714 lines
26 KiB
Zig
714 lines
26 KiB
Zig
const std = @import("std.zig");
|
|
const debug = std.debug;
|
|
const assert = debug.assert;
|
|
const testing = std.testing;
|
|
const mem = std.mem;
|
|
const Allocator = mem.Allocator;
|
|
|
|
/// A contiguous, growable list of items in memory.
|
|
/// This is a wrapper around an array of T values. Initialize with `init`.
|
|
pub fn ArrayList(comptime T: type) type {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
|
|
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAligned(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Content of the ArrayList
|
|
items: Slice,
|
|
capacity: usize,
|
|
allocator: *Allocator,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
|
|
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn init(allocator: *Allocator) Self {
|
|
return Self{
|
|
.items = &[_]T{},
|
|
.capacity = 0,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
/// Initialize with capacity to hold at least num elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self.init(allocator);
|
|
try self.ensureCapacity(num);
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: Self) void {
|
|
self.allocator.free(self.allocatedSlice());
|
|
}
|
|
|
|
/// Deprecated: use `items` field directly.
|
|
/// Return contents as a slice. Only valid while the list
|
|
/// doesn't change size.
|
|
pub fn span(self: var) @TypeOf(self.items) {
|
|
return self.items;
|
|
}
|
|
|
|
pub const toSlice = @compileError("deprecated: use `items` field directly");
|
|
pub const toSliceConst = @compileError("deprecated: use `items` field directly");
|
|
pub const at = @compileError("deprecated: use `list.items[i]`");
|
|
pub const ptrAt = @compileError("deprecated: use `&list.items[i]`");
|
|
pub const setOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.items[i] = item`");
|
|
pub const set = @compileError("deprecated: use `list.items[i] = item`");
|
|
pub const swapRemoveOrError = @compileError("deprecated: use `if (i >= list.items.len) return error.OutOfBounds else list.swapRemove(i)`");
|
|
|
|
/// ArrayList takes ownership of the passed in slice. The slice must have been
|
|
/// allocated with `allocator`.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn fromOwnedSlice(allocator: *Allocator, slice: Slice) Self {
|
|
return Self{
|
|
.items = slice,
|
|
.capacity = slice.len,
|
|
.allocator = allocator,
|
|
};
|
|
}
|
|
|
|
pub fn toUnmanaged(self: Self) ArrayListAlignedUnmanaged(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity };
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSlice(self: *Self) Slice {
|
|
const allocator = self.allocator;
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = init(allocator);
|
|
return result;
|
|
}
|
|
|
|
/// Insert `item` at index `n` by moving `list[n .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insert(self: *Self, n: usize, item: T) !void {
|
|
try self.ensureCapacity(self.items.len + 1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, i: usize, items: SliceConst) !void {
|
|
try self.ensureCapacity(self.items.len + items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, item: T) !void {
|
|
const new_item_ptr = try self.addOne();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but asserting `self.capacity`
|
|
/// is sufficient to hold an additional item.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i` from the list and return its value.
|
|
/// Asserts the array has at least one item.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, items: SliceConst) !void {
|
|
try self.ensureCapacity(self.items.len + items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is already
|
|
/// enough to store the new items.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
pub usingnamespace if (T != u8) struct {} else struct {
|
|
pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
|
|
|
|
/// Initializes a Writer which will append to the list.
|
|
pub fn writer(self: *Self) Writer {
|
|
return .{ .context = self };
|
|
}
|
|
|
|
/// Deprecated: use `writer`
|
|
pub const outStream = writer;
|
|
|
|
/// Same as `append` except it returns the number of bytes written, which is always the same
|
|
/// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
|
|
fn appendWrite(self: *Self, m: []const u8) !usize {
|
|
try self.appendSlice(m);
|
|
return m.len;
|
|
}
|
|
};
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items if any.
|
|
pub fn resize(self: *Self, new_len: usize) !void {
|
|
try self.ensureCapacity(new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
/// Invalidates element pointers.
|
|
pub fn shrink(self: *Self, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = self.allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
pub fn ensureCapacity(self: *Self, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
const new_memory = try self.allocator.realloc(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values. This operation does not invalidate any
|
|
/// element pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOne(self: *Self) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureCapacity(newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// If the list is empty, returns `null`.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
// For a nicer API, `items.len` is the length, not the capacity.
|
|
// This requires "unsafe" slicing.
|
|
fn allocatedSlice(self: Self) Slice {
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Bring-your-own allocator with every function call.
|
|
/// Initialize directly and deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn ArrayListUnmanaged(comptime T: type) type {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
|
|
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
|
|
if (alignment) |a| {
|
|
if (a == @alignOf(T)) {
|
|
return ArrayListAlignedUnmanaged(T, null);
|
|
}
|
|
}
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
/// Content of the ArrayList.
|
|
items: Slice = &[_]T{},
|
|
capacity: usize = 0,
|
|
|
|
pub const Slice = if (alignment) |a| ([]align(a) T) else []T;
|
|
pub const SliceConst = if (alignment) |a| ([]align(a) const T) else []const T;
|
|
|
|
/// Initialize with capacity to hold at least num elements.
|
|
/// Deinitialize with `deinit` or use `toOwnedSlice`.
|
|
pub fn initCapacity(allocator: *Allocator, num: usize) !Self {
|
|
var self = Self{};
|
|
try self.ensureCapacity(allocator, num);
|
|
return self;
|
|
}
|
|
|
|
/// Release all allocated memory.
|
|
pub fn deinit(self: *Self, allocator: *Allocator) void {
|
|
allocator.free(self.allocatedSlice());
|
|
self.* = undefined;
|
|
}
|
|
|
|
pub fn toManaged(self: *Self, allocator: *Allocator) ArrayListAligned(T, alignment) {
|
|
return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
|
|
}
|
|
|
|
/// The caller owns the returned memory. ArrayList becomes empty.
|
|
pub fn toOwnedSlice(self: *Self, allocator: *Allocator) Slice {
|
|
const result = allocator.shrink(self.allocatedSlice(), self.items.len);
|
|
self.* = Self{};
|
|
return result;
|
|
}
|
|
|
|
/// Insert `item` at index `n`. Moves `list[n .. list.len]`
|
|
/// to make room.
|
|
pub fn insert(self: *Self, allocator: *Allocator, n: usize, item: T) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + 1);
|
|
self.items.len += 1;
|
|
|
|
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
|
|
self.items[n] = item;
|
|
}
|
|
|
|
/// Insert slice `items` at index `i`. Moves
|
|
/// `list[i .. list.len]` to make room.
|
|
/// This operation is O(N).
|
|
pub fn insertSlice(self: *Self, allocator: *Allocator, i: usize, items: SliceConst) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + items.len);
|
|
self.items.len += items.len;
|
|
|
|
mem.copyBackwards(T, self.items[i + items.len .. self.items.len], self.items[i .. self.items.len - items.len]);
|
|
mem.copy(T, self.items[i .. i + items.len], items);
|
|
}
|
|
|
|
/// Extend the list by 1 element. Allocates more memory as necessary.
|
|
pub fn append(self: *Self, allocator: *Allocator, item: T) !void {
|
|
const new_item_ptr = try self.addOne(allocator);
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Extend the list by 1 element, but asserting `self.capacity`
|
|
/// is sufficient to hold an additional item.
|
|
pub fn appendAssumeCapacity(self: *Self, item: T) void {
|
|
const new_item_ptr = self.addOneAssumeCapacity();
|
|
new_item_ptr.* = item;
|
|
}
|
|
|
|
/// Remove the element at index `i` from the list and return its value.
|
|
/// Asserts the array has at least one item.
|
|
/// This operation is O(N).
|
|
pub fn orderedRemove(self: *Self, i: usize) T {
|
|
const newlen = self.items.len - 1;
|
|
if (newlen == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
for (self.items[i..newlen]) |*b, j| b.* = self.items[i + 1 + j];
|
|
self.items[newlen] = undefined;
|
|
self.items.len = newlen;
|
|
return old_item;
|
|
}
|
|
|
|
/// Removes the element at the specified index and returns it.
|
|
/// The empty slot is filled from the end of the list.
|
|
/// This operation is O(1).
|
|
pub fn swapRemove(self: *Self, i: usize) T {
|
|
if (self.items.len - 1 == i) return self.pop();
|
|
|
|
const old_item = self.items[i];
|
|
self.items[i] = self.pop();
|
|
return old_item;
|
|
}
|
|
|
|
/// Append the slice of items to the list. Allocates more
|
|
/// memory as necessary.
|
|
pub fn appendSlice(self: *Self, allocator: *Allocator, items: SliceConst) !void {
|
|
try self.ensureCapacity(allocator, self.items.len + items.len);
|
|
self.appendSliceAssumeCapacity(items);
|
|
}
|
|
|
|
/// Append the slice of items to the list, asserting the capacity is enough
|
|
/// to store the new items.
|
|
pub fn appendSliceAssumeCapacity(self: *Self, items: SliceConst) void {
|
|
const oldlen = self.items.len;
|
|
const newlen = self.items.len + items.len;
|
|
|
|
self.items.len = newlen;
|
|
mem.copy(T, self.items[oldlen..], items);
|
|
}
|
|
|
|
/// Same as `append` except it returns the number of bytes written, which is always the same
|
|
/// as `m.len`. The purpose of this function existing is to match `std.io.OutStream` API.
|
|
/// This function may be called only when `T` is `u8`.
|
|
fn appendWrite(self: *Self, allocator: *Allocator, m: []const u8) !usize {
|
|
try self.appendSlice(allocator, m);
|
|
return m.len;
|
|
}
|
|
|
|
/// Append a value to the list `n` times.
|
|
/// Allocates more memory as necessary.
|
|
pub fn appendNTimes(self: *Self, allocator: *Allocator, value: T, n: usize) !void {
|
|
const old_len = self.items.len;
|
|
try self.resize(allocator, self.items.len + n);
|
|
mem.set(T, self.items[old_len..self.items.len], value);
|
|
}
|
|
|
|
/// Adjust the list's length to `new_len`.
|
|
/// Does not initialize added items if any.
|
|
pub fn resize(self: *Self, allocator: *Allocator, new_len: usize) !void {
|
|
try self.ensureCapacity(allocator, new_len);
|
|
self.items.len = new_len;
|
|
}
|
|
|
|
/// Reduce allocated capacity to `new_len`.
|
|
/// Invalidates element pointers.
|
|
pub fn shrink(self: *Self, allocator: *Allocator, new_len: usize) void {
|
|
assert(new_len <= self.items.len);
|
|
|
|
self.items = allocator.realloc(self.allocatedSlice(), new_len) catch |e| switch (e) {
|
|
error.OutOfMemory => { // no problem, capacity is still correct then.
|
|
self.items.len = new_len;
|
|
return;
|
|
},
|
|
};
|
|
self.capacity = new_len;
|
|
}
|
|
|
|
pub fn ensureCapacity(self: *Self, allocator: *Allocator, new_capacity: usize) !void {
|
|
var better_capacity = self.capacity;
|
|
if (better_capacity >= new_capacity) return;
|
|
|
|
while (true) {
|
|
better_capacity += better_capacity / 2 + 8;
|
|
if (better_capacity >= new_capacity) break;
|
|
}
|
|
|
|
const new_memory = try allocator.realloc(self.allocatedSlice(), better_capacity);
|
|
self.items.ptr = new_memory.ptr;
|
|
self.capacity = new_memory.len;
|
|
}
|
|
|
|
/// Increases the array's length to match the full capacity that is already allocated.
|
|
/// The new elements have `undefined` values.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn expandToCapacity(self: *Self) void {
|
|
self.items.len = self.capacity;
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
pub fn addOne(self: *Self, allocator: *Allocator) !*T {
|
|
const newlen = self.items.len + 1;
|
|
try self.ensureCapacity(allocator, newlen);
|
|
return self.addOneAssumeCapacity();
|
|
}
|
|
|
|
/// Increase length by 1, returning pointer to the new item.
|
|
/// Asserts that there is already space for the new item without allocating more.
|
|
/// The returned pointer becomes invalid when the list is resized.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn addOneAssumeCapacity(self: *Self) *T {
|
|
assert(self.items.len < self.capacity);
|
|
|
|
self.items.len += 1;
|
|
return &self.items[self.items.len - 1];
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// Asserts the list has at least one item.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn pop(self: *Self) T {
|
|
const val = self.items[self.items.len - 1];
|
|
self.items.len -= 1;
|
|
return val;
|
|
}
|
|
|
|
/// Remove and return the last element from the list.
|
|
/// If the list is empty, returns `null`.
|
|
/// This operation does not invalidate any element pointers.
|
|
pub fn popOrNull(self: *Self) ?T {
|
|
if (self.items.len == 0) return null;
|
|
return self.pop();
|
|
}
|
|
|
|
/// For a nicer API, `items.len` is the length, not the capacity.
|
|
/// This requires "unsafe" slicing.
|
|
fn allocatedSlice(self: Self) Slice {
|
|
return self.items.ptr[0..self.capacity];
|
|
}
|
|
};
|
|
}
|
|
|
|
test "std.ArrayList.init" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity == 0);
|
|
}
|
|
|
|
test "std.ArrayList.initCapacity" {
|
|
var list = try ArrayList(i8).initCapacity(testing.allocator, 200);
|
|
defer list.deinit();
|
|
testing.expect(list.items.len == 0);
|
|
testing.expect(list.capacity >= 200);
|
|
}
|
|
|
|
test "std.ArrayList.basic" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
list.append(@intCast(i32, i + 1)) catch unreachable;
|
|
}
|
|
}
|
|
|
|
{
|
|
var i: usize = 0;
|
|
while (i < 10) : (i += 1) {
|
|
testing.expect(list.items[i] == @intCast(i32, i + 1));
|
|
}
|
|
}
|
|
|
|
for (list.items) |v, i| {
|
|
testing.expect(v == @intCast(i32, i + 1));
|
|
}
|
|
|
|
testing.expect(list.pop() == 10);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
|
|
testing.expect(list.items.len == 12);
|
|
testing.expect(list.pop() == 3);
|
|
testing.expect(list.pop() == 2);
|
|
testing.expect(list.pop() == 1);
|
|
testing.expect(list.items.len == 9);
|
|
|
|
list.appendSlice(&[_]i32{}) catch unreachable;
|
|
testing.expect(list.items.len == 9);
|
|
|
|
// can only set on indices < self.items.len
|
|
list.items[7] = 33;
|
|
list.items[8] = 42;
|
|
|
|
testing.expect(list.pop() == 42);
|
|
testing.expect(list.pop() == 33);
|
|
}
|
|
|
|
test "std.ArrayList.appendNTimes" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.appendNTimes(2, 10);
|
|
testing.expectEqual(@as(usize, 10), list.items.len);
|
|
for (list.items) |element| {
|
|
testing.expectEqual(@as(i32, 2), element);
|
|
}
|
|
}
|
|
|
|
test "std.ArrayList.appendNTimes with failing allocator" {
|
|
var list = ArrayList(i32).init(testing.failing_allocator);
|
|
defer list.deinit();
|
|
testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
|
|
}
|
|
|
|
test "std.ArrayList.orderedRemove" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
|
|
testing.expectEqual(@as(i32, 5), list.items[3]);
|
|
testing.expectEqual(@as(usize, 6), list.items.len);
|
|
|
|
//remove from end
|
|
testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
|
|
testing.expectEqual(@as(usize, 5), list.items.len);
|
|
|
|
//remove from front
|
|
testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
|
|
testing.expectEqual(@as(i32, 2), list.items[0]);
|
|
testing.expectEqual(@as(usize, 4), list.items.len);
|
|
}
|
|
|
|
test "std.ArrayList.swapRemove" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.append(5);
|
|
try list.append(6);
|
|
try list.append(7);
|
|
|
|
//remove from middle
|
|
testing.expect(list.swapRemove(3) == 4);
|
|
testing.expect(list.items[3] == 7);
|
|
testing.expect(list.items.len == 6);
|
|
|
|
//remove from end
|
|
testing.expect(list.swapRemove(5) == 6);
|
|
testing.expect(list.items.len == 5);
|
|
|
|
//remove from front
|
|
testing.expect(list.swapRemove(0) == 1);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items.len == 4);
|
|
}
|
|
|
|
test "std.ArrayList.insert" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.insert(0, 5);
|
|
testing.expect(list.items[0] == 5);
|
|
testing.expect(list.items[1] == 1);
|
|
testing.expect(list.items[2] == 2);
|
|
testing.expect(list.items[3] == 3);
|
|
}
|
|
|
|
test "std.ArrayList.insertSlice" {
|
|
var list = ArrayList(i32).init(testing.allocator);
|
|
defer list.deinit();
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
try list.append(4);
|
|
try list.insertSlice(1, &[_]i32{ 9, 8 });
|
|
testing.expect(list.items[0] == 1);
|
|
testing.expect(list.items[1] == 9);
|
|
testing.expect(list.items[2] == 8);
|
|
testing.expect(list.items[3] == 2);
|
|
testing.expect(list.items[4] == 3);
|
|
testing.expect(list.items[5] == 4);
|
|
|
|
const items = [_]i32{1};
|
|
try list.insertSlice(0, items[0..0]);
|
|
testing.expect(list.items.len == 6);
|
|
testing.expect(list.items[0] == 1);
|
|
}
|
|
|
|
const Item = struct {
|
|
integer: i32,
|
|
sub_items: ArrayList(Item),
|
|
};
|
|
|
|
test "std.ArrayList: ArrayList(T) of struct T" {
|
|
var root = Item{ .integer = 1, .sub_items = ArrayList(Item).init(testing.allocator) };
|
|
defer root.sub_items.deinit();
|
|
try root.sub_items.append(Item{ .integer = 42, .sub_items = ArrayList(Item).init(testing.allocator) });
|
|
testing.expect(root.sub_items.items[0].integer == 42);
|
|
}
|
|
|
|
test "std.ArrayList(u8) implements outStream" {
|
|
var buffer = ArrayList(u8).init(std.testing.allocator);
|
|
defer buffer.deinit();
|
|
|
|
const x: i32 = 42;
|
|
const y: i32 = 1234;
|
|
try buffer.outStream().print("x: {}\ny: {}\n", .{ x, y });
|
|
|
|
testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.span());
|
|
}
|
|
|
|
test "std.ArrayList.shrink still sets length on error.OutOfMemory" {
|
|
// use an arena allocator to make sure realloc returns error.OutOfMemory
|
|
var arena = std.heap.ArenaAllocator.init(testing.allocator);
|
|
defer arena.deinit();
|
|
|
|
var list = ArrayList(i32).init(&arena.allocator);
|
|
|
|
try list.append(1);
|
|
try list.append(2);
|
|
try list.append(3);
|
|
|
|
list.shrink(1);
|
|
testing.expect(list.items.len == 1);
|
|
}
|
|
|
|
test "std.ArrayList.writer" {
|
|
var list = ArrayList(u8).init(std.testing.allocator);
|
|
defer list.deinit();
|
|
|
|
const writer = list.writer();
|
|
try writer.writeAll("a");
|
|
try writer.writeAll("bc");
|
|
try writer.writeAll("d");
|
|
try writer.writeAll("efg");
|
|
testing.expectEqualSlices(u8, list.items, "abcdefg");
|
|
}
|