -inf\n"));
}
{
var buf1: [64]u8 = undefined;
const value: f64 = 1.52314e+29;
const result = try bufPrint(buf1[0..], "f64: {.}\n", value);
assert(mem.eql(u8, result, "f64: 152314000000000000000000000000\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f32 = 1.1234;
const result = try bufPrint(buf1[0..], "f32: {.1}\n", value);
assert(mem.eql(u8, result, "f32: 1.1\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f32 = 1234.567;
const result = try bufPrint(buf1[0..], "f32: {.2}\n", value);
assert(mem.eql(u8, result, "f32: 1234.57\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f32 = -11.1234;
const result = try bufPrint(buf1[0..], "f32: {.4}\n", value);
// -11.1234 is converted to f64 -11.12339... internally (errol3() function takes f64).
// -11.12339... is rounded back up to -11.1234
assert(mem.eql(u8, result, "f32: -11.1234\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f32 = 91.12345;
const result = try bufPrint(buf1[0..], "f32: {.5}\n", value);
assert(mem.eql(u8, result, "f32: 91.12345\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 91.12345678901235;
const result = try bufPrint(buf1[0..], "f64: {.10}\n", value);
assert(mem.eql(u8, result, "f64: 91.1234567890\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 0.0;
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 0.00000\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 5.700;
const result = try bufPrint(buf1[0..], "f64: {.0}\n", value);
assert(mem.eql(u8, result, "f64: 6\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 9.999;
const result = try bufPrint(buf1[0..], "f64: {.1}\n", value);
assert(mem.eql(u8, result, "f64: 10.0\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 1.0;
const result = try bufPrint(buf1[0..], "f64: {.3}\n", value);
assert(mem.eql(u8, result, "f64: 1.000\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 0.0003;
const result = try bufPrint(buf1[0..], "f64: {.8}\n", value);
assert(mem.eql(u8, result, "f64: 0.00030000\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 1.40130e-45;
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 0.00000\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = 9.999960e-40;
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 0.00000\n"));
}
// libc checks
{
var buf1: [32]u8 = undefined;
const value: f64 = f64(@bitCast(f32, u32(916964781)));
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 0.00001\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = f64(@bitCast(f32, u32(925353389)));
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 0.00001\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = f64(@bitCast(f32, u32(1036831278)));
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 0.10000\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = f64(@bitCast(f32, u32(1065353133)));
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 1.00000\n"));
}
{
var buf1: [32]u8 = undefined;
const value: f64 = f64(@bitCast(f32, u32(1092616192)));
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 10.00000\n"));
}
// libc differences
{
var buf1: [32]u8 = undefined;
// This is 0.015625 exactly according to gdb. We thus round down,
// however glibc rounds up for some reason. This occurs for all
// floats of the form x.yyyy25 on a precision point.
const value: f64 = f64(@bitCast(f32, u32(1015021568)));
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 0.01563\n"));
}
// std-windows-x86_64-Debug-bare test case fails
{
// errol3 rounds to ... 630 but libc rounds to ...632. Grisu3
// also rounds to 630 so I'm inclined to believe libc is not
// optimal here.
var buf1: [32]u8 = undefined;
const value: f64 = f64(@bitCast(f32, u32(1518338049)));
const result = try bufPrint(buf1[0..], "f64: {.5}\n", value);
assert(mem.eql(u8, result, "f64: 18014400656965630.00000\n"));
}
}
fn testFmt(expected: []const u8, comptime template: []const u8, args: ...) !void {
var buf: [100]u8 = undefined;
const result = try bufPrint(buf[0..], template, args);
if (mem.eql(u8, result, expected))
return;
std.debug.warn("\n====== expected this output: =========\n");
std.debug.warn("{}", expected);
std.debug.warn("\n======== instead found this: =========\n");
std.debug.warn("{}", result);
std.debug.warn("\n======================================\n");
return error.TestFailed;
}
pub fn trim(buf: []const u8) []const u8 {
var start: usize = 0;
while (start < buf.len and isWhiteSpace(buf[start])) : (start += 1) {}
var end: usize = buf.len;
while (true) {
if (end > start) {
const new_end = end - 1;
if (isWhiteSpace(buf[new_end])) {
end = new_end;
continue;
}
}
break;
}
return buf[start..end];
}
test "fmt.trim" {
assert(mem.eql(u8, "abc", trim("\n abc \t")));
assert(mem.eql(u8, "", trim(" ")));
assert(mem.eql(u8, "", trim("")));
assert(mem.eql(u8, "abc", trim(" abc")));
assert(mem.eql(u8, "abc", trim("abc ")));
}
pub fn isWhiteSpace(byte: u8) bool {
return switch (byte) {
' ',
'\t',
'\n',
'\r' => true,
else => false,
};
}