zig/src/analyze.cpp
2018-06-16 19:36:33 -04:00

6220 lines
249 KiB
C++

/*
* Copyright (c) 2015 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include "analyze.hpp"
#include "ast_render.hpp"
#include "config.h"
#include "error.hpp"
#include "ir.hpp"
#include "ir_print.hpp"
#include "os.hpp"
#include "parser.hpp"
#include "softfloat.hpp"
#include "zig_llvm.h"
static const size_t default_backward_branch_quota = 1000;
static void resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type);
static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type);
static void resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type);
static void resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type);
static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type);
static void analyze_fn_body(CodeGen *g, FnTableEntry *fn_table_entry);
ErrorMsg *add_node_error(CodeGen *g, AstNode *node, Buf *msg) {
if (node->owner->c_import_node != nullptr) {
// if this happens, then translate_c generated code that
// failed semantic analysis, which isn't supposed to happen
ErrorMsg *err = add_node_error(g, node->owner->c_import_node,
buf_sprintf("compiler bug: @cImport generated invalid zig code"));
add_error_note(g, err, node, msg);
g->errors.append(err);
return err;
}
ErrorMsg *err = err_msg_create_with_line(node->owner->path, node->line, node->column,
node->owner->source_code, node->owner->line_offsets, msg);
g->errors.append(err);
return err;
}
ErrorMsg *add_error_note(CodeGen *g, ErrorMsg *parent_msg, AstNode *node, Buf *msg) {
if (node->owner->c_import_node != nullptr) {
// if this happens, then translate_c generated code that
// failed semantic analysis, which isn't supposed to happen
Buf *note_path = buf_create_from_str("?.c");
Buf *note_source = buf_create_from_str("TODO: remember C source location to display here ");
ZigList<size_t> note_line_offsets = {0};
note_line_offsets.append(0);
ErrorMsg *note = err_msg_create_with_line(note_path, 0, 0,
note_source, &note_line_offsets, msg);
err_msg_add_note(parent_msg, note);
return note;
}
ErrorMsg *err = err_msg_create_with_line(node->owner->path, node->line, node->column,
node->owner->source_code, node->owner->line_offsets, msg);
err_msg_add_note(parent_msg, err);
return err;
}
TypeTableEntry *new_type_table_entry(TypeTableEntryId id) {
TypeTableEntry *entry = allocate<TypeTableEntry>(1);
entry->id = id;
return entry;
}
static ScopeDecls **get_container_scope_ptr(TypeTableEntry *type_entry) {
if (type_entry->id == TypeTableEntryIdStruct) {
return &type_entry->data.structure.decls_scope;
} else if (type_entry->id == TypeTableEntryIdEnum) {
return &type_entry->data.enumeration.decls_scope;
} else if (type_entry->id == TypeTableEntryIdUnion) {
return &type_entry->data.unionation.decls_scope;
}
zig_unreachable();
}
ScopeDecls *get_container_scope(TypeTableEntry *type_entry) {
return *get_container_scope_ptr(type_entry);
}
void init_scope(Scope *dest, ScopeId id, AstNode *source_node, Scope *parent) {
dest->id = id;
dest->source_node = source_node;
dest->parent = parent;
}
ScopeDecls *create_decls_scope(AstNode *node, Scope *parent, TypeTableEntry *container_type, ImportTableEntry *import) {
assert(node == nullptr || node->type == NodeTypeRoot || node->type == NodeTypeContainerDecl || node->type == NodeTypeFnCallExpr);
ScopeDecls *scope = allocate<ScopeDecls>(1);
init_scope(&scope->base, ScopeIdDecls, node, parent);
scope->decl_table.init(4);
scope->container_type = container_type;
scope->import = import;
return scope;
}
ScopeBlock *create_block_scope(AstNode *node, Scope *parent) {
assert(node->type == NodeTypeBlock);
ScopeBlock *scope = allocate<ScopeBlock>(1);
init_scope(&scope->base, ScopeIdBlock, node, parent);
scope->name = node->data.block.name;
return scope;
}
ScopeDefer *create_defer_scope(AstNode *node, Scope *parent) {
assert(node->type == NodeTypeDefer);
ScopeDefer *scope = allocate<ScopeDefer>(1);
init_scope(&scope->base, ScopeIdDefer, node, parent);
return scope;
}
ScopeDeferExpr *create_defer_expr_scope(AstNode *node, Scope *parent) {
assert(node->type == NodeTypeDefer);
ScopeDeferExpr *scope = allocate<ScopeDeferExpr>(1);
init_scope(&scope->base, ScopeIdDeferExpr, node, parent);
return scope;
}
Scope *create_var_scope(AstNode *node, Scope *parent, VariableTableEntry *var) {
ScopeVarDecl *scope = allocate<ScopeVarDecl>(1);
init_scope(&scope->base, ScopeIdVarDecl, node, parent);
scope->var = var;
return &scope->base;
}
ScopeCImport *create_cimport_scope(AstNode *node, Scope *parent) {
assert(node->type == NodeTypeFnCallExpr);
ScopeCImport *scope = allocate<ScopeCImport>(1);
init_scope(&scope->base, ScopeIdCImport, node, parent);
buf_resize(&scope->buf, 0);
return scope;
}
ScopeLoop *create_loop_scope(AstNode *node, Scope *parent) {
ScopeLoop *scope = allocate<ScopeLoop>(1);
init_scope(&scope->base, ScopeIdLoop, node, parent);
if (node->type == NodeTypeWhileExpr) {
scope->name = node->data.while_expr.name;
} else if (node->type == NodeTypeForExpr) {
scope->name = node->data.for_expr.name;
} else {
zig_unreachable();
}
return scope;
}
ScopeSuspend *create_suspend_scope(AstNode *node, Scope *parent) {
assert(node->type == NodeTypeSuspend);
ScopeSuspend *scope = allocate<ScopeSuspend>(1);
init_scope(&scope->base, ScopeIdSuspend, node, parent);
scope->name = node->data.suspend.name;
return scope;
}
ScopeFnDef *create_fndef_scope(AstNode *node, Scope *parent, FnTableEntry *fn_entry) {
ScopeFnDef *scope = allocate<ScopeFnDef>(1);
init_scope(&scope->base, ScopeIdFnDef, node, parent);
scope->fn_entry = fn_entry;
return scope;
}
Scope *create_comptime_scope(AstNode *node, Scope *parent) {
assert(node->type == NodeTypeCompTime || node->type == NodeTypeSwitchExpr);
ScopeCompTime *scope = allocate<ScopeCompTime>(1);
init_scope(&scope->base, ScopeIdCompTime, node, parent);
return &scope->base;
}
Scope *create_coro_prelude_scope(AstNode *node, Scope *parent) {
ScopeCoroPrelude *scope = allocate<ScopeCoroPrelude>(1);
init_scope(&scope->base, ScopeIdCoroPrelude, node, parent);
return &scope->base;
}
ImportTableEntry *get_scope_import(Scope *scope) {
while (scope) {
if (scope->id == ScopeIdDecls) {
ScopeDecls *decls_scope = (ScopeDecls *)scope;
assert(decls_scope->import);
return decls_scope->import;
}
scope = scope->parent;
}
zig_unreachable();
}
static TypeTableEntry *new_container_type_entry(TypeTableEntryId id, AstNode *source_node, Scope *parent_scope) {
TypeTableEntry *entry = new_type_table_entry(id);
*get_container_scope_ptr(entry) = create_decls_scope(source_node, parent_scope, entry, get_scope_import(parent_scope));
return entry;
}
static uint8_t bits_needed_for_unsigned(uint64_t x) {
if (x == 0) {
return 0;
}
uint8_t base = log2_u64(x);
uint64_t upper = (((uint64_t)1) << base) - 1;
return (upper >= x) ? base : (base + 1);
}
bool type_is_complete(TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdStruct:
return type_entry->data.structure.complete;
case TypeTableEntryIdEnum:
return type_entry->data.enumeration.complete;
case TypeTableEntryIdUnion:
return type_entry->data.unionation.complete;
case TypeTableEntryIdOpaque:
return false;
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdPromise:
return true;
}
zig_unreachable();
}
bool type_has_zero_bits_known(TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdStruct:
return type_entry->data.structure.zero_bits_known;
case TypeTableEntryIdEnum:
return type_entry->data.enumeration.zero_bits_known;
case TypeTableEntryIdUnion:
return type_entry->data.unionation.zero_bits_known;
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
case TypeTableEntryIdPromise:
return true;
}
zig_unreachable();
}
uint64_t type_size(CodeGen *g, TypeTableEntry *type_entry) {
assert(type_is_complete(type_entry));
if (!type_has_bits(type_entry))
return 0;
if (type_entry->id == TypeTableEntryIdStruct && type_entry->data.structure.layout == ContainerLayoutPacked) {
uint64_t size_in_bits = type_size_bits(g, type_entry);
return (size_in_bits + 7) / 8;
} else if (type_entry->id == TypeTableEntryIdArray) {
TypeTableEntry *child_type = type_entry->data.array.child_type;
if (child_type->id == TypeTableEntryIdStruct &&
child_type->data.structure.layout == ContainerLayoutPacked)
{
uint64_t size_in_bits = type_size_bits(g, type_entry);
return (size_in_bits + 7) / 8;
}
}
return LLVMStoreSizeOfType(g->target_data_ref, type_entry->type_ref);
}
uint64_t type_size_bits(CodeGen *g, TypeTableEntry *type_entry) {
assert(type_is_complete(type_entry));
if (!type_has_bits(type_entry))
return 0;
if (type_entry->id == TypeTableEntryIdStruct && type_entry->data.structure.layout == ContainerLayoutPacked) {
uint64_t result = 0;
for (size_t i = 0; i < type_entry->data.structure.src_field_count; i += 1) {
result += type_size_bits(g, type_entry->data.structure.fields[i].type_entry);
}
return result;
} else if (type_entry->id == TypeTableEntryIdArray) {
TypeTableEntry *child_type = type_entry->data.array.child_type;
if (child_type->id == TypeTableEntryIdStruct &&
child_type->data.structure.layout == ContainerLayoutPacked)
{
return type_entry->data.array.len * type_size_bits(g, child_type);
}
}
return LLVMSizeOfTypeInBits(g->target_data_ref, type_entry->type_ref);
}
bool type_is_copyable(CodeGen *g, TypeTableEntry *type_entry) {
type_ensure_zero_bits_known(g, type_entry);
if (!type_has_bits(type_entry))
return true;
if (!handle_is_ptr(type_entry))
return true;
ensure_complete_type(g, type_entry);
return type_entry->is_copyable;
}
static bool is_slice(TypeTableEntry *type) {
return type->id == TypeTableEntryIdStruct && type->data.structure.is_slice;
}
TypeTableEntry *get_smallest_unsigned_int_type(CodeGen *g, uint64_t x) {
return get_int_type(g, false, bits_needed_for_unsigned(x));
}
TypeTableEntry *get_promise_type(CodeGen *g, TypeTableEntry *result_type) {
if (result_type != nullptr && result_type->promise_parent != nullptr) {
return result_type->promise_parent;
} else if (result_type == nullptr && g->builtin_types.entry_promise != nullptr) {
return g->builtin_types.entry_promise;
}
TypeTableEntry *u8_ptr_type = get_pointer_to_type(g, g->builtin_types.entry_u8, false);
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdPromise);
entry->type_ref = u8_ptr_type->type_ref;
entry->zero_bits = false;
entry->data.promise.result_type = result_type;
buf_init_from_str(&entry->name, "promise");
if (result_type != nullptr) {
buf_appendf(&entry->name, "->%s", buf_ptr(&result_type->name));
}
entry->di_type = u8_ptr_type->di_type;
if (result_type != nullptr) {
result_type->promise_parent = entry;
} else if (result_type == nullptr) {
g->builtin_types.entry_promise = entry;
}
return entry;
}
TypeTableEntry *get_pointer_to_type_extra(CodeGen *g, TypeTableEntry *child_type, bool is_const,
bool is_volatile, PtrLen ptr_len, uint32_t byte_alignment, uint32_t bit_offset, uint32_t unaligned_bit_count)
{
assert(!type_is_invalid(child_type));
assert(ptr_len == PtrLenSingle || child_type->id != TypeTableEntryIdOpaque);
TypeId type_id = {};
TypeTableEntry **parent_pointer = nullptr;
uint32_t abi_alignment = get_abi_alignment(g, child_type);
if (unaligned_bit_count != 0 || is_volatile || byte_alignment != abi_alignment || ptr_len != PtrLenSingle) {
type_id.id = TypeTableEntryIdPointer;
type_id.data.pointer.child_type = child_type;
type_id.data.pointer.is_const = is_const;
type_id.data.pointer.is_volatile = is_volatile;
type_id.data.pointer.alignment = byte_alignment;
type_id.data.pointer.bit_offset = bit_offset;
type_id.data.pointer.unaligned_bit_count = unaligned_bit_count;
type_id.data.pointer.ptr_len = ptr_len;
auto existing_entry = g->type_table.maybe_get(type_id);
if (existing_entry)
return existing_entry->value;
} else {
assert(bit_offset == 0);
parent_pointer = &child_type->pointer_parent[(is_const ? 1 : 0)];
if (*parent_pointer) {
assert((*parent_pointer)->data.pointer.alignment == byte_alignment);
return *parent_pointer;
}
}
type_ensure_zero_bits_known(g, child_type);
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdPointer);
entry->is_copyable = true;
const char *star_str = ptr_len == PtrLenSingle ? "*" : "[*]";
const char *const_str = is_const ? "const " : "";
const char *volatile_str = is_volatile ? "volatile " : "";
buf_resize(&entry->name, 0);
if (unaligned_bit_count == 0 && byte_alignment == abi_alignment) {
buf_appendf(&entry->name, "%s%s%s%s", star_str, const_str, volatile_str, buf_ptr(&child_type->name));
} else if (unaligned_bit_count == 0) {
buf_appendf(&entry->name, "%salign(%" PRIu32 ") %s%s%s", star_str, byte_alignment,
const_str, volatile_str, buf_ptr(&child_type->name));
} else {
buf_appendf(&entry->name, "%salign(%" PRIu32 ":%" PRIu32 ":%" PRIu32 ") %s%s%s", star_str, byte_alignment,
bit_offset, bit_offset + unaligned_bit_count, const_str, volatile_str, buf_ptr(&child_type->name));
}
assert(child_type->id != TypeTableEntryIdInvalid);
entry->zero_bits = !type_has_bits(child_type);
if (!entry->zero_bits) {
assert(byte_alignment > 0);
if (is_const || is_volatile || unaligned_bit_count != 0 || byte_alignment != abi_alignment ||
ptr_len != PtrLenSingle)
{
TypeTableEntry *peer_type = get_pointer_to_type(g, child_type, false);
entry->type_ref = peer_type->type_ref;
entry->di_type = peer_type->di_type;
} else {
entry->type_ref = LLVMPointerType(child_type->type_ref, 0);
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, entry->type_ref);
assert(child_type->di_type);
entry->di_type = ZigLLVMCreateDebugPointerType(g->dbuilder, child_type->di_type,
debug_size_in_bits, debug_align_in_bits, buf_ptr(&entry->name));
}
} else {
assert(byte_alignment == 0);
entry->di_type = g->builtin_types.entry_void->di_type;
}
entry->data.pointer.ptr_len = ptr_len;
entry->data.pointer.child_type = child_type;
entry->data.pointer.is_const = is_const;
entry->data.pointer.is_volatile = is_volatile;
entry->data.pointer.alignment = byte_alignment;
entry->data.pointer.bit_offset = bit_offset;
entry->data.pointer.unaligned_bit_count = unaligned_bit_count;
if (parent_pointer) {
*parent_pointer = entry;
} else {
g->type_table.put(type_id, entry);
}
return entry;
}
TypeTableEntry *get_pointer_to_type(CodeGen *g, TypeTableEntry *child_type, bool is_const) {
return get_pointer_to_type_extra(g, child_type, is_const, false, PtrLenSingle,
get_abi_alignment(g, child_type), 0, 0);
}
TypeTableEntry *get_promise_frame_type(CodeGen *g, TypeTableEntry *return_type) {
if (return_type->promise_frame_parent != nullptr) {
return return_type->promise_frame_parent;
}
TypeTableEntry *awaiter_handle_type = get_maybe_type(g, g->builtin_types.entry_promise);
TypeTableEntry *result_ptr_type = get_pointer_to_type(g, return_type, false);
ZigList<const char *> field_names = {};
field_names.append(AWAITER_HANDLE_FIELD_NAME);
field_names.append(RESULT_FIELD_NAME);
field_names.append(RESULT_PTR_FIELD_NAME);
if (g->have_err_ret_tracing) {
field_names.append(ERR_RET_TRACE_PTR_FIELD_NAME);
field_names.append(ERR_RET_TRACE_FIELD_NAME);
field_names.append(RETURN_ADDRESSES_FIELD_NAME);
}
ZigList<TypeTableEntry *> field_types = {};
field_types.append(awaiter_handle_type);
field_types.append(return_type);
field_types.append(result_ptr_type);
if (g->have_err_ret_tracing) {
field_types.append(get_ptr_to_stack_trace_type(g));
field_types.append(g->stack_trace_type);
field_types.append(get_array_type(g, g->builtin_types.entry_usize, stack_trace_ptr_count));
}
assert(field_names.length == field_types.length);
Buf *name = buf_sprintf("AsyncFramePromise(%s)", buf_ptr(&return_type->name));
TypeTableEntry *entry = get_struct_type(g, buf_ptr(name), field_names.items, field_types.items, field_names.length);
return_type->promise_frame_parent = entry;
return entry;
}
TypeTableEntry *get_maybe_type(CodeGen *g, TypeTableEntry *child_type) {
if (child_type->maybe_parent) {
TypeTableEntry *entry = child_type->maybe_parent;
return entry;
} else {
ensure_complete_type(g, child_type);
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdOptional);
assert(child_type->type_ref || child_type->zero_bits);
entry->is_copyable = type_is_copyable(g, child_type);
buf_resize(&entry->name, 0);
buf_appendf(&entry->name, "?%s", buf_ptr(&child_type->name));
if (child_type->zero_bits) {
entry->type_ref = LLVMInt1Type();
entry->di_type = g->builtin_types.entry_bool->di_type;
} else if (type_is_codegen_pointer(child_type)) {
assert(child_type->di_type);
// this is an optimization but also is necessary for calling C
// functions where all pointers are maybe pointers
// function types are technically pointers
entry->type_ref = child_type->type_ref;
entry->di_type = child_type->di_type;
} else {
assert(child_type->di_type);
// create a struct with a boolean whether this is the null value
LLVMTypeRef elem_types[] = {
child_type->type_ref,
LLVMInt1Type(),
};
entry->type_ref = LLVMStructType(elem_types, 2, false);
ZigLLVMDIScope *compile_unit_scope = ZigLLVMCompileUnitToScope(g->compile_unit);
ZigLLVMDIFile *di_file = nullptr;
unsigned line = 0;
entry->di_type = ZigLLVMCreateReplaceableCompositeType(g->dbuilder,
ZigLLVMTag_DW_structure_type(), buf_ptr(&entry->name),
compile_unit_scope, di_file, line);
uint64_t val_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, child_type->type_ref);
uint64_t val_debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, child_type->type_ref);
uint64_t val_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, entry->type_ref, 0);
TypeTableEntry *bool_type = g->builtin_types.entry_bool;
uint64_t maybe_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, bool_type->type_ref);
uint64_t maybe_debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, bool_type->type_ref);
uint64_t maybe_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, entry->type_ref, 1);
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, entry->type_ref);
ZigLLVMDIType *di_element_types[] = {
ZigLLVMCreateDebugMemberType(g->dbuilder, ZigLLVMTypeToScope(entry->di_type),
"val", di_file, line,
val_debug_size_in_bits,
val_debug_align_in_bits,
val_offset_in_bits,
0, child_type->di_type),
ZigLLVMCreateDebugMemberType(g->dbuilder, ZigLLVMTypeToScope(entry->di_type),
"maybe", di_file, line,
maybe_debug_size_in_bits,
maybe_debug_align_in_bits,
maybe_offset_in_bits,
0, bool_type->di_type),
};
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
compile_unit_scope,
buf_ptr(&entry->name),
di_file, line, debug_size_in_bits, debug_align_in_bits, 0,
nullptr, di_element_types, 2, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, entry->di_type, replacement_di_type);
entry->di_type = replacement_di_type;
}
entry->data.maybe.child_type = child_type;
child_type->maybe_parent = entry;
return entry;
}
}
TypeTableEntry *get_error_union_type(CodeGen *g, TypeTableEntry *err_set_type, TypeTableEntry *payload_type) {
assert(err_set_type->id == TypeTableEntryIdErrorSet);
assert(!type_is_invalid(payload_type));
TypeId type_id = {};
type_id.id = TypeTableEntryIdErrorUnion;
type_id.data.error_union.err_set_type = err_set_type;
type_id.data.error_union.payload_type = payload_type;
auto existing_entry = g->type_table.maybe_get(type_id);
if (existing_entry) {
return existing_entry->value;
}
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdErrorUnion);
entry->is_copyable = true;
assert(payload_type->di_type);
ensure_complete_type(g, payload_type);
buf_resize(&entry->name, 0);
buf_appendf(&entry->name, "%s!%s", buf_ptr(&err_set_type->name), buf_ptr(&payload_type->name));
entry->data.error_union.err_set_type = err_set_type;
entry->data.error_union.payload_type = payload_type;
if (!type_has_bits(payload_type)) {
if (type_has_bits(err_set_type)) {
entry->type_ref = err_set_type->type_ref;
entry->di_type = err_set_type->di_type;
g->error_di_types.append(&entry->di_type);
} else {
entry->zero_bits = true;
entry->di_type = g->builtin_types.entry_void->di_type;
}
} else if (!type_has_bits(err_set_type)) {
entry->type_ref = payload_type->type_ref;
entry->di_type = payload_type->di_type;
} else {
LLVMTypeRef elem_types[] = {
err_set_type->type_ref,
payload_type->type_ref,
};
entry->type_ref = LLVMStructType(elem_types, 2, false);
ZigLLVMDIScope *compile_unit_scope = ZigLLVMCompileUnitToScope(g->compile_unit);
ZigLLVMDIFile *di_file = nullptr;
unsigned line = 0;
entry->di_type = ZigLLVMCreateReplaceableCompositeType(g->dbuilder,
ZigLLVMTag_DW_structure_type(), buf_ptr(&entry->name),
compile_unit_scope, di_file, line);
uint64_t tag_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, err_set_type->type_ref);
uint64_t tag_debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, err_set_type->type_ref);
uint64_t tag_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, entry->type_ref, err_union_err_index);
uint64_t value_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, payload_type->type_ref);
uint64_t value_debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, payload_type->type_ref);
uint64_t value_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, entry->type_ref,
err_union_payload_index);
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, entry->type_ref);
ZigLLVMDIType *di_element_types[] = {
ZigLLVMCreateDebugMemberType(g->dbuilder, ZigLLVMTypeToScope(entry->di_type),
"tag", di_file, line,
tag_debug_size_in_bits,
tag_debug_align_in_bits,
tag_offset_in_bits,
0, err_set_type->di_type),
ZigLLVMCreateDebugMemberType(g->dbuilder, ZigLLVMTypeToScope(entry->di_type),
"value", di_file, line,
value_debug_size_in_bits,
value_debug_align_in_bits,
value_offset_in_bits,
0, payload_type->di_type),
};
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
compile_unit_scope,
buf_ptr(&entry->name),
di_file, line,
debug_size_in_bits,
debug_align_in_bits,
0,
nullptr, di_element_types, 2, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, entry->di_type, replacement_di_type);
entry->di_type = replacement_di_type;
}
g->type_table.put(type_id, entry);
return entry;
}
TypeTableEntry *get_array_type(CodeGen *g, TypeTableEntry *child_type, uint64_t array_size) {
TypeId type_id = {};
type_id.id = TypeTableEntryIdArray;
type_id.data.array.child_type = child_type;
type_id.data.array.size = array_size;
auto existing_entry = g->type_table.maybe_get(type_id);
if (existing_entry) {
TypeTableEntry *entry = existing_entry->value;
return entry;
}
ensure_complete_type(g, child_type);
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdArray);
entry->zero_bits = (array_size == 0) || child_type->zero_bits;
entry->is_copyable = false;
buf_resize(&entry->name, 0);
buf_appendf(&entry->name, "[%" ZIG_PRI_u64 "]%s", array_size, buf_ptr(&child_type->name));
if (entry->zero_bits) {
entry->di_type = ZigLLVMCreateDebugArrayType(g->dbuilder, 0,
0, child_type->di_type, 0);
} else {
entry->type_ref = child_type->type_ref ? LLVMArrayType(child_type->type_ref,
(unsigned int)array_size) : nullptr;
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, entry->type_ref);
entry->di_type = ZigLLVMCreateDebugArrayType(g->dbuilder, debug_size_in_bits,
debug_align_in_bits, child_type->di_type, (int)array_size);
}
entry->data.array.child_type = child_type;
entry->data.array.len = array_size;
g->type_table.put(type_id, entry);
return entry;
}
static void slice_type_common_init(CodeGen *g, TypeTableEntry *pointer_type, TypeTableEntry *entry) {
unsigned element_count = 2;
Buf *ptr_field_name = buf_create_from_str("ptr");
Buf *len_field_name = buf_create_from_str("len");
entry->data.structure.layout = ContainerLayoutAuto;
entry->data.structure.is_slice = true;
entry->data.structure.src_field_count = element_count;
entry->data.structure.gen_field_count = element_count;
entry->data.structure.fields = allocate<TypeStructField>(element_count);
entry->data.structure.fields_by_name.init(element_count);
entry->data.structure.fields[slice_ptr_index].name = ptr_field_name;
entry->data.structure.fields[slice_ptr_index].type_entry = pointer_type;
entry->data.structure.fields[slice_ptr_index].src_index = slice_ptr_index;
entry->data.structure.fields[slice_ptr_index].gen_index = 0;
entry->data.structure.fields[slice_len_index].name = len_field_name;
entry->data.structure.fields[slice_len_index].type_entry = g->builtin_types.entry_usize;
entry->data.structure.fields[slice_len_index].src_index = slice_len_index;
entry->data.structure.fields[slice_len_index].gen_index = 1;
entry->data.structure.fields_by_name.put(ptr_field_name, &entry->data.structure.fields[slice_ptr_index]);
entry->data.structure.fields_by_name.put(len_field_name, &entry->data.structure.fields[slice_len_index]);
assert(type_has_zero_bits_known(pointer_type->data.pointer.child_type));
if (pointer_type->data.pointer.child_type->zero_bits) {
entry->data.structure.gen_field_count = 1;
entry->data.structure.fields[slice_ptr_index].gen_index = SIZE_MAX;
entry->data.structure.fields[slice_len_index].gen_index = 0;
}
}
TypeTableEntry *get_slice_type(CodeGen *g, TypeTableEntry *ptr_type) {
assert(ptr_type->id == TypeTableEntryIdPointer);
assert(ptr_type->data.pointer.ptr_len == PtrLenUnknown);
TypeTableEntry **parent_pointer = &ptr_type->data.pointer.slice_parent;
if (*parent_pointer) {
return *parent_pointer;
}
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdStruct);
entry->is_copyable = true;
// replace the & with [] to go from a ptr type name to a slice type name
buf_resize(&entry->name, 0);
size_t name_offset = (ptr_type->data.pointer.ptr_len == PtrLenSingle) ? 1 : 3;
buf_appendf(&entry->name, "[]%s", buf_ptr(&ptr_type->name) + name_offset);
TypeTableEntry *child_type = ptr_type->data.pointer.child_type;
uint32_t abi_alignment = get_abi_alignment(g, child_type);
if (ptr_type->data.pointer.is_const || ptr_type->data.pointer.is_volatile ||
ptr_type->data.pointer.alignment != abi_alignment)
{
TypeTableEntry *peer_ptr_type = get_pointer_to_type_extra(g, child_type, false, false,
PtrLenUnknown, abi_alignment, 0, 0);
TypeTableEntry *peer_slice_type = get_slice_type(g, peer_ptr_type);
slice_type_common_init(g, ptr_type, entry);
entry->type_ref = peer_slice_type->type_ref;
entry->di_type = peer_slice_type->di_type;
entry->data.structure.complete = true;
entry->data.structure.zero_bits_known = true;
entry->data.structure.abi_alignment = peer_slice_type->data.structure.abi_alignment;
*parent_pointer = entry;
return entry;
}
// If the child type is []const T then we need to make sure the type ref
// and debug info is the same as if the child type were []T.
if (is_slice(child_type)) {
TypeTableEntry *child_ptr_type = child_type->data.structure.fields[slice_ptr_index].type_entry;
assert(child_ptr_type->id == TypeTableEntryIdPointer);
TypeTableEntry *grand_child_type = child_ptr_type->data.pointer.child_type;
if (child_ptr_type->data.pointer.is_const || child_ptr_type->data.pointer.is_volatile ||
child_ptr_type->data.pointer.alignment != get_abi_alignment(g, grand_child_type))
{
TypeTableEntry *bland_child_ptr_type = get_pointer_to_type_extra(g, grand_child_type, false, false,
PtrLenUnknown, get_abi_alignment(g, grand_child_type), 0, 0);
TypeTableEntry *bland_child_slice = get_slice_type(g, bland_child_ptr_type);
TypeTableEntry *peer_ptr_type = get_pointer_to_type_extra(g, bland_child_slice, false, false,
PtrLenUnknown, get_abi_alignment(g, bland_child_slice), 0, 0);
TypeTableEntry *peer_slice_type = get_slice_type(g, peer_ptr_type);
entry->type_ref = peer_slice_type->type_ref;
entry->di_type = peer_slice_type->di_type;
entry->data.structure.abi_alignment = peer_slice_type->data.structure.abi_alignment;
}
}
slice_type_common_init(g, ptr_type, entry);
if (!entry->type_ref) {
entry->type_ref = LLVMStructCreateNamed(LLVMGetGlobalContext(), buf_ptr(&entry->name));
ZigLLVMDIScope *compile_unit_scope = ZigLLVMCompileUnitToScope(g->compile_unit);
ZigLLVMDIFile *di_file = nullptr;
unsigned line = 0;
entry->di_type = ZigLLVMCreateReplaceableCompositeType(g->dbuilder,
ZigLLVMTag_DW_structure_type(), buf_ptr(&entry->name),
compile_unit_scope, di_file, line);
if (child_type->zero_bits) {
LLVMTypeRef element_types[] = {
g->builtin_types.entry_usize->type_ref,
};
LLVMStructSetBody(entry->type_ref, element_types, 1, false);
TypeTableEntry *usize_type = g->builtin_types.entry_usize;
uint64_t len_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, usize_type->type_ref);
uint64_t len_debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, usize_type->type_ref);
uint64_t len_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, entry->type_ref, 0);
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, entry->type_ref);
ZigLLVMDIType *di_element_types[] = {
ZigLLVMCreateDebugMemberType(g->dbuilder, ZigLLVMTypeToScope(entry->di_type),
"len", di_file, line,
len_debug_size_in_bits,
len_debug_align_in_bits,
len_offset_in_bits,
0, usize_type->di_type),
};
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
compile_unit_scope,
buf_ptr(&entry->name),
di_file, line, debug_size_in_bits, debug_align_in_bits, 0,
nullptr, di_element_types, 1, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, entry->di_type, replacement_di_type);
entry->di_type = replacement_di_type;
entry->data.structure.abi_alignment = LLVMABIAlignmentOfType(g->target_data_ref, usize_type->type_ref);
} else {
unsigned element_count = 2;
LLVMTypeRef element_types[] = {
ptr_type->type_ref,
g->builtin_types.entry_usize->type_ref,
};
LLVMStructSetBody(entry->type_ref, element_types, element_count, false);
uint64_t ptr_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, ptr_type->type_ref);
uint64_t ptr_debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, ptr_type->type_ref);
uint64_t ptr_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, entry->type_ref, 0);
TypeTableEntry *usize_type = g->builtin_types.entry_usize;
uint64_t len_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, usize_type->type_ref);
uint64_t len_debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, usize_type->type_ref);
uint64_t len_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, entry->type_ref, 1);
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, entry->type_ref);
ZigLLVMDIType *di_element_types[] = {
ZigLLVMCreateDebugMemberType(g->dbuilder, ZigLLVMTypeToScope(entry->di_type),
"ptr", di_file, line,
ptr_debug_size_in_bits,
ptr_debug_align_in_bits,
ptr_offset_in_bits,
0, ptr_type->di_type),
ZigLLVMCreateDebugMemberType(g->dbuilder, ZigLLVMTypeToScope(entry->di_type),
"len", di_file, line,
len_debug_size_in_bits,
len_debug_align_in_bits,
len_offset_in_bits,
0, usize_type->di_type),
};
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
compile_unit_scope,
buf_ptr(&entry->name),
di_file, line, debug_size_in_bits, debug_align_in_bits, 0,
nullptr, di_element_types, 2, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, entry->di_type, replacement_di_type);
entry->di_type = replacement_di_type;
entry->data.structure.abi_alignment = LLVMABIAlignmentOfType(g->target_data_ref, entry->type_ref);
}
}
entry->data.structure.complete = true;
entry->data.structure.zero_bits_known = true;
*parent_pointer = entry;
return entry;
}
TypeTableEntry *get_opaque_type(CodeGen *g, Scope *scope, AstNode *source_node, const char *name) {
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdOpaque);
buf_init_from_str(&entry->name, name);
ImportTableEntry *import = scope ? get_scope_import(scope) : nullptr;
unsigned line = source_node ? (unsigned)(source_node->line + 1) : 0;
entry->is_copyable = false;
entry->type_ref = LLVMInt8Type();
entry->di_type = ZigLLVMCreateDebugForwardDeclType(g->dbuilder,
ZigLLVMTag_DW_structure_type(), buf_ptr(&entry->name),
import ? ZigLLVMFileToScope(import->di_file) : nullptr,
import ? import->di_file : nullptr,
line);
entry->zero_bits = false;
return entry;
}
TypeTableEntry *get_bound_fn_type(CodeGen *g, FnTableEntry *fn_entry) {
TypeTableEntry *fn_type = fn_entry->type_entry;
assert(fn_type->id == TypeTableEntryIdFn);
if (fn_type->data.fn.bound_fn_parent)
return fn_type->data.fn.bound_fn_parent;
TypeTableEntry *bound_fn_type = new_type_table_entry(TypeTableEntryIdBoundFn);
bound_fn_type->is_copyable = false;
bound_fn_type->data.bound_fn.fn_type = fn_type;
bound_fn_type->zero_bits = true;
buf_resize(&bound_fn_type->name, 0);
buf_appendf(&bound_fn_type->name, "(bound %s)", buf_ptr(&fn_type->name));
fn_type->data.fn.bound_fn_parent = bound_fn_type;
return bound_fn_type;
}
bool calling_convention_does_first_arg_return(CallingConvention cc) {
return cc == CallingConventionUnspecified;
}
static const char *calling_convention_name(CallingConvention cc) {
switch (cc) {
case CallingConventionUnspecified: return "undefined";
case CallingConventionC: return "ccc";
case CallingConventionCold: return "coldcc";
case CallingConventionNaked: return "nakedcc";
case CallingConventionStdcall: return "stdcallcc";
case CallingConventionAsync: return "async";
}
zig_unreachable();
}
static const char *calling_convention_fn_type_str(CallingConvention cc) {
switch (cc) {
case CallingConventionUnspecified: return "";
case CallingConventionC: return "extern ";
case CallingConventionCold: return "coldcc ";
case CallingConventionNaked: return "nakedcc ";
case CallingConventionStdcall: return "stdcallcc ";
case CallingConventionAsync: return "async ";
}
zig_unreachable();
}
static bool calling_convention_allows_zig_types(CallingConvention cc) {
switch (cc) {
case CallingConventionUnspecified:
case CallingConventionAsync:
return true;
case CallingConventionC:
case CallingConventionCold:
case CallingConventionNaked:
case CallingConventionStdcall:
return false;
}
zig_unreachable();
}
TypeTableEntry *get_ptr_to_stack_trace_type(CodeGen *g) {
if (g->stack_trace_type == nullptr) {
ConstExprValue *stack_trace_type_val = get_builtin_value(g, "StackTrace");
assert(stack_trace_type_val->type->id == TypeTableEntryIdMetaType);
g->stack_trace_type = stack_trace_type_val->data.x_type;
g->ptr_to_stack_trace_type = get_pointer_to_type(g, g->stack_trace_type, false);
}
return g->ptr_to_stack_trace_type;
}
TypeTableEntry *get_fn_type(CodeGen *g, FnTypeId *fn_type_id) {
auto table_entry = g->fn_type_table.maybe_get(fn_type_id);
if (table_entry) {
return table_entry->value;
}
if (fn_type_id->return_type != nullptr) {
ensure_complete_type(g, fn_type_id->return_type);
if (type_is_invalid(fn_type_id->return_type))
return g->builtin_types.entry_invalid;
} else {
zig_panic("TODO implement inferred return types https://github.com/ziglang/zig/issues/447");
}
TypeTableEntry *fn_type = new_type_table_entry(TypeTableEntryIdFn);
fn_type->is_copyable = true;
fn_type->data.fn.fn_type_id = *fn_type_id;
bool skip_debug_info = false;
// populate the name of the type
buf_resize(&fn_type->name, 0);
if (fn_type->data.fn.fn_type_id.cc == CallingConventionAsync) {
assert(fn_type_id->async_allocator_type != nullptr);
buf_appendf(&fn_type->name, "async<%s> ", buf_ptr(&fn_type_id->async_allocator_type->name));
} else {
const char *cc_str = calling_convention_fn_type_str(fn_type->data.fn.fn_type_id.cc);
buf_appendf(&fn_type->name, "%s", cc_str);
}
buf_appendf(&fn_type->name, "fn(");
for (size_t i = 0; i < fn_type_id->param_count; i += 1) {
FnTypeParamInfo *param_info = &fn_type_id->param_info[i];
TypeTableEntry *param_type = param_info->type;
const char *comma = (i == 0) ? "" : ", ";
const char *noalias_str = param_info->is_noalias ? "noalias " : "";
buf_appendf(&fn_type->name, "%s%s%s", comma, noalias_str, buf_ptr(&param_type->name));
skip_debug_info = skip_debug_info || !param_type->di_type;
}
if (fn_type_id->is_var_args) {
const char *comma = (fn_type_id->param_count == 0) ? "" : ", ";
buf_appendf(&fn_type->name, "%s...", comma);
}
buf_appendf(&fn_type->name, ")");
if (fn_type_id->alignment != 0) {
buf_appendf(&fn_type->name, " align(%" PRIu32 ")", fn_type_id->alignment);
}
buf_appendf(&fn_type->name, " %s", buf_ptr(&fn_type_id->return_type->name));
skip_debug_info = skip_debug_info || !fn_type_id->return_type->di_type;
// next, loop over the parameters again and compute debug information
// and codegen information
if (!skip_debug_info) {
bool first_arg_return = calling_convention_does_first_arg_return(fn_type_id->cc) &&
handle_is_ptr(fn_type_id->return_type);
bool is_async = fn_type_id->cc == CallingConventionAsync;
bool prefix_arg_error_return_trace = g->have_err_ret_tracing && fn_type_can_fail(fn_type_id);
// +1 for maybe making the first argument the return value
// +1 for maybe first argument the error return trace
// +2 for maybe arguments async allocator and error code pointer
LLVMTypeRef *gen_param_types = allocate<LLVMTypeRef>(4 + fn_type_id->param_count);
// +1 because 0 is the return type and
// +1 for maybe making first arg ret val and
// +1 for maybe first argument the error return trace
// +2 for maybe arguments async allocator and error code pointer
ZigLLVMDIType **param_di_types = allocate<ZigLLVMDIType*>(5 + fn_type_id->param_count);
param_di_types[0] = fn_type_id->return_type->di_type;
size_t gen_param_index = 0;
TypeTableEntry *gen_return_type;
if (is_async) {
gen_return_type = get_pointer_to_type(g, g->builtin_types.entry_u8, false);
} else if (!type_has_bits(fn_type_id->return_type)) {
gen_return_type = g->builtin_types.entry_void;
} else if (first_arg_return) {
TypeTableEntry *gen_type = get_pointer_to_type(g, fn_type_id->return_type, false);
gen_param_types[gen_param_index] = gen_type->type_ref;
gen_param_index += 1;
// after the gen_param_index += 1 because 0 is the return type
param_di_types[gen_param_index] = gen_type->di_type;
gen_return_type = g->builtin_types.entry_void;
} else {
gen_return_type = fn_type_id->return_type;
}
fn_type->data.fn.gen_return_type = gen_return_type;
if (prefix_arg_error_return_trace) {
TypeTableEntry *gen_type = get_ptr_to_stack_trace_type(g);
gen_param_types[gen_param_index] = gen_type->type_ref;
gen_param_index += 1;
// after the gen_param_index += 1 because 0 is the return type
param_di_types[gen_param_index] = gen_type->di_type;
}
if (is_async) {
{
// async allocator param
TypeTableEntry *gen_type = fn_type_id->async_allocator_type;
gen_param_types[gen_param_index] = gen_type->type_ref;
gen_param_index += 1;
// after the gen_param_index += 1 because 0 is the return type
param_di_types[gen_param_index] = gen_type->di_type;
}
{
// error code pointer
TypeTableEntry *gen_type = get_pointer_to_type(g, g->builtin_types.entry_global_error_set, false);
gen_param_types[gen_param_index] = gen_type->type_ref;
gen_param_index += 1;
// after the gen_param_index += 1 because 0 is the return type
param_di_types[gen_param_index] = gen_type->di_type;
}
}
fn_type->data.fn.gen_param_info = allocate<FnGenParamInfo>(fn_type_id->param_count);
for (size_t i = 0; i < fn_type_id->param_count; i += 1) {
FnTypeParamInfo *src_param_info = &fn_type->data.fn.fn_type_id.param_info[i];
TypeTableEntry *type_entry = src_param_info->type;
FnGenParamInfo *gen_param_info = &fn_type->data.fn.gen_param_info[i];
gen_param_info->src_index = i;
gen_param_info->gen_index = SIZE_MAX;
ensure_complete_type(g, type_entry);
if (type_is_invalid(type_entry))
return g->builtin_types.entry_invalid;
if (type_has_bits(type_entry)) {
TypeTableEntry *gen_type;
if (handle_is_ptr(type_entry)) {
gen_type = get_pointer_to_type(g, type_entry, true);
gen_param_info->is_byval = true;
} else {
gen_type = type_entry;
}
gen_param_types[gen_param_index] = gen_type->type_ref;
gen_param_info->gen_index = gen_param_index;
gen_param_info->type = gen_type;
gen_param_index += 1;
// after the gen_param_index += 1 because 0 is the return type
param_di_types[gen_param_index] = gen_type->di_type;
}
}
fn_type->data.fn.gen_param_count = gen_param_index;
fn_type->data.fn.raw_type_ref = LLVMFunctionType(gen_return_type->type_ref,
gen_param_types, (unsigned int)gen_param_index, fn_type_id->is_var_args);
fn_type->type_ref = LLVMPointerType(fn_type->data.fn.raw_type_ref, 0);
fn_type->di_type = ZigLLVMCreateSubroutineType(g->dbuilder, param_di_types, (int)(gen_param_index + 1), 0);
}
g->fn_type_table.put(&fn_type->data.fn.fn_type_id, fn_type);
return fn_type;
}
static TypeTableEntryId container_to_type(ContainerKind kind) {
switch (kind) {
case ContainerKindStruct:
return TypeTableEntryIdStruct;
case ContainerKindEnum:
return TypeTableEntryIdEnum;
case ContainerKindUnion:
return TypeTableEntryIdUnion;
}
zig_unreachable();
}
TypeTableEntry *get_partial_container_type(CodeGen *g, Scope *scope, ContainerKind kind,
AstNode *decl_node, const char *name, ContainerLayout layout)
{
TypeTableEntryId type_id = container_to_type(kind);
TypeTableEntry *entry = new_container_type_entry(type_id, decl_node, scope);
switch (kind) {
case ContainerKindStruct:
entry->data.structure.decl_node = decl_node;
entry->data.structure.layout = layout;
break;
case ContainerKindEnum:
entry->data.enumeration.decl_node = decl_node;
entry->data.enumeration.layout = layout;
break;
case ContainerKindUnion:
entry->data.unionation.decl_node = decl_node;
entry->data.unionation.layout = layout;
break;
}
size_t line = decl_node ? decl_node->line : 0;
unsigned dwarf_kind = ZigLLVMTag_DW_structure_type();
ImportTableEntry *import = get_scope_import(scope);
entry->type_ref = LLVMStructCreateNamed(LLVMGetGlobalContext(), name);
entry->di_type = ZigLLVMCreateReplaceableCompositeType(g->dbuilder,
dwarf_kind, name,
ZigLLVMFileToScope(import->di_file), import->di_file, (unsigned)(line + 1));
buf_init_from_str(&entry->name, name);
return entry;
}
static IrInstruction *analyze_const_value(CodeGen *g, Scope *scope, AstNode *node, TypeTableEntry *type_entry, Buf *type_name) {
size_t backward_branch_count = 0;
return ir_eval_const_value(g, scope, node, type_entry,
&backward_branch_count, default_backward_branch_quota,
nullptr, nullptr, node, type_name, nullptr);
}
TypeTableEntry *analyze_type_expr(CodeGen *g, Scope *scope, AstNode *node) {
IrInstruction *result = analyze_const_value(g, scope, node, g->builtin_types.entry_type, nullptr);
if (result->value.type->id == TypeTableEntryIdInvalid)
return g->builtin_types.entry_invalid;
assert(result->value.special != ConstValSpecialRuntime);
return result->value.data.x_type;
}
TypeTableEntry *get_generic_fn_type(CodeGen *g, FnTypeId *fn_type_id) {
TypeTableEntry *fn_type = new_type_table_entry(TypeTableEntryIdFn);
fn_type->is_copyable = false;
buf_resize(&fn_type->name, 0);
if (fn_type->data.fn.fn_type_id.cc == CallingConventionAsync) {
const char *async_allocator_type_str = (fn_type->data.fn.fn_type_id.async_allocator_type == nullptr) ?
"var" : buf_ptr(&fn_type_id->async_allocator_type->name);
buf_appendf(&fn_type->name, "async(%s) ", async_allocator_type_str);
} else {
const char *cc_str = calling_convention_fn_type_str(fn_type->data.fn.fn_type_id.cc);
buf_appendf(&fn_type->name, "%s", cc_str);
}
buf_appendf(&fn_type->name, "fn(");
size_t i = 0;
for (; i < fn_type_id->next_param_index; i += 1) {
const char *comma_str = (i == 0) ? "" : ",";
buf_appendf(&fn_type->name, "%s%s", comma_str,
buf_ptr(&fn_type_id->param_info[i].type->name));
}
for (; i < fn_type_id->param_count; i += 1) {
const char *comma_str = (i == 0) ? "" : ",";
buf_appendf(&fn_type->name, "%svar", comma_str);
}
buf_appendf(&fn_type->name, ")var");
fn_type->data.fn.fn_type_id = *fn_type_id;
fn_type->data.fn.is_generic = true;
fn_type->zero_bits = true;
return fn_type;
}
void init_fn_type_id(FnTypeId *fn_type_id, AstNode *proto_node, size_t param_count_alloc) {
assert(proto_node->type == NodeTypeFnProto);
AstNodeFnProto *fn_proto = &proto_node->data.fn_proto;
if (fn_proto->cc == CallingConventionUnspecified) {
bool extern_abi = fn_proto->is_extern || fn_proto->is_export;
fn_type_id->cc = extern_abi ? CallingConventionC : CallingConventionUnspecified;
} else {
fn_type_id->cc = fn_proto->cc;
}
fn_type_id->param_count = fn_proto->params.length;
fn_type_id->param_info = allocate<FnTypeParamInfo>(param_count_alloc);
fn_type_id->next_param_index = 0;
fn_type_id->is_var_args = fn_proto->is_var_args;
}
static bool analyze_const_align(CodeGen *g, Scope *scope, AstNode *node, uint32_t *result) {
IrInstruction *align_result = analyze_const_value(g, scope, node, get_align_amt_type(g), nullptr);
if (type_is_invalid(align_result->value.type))
return false;
uint32_t align_bytes = bigint_as_unsigned(&align_result->value.data.x_bigint);
if (align_bytes == 0) {
add_node_error(g, node, buf_sprintf("alignment must be >= 1"));
return false;
}
if (!is_power_of_2(align_bytes)) {
add_node_error(g, node, buf_sprintf("alignment value %" PRIu32 " is not a power of 2", align_bytes));
return false;
}
*result = align_bytes;
return true;
}
static bool analyze_const_string(CodeGen *g, Scope *scope, AstNode *node, Buf **out_buffer) {
TypeTableEntry *ptr_type = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, true, false,
PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0);
TypeTableEntry *str_type = get_slice_type(g, ptr_type);
IrInstruction *instr = analyze_const_value(g, scope, node, str_type, nullptr);
if (type_is_invalid(instr->value.type))
return false;
ConstExprValue *ptr_field = &instr->value.data.x_struct.fields[slice_ptr_index];
ConstExprValue *len_field = &instr->value.data.x_struct.fields[slice_len_index];
assert(ptr_field->data.x_ptr.special == ConstPtrSpecialBaseArray);
ConstExprValue *array_val = ptr_field->data.x_ptr.data.base_array.array_val;
expand_undef_array(g, array_val);
size_t len = bigint_as_unsigned(&len_field->data.x_bigint);
Buf *result = buf_alloc();
buf_resize(result, len);
for (size_t i = 0; i < len; i += 1) {
size_t new_index = ptr_field->data.x_ptr.data.base_array.elem_index + i;
ConstExprValue *char_val = &array_val->data.x_array.s_none.elements[new_index];
if (char_val->special == ConstValSpecialUndef) {
add_node_error(g, node, buf_sprintf("use of undefined value"));
return false;
}
uint64_t big_c = bigint_as_unsigned(&char_val->data.x_bigint);
assert(big_c <= UINT8_MAX);
uint8_t c = (uint8_t)big_c;
buf_ptr(result)[i] = c;
}
*out_buffer = result;
return true;
}
static bool type_allowed_in_packed_struct(TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdMetaType:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
case TypeTableEntryIdPromise:
return false;
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdFn:
return true;
case TypeTableEntryIdStruct:
return type_entry->data.structure.layout == ContainerLayoutPacked;
case TypeTableEntryIdUnion:
return type_entry->data.unionation.layout == ContainerLayoutPacked;
case TypeTableEntryIdOptional:
{
TypeTableEntry *child_type = type_entry->data.maybe.child_type;
return type_is_codegen_pointer(child_type);
}
case TypeTableEntryIdEnum:
return type_entry->data.enumeration.decl_node->data.container_decl.init_arg_expr != nullptr;
}
zig_unreachable();
}
static bool type_allowed_in_extern(CodeGen *g, TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdMetaType:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdPromise:
return false;
case TypeTableEntryIdOpaque:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
return true;
case TypeTableEntryIdInt:
switch (type_entry->data.integral.bit_count) {
case 8:
case 16:
case 32:
case 64:
case 128:
return true;
default:
return false;
}
case TypeTableEntryIdFloat:
return true;
case TypeTableEntryIdArray:
return type_allowed_in_extern(g, type_entry->data.array.child_type);
case TypeTableEntryIdFn:
return type_entry->data.fn.fn_type_id.cc == CallingConventionC;
case TypeTableEntryIdPointer:
return type_allowed_in_extern(g, type_entry->data.pointer.child_type);
case TypeTableEntryIdStruct:
return type_entry->data.structure.layout == ContainerLayoutExtern || type_entry->data.structure.layout == ContainerLayoutPacked;
case TypeTableEntryIdOptional:
{
TypeTableEntry *child_type = type_entry->data.maybe.child_type;
return child_type->id == TypeTableEntryIdPointer || child_type->id == TypeTableEntryIdFn;
}
case TypeTableEntryIdEnum:
return type_entry->data.enumeration.layout == ContainerLayoutExtern || type_entry->data.enumeration.layout == ContainerLayoutPacked;
case TypeTableEntryIdUnion:
return type_entry->data.unionation.layout == ContainerLayoutExtern || type_entry->data.unionation.layout == ContainerLayoutPacked;
}
zig_unreachable();
}
TypeTableEntry *get_auto_err_set_type(CodeGen *g, FnTableEntry *fn_entry) {
TypeTableEntry *err_set_type = new_type_table_entry(TypeTableEntryIdErrorSet);
buf_resize(&err_set_type->name, 0);
buf_appendf(&err_set_type->name, "@typeOf(%s).ReturnType.ErrorSet", buf_ptr(&fn_entry->symbol_name));
err_set_type->is_copyable = true;
err_set_type->type_ref = g->builtin_types.entry_global_error_set->type_ref;
err_set_type->di_type = g->builtin_types.entry_global_error_set->di_type;
err_set_type->data.error_set.err_count = 0;
err_set_type->data.error_set.errors = nullptr;
err_set_type->data.error_set.infer_fn = fn_entry;
g->error_di_types.append(&err_set_type->di_type);
return err_set_type;
}
static TypeTableEntry *analyze_fn_type(CodeGen *g, AstNode *proto_node, Scope *child_scope, FnTableEntry *fn_entry) {
assert(proto_node->type == NodeTypeFnProto);
AstNodeFnProto *fn_proto = &proto_node->data.fn_proto;
FnTypeId fn_type_id = {0};
init_fn_type_id(&fn_type_id, proto_node, proto_node->data.fn_proto.params.length);
for (; fn_type_id.next_param_index < fn_type_id.param_count; fn_type_id.next_param_index += 1) {
AstNode *param_node = fn_proto->params.at(fn_type_id.next_param_index);
assert(param_node->type == NodeTypeParamDecl);
bool param_is_comptime = param_node->data.param_decl.is_inline;
bool param_is_var_args = param_node->data.param_decl.is_var_args;
if (param_is_comptime) {
if (!calling_convention_allows_zig_types(fn_type_id.cc)) {
add_node_error(g, param_node,
buf_sprintf("comptime parameter not allowed in function with calling convention '%s'",
calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
return get_generic_fn_type(g, &fn_type_id);
} else if (param_is_var_args) {
if (fn_type_id.cc == CallingConventionC) {
fn_type_id.param_count = fn_type_id.next_param_index;
continue;
} else if (calling_convention_allows_zig_types(fn_type_id.cc)) {
return get_generic_fn_type(g, &fn_type_id);
} else {
add_node_error(g, param_node,
buf_sprintf("var args not allowed in function with calling convention '%s'",
calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
} else if (param_node->data.param_decl.var_token != nullptr) {
if (!calling_convention_allows_zig_types(fn_type_id.cc)) {
add_node_error(g, param_node->data.param_decl.type,
buf_sprintf("parameter of type 'var' not allowed in function with calling convention '%s'",
calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
return get_generic_fn_type(g, &fn_type_id);
}
TypeTableEntry *type_entry = analyze_type_expr(g, child_scope, param_node->data.param_decl.type);
if (type_is_invalid(type_entry)) {
return g->builtin_types.entry_invalid;
}
if (!calling_convention_allows_zig_types(fn_type_id.cc)) {
type_ensure_zero_bits_known(g, type_entry);
if (!type_has_bits(type_entry)) {
add_node_error(g, param_node->data.param_decl.type,
buf_sprintf("parameter of type '%s' has 0 bits; not allowed in function with calling convention '%s'",
buf_ptr(&type_entry->name), calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
}
if (!calling_convention_allows_zig_types(fn_type_id.cc) && !type_allowed_in_extern(g, type_entry)) {
add_node_error(g, param_node->data.param_decl.type,
buf_sprintf("parameter of type '%s' not allowed in function with calling convention '%s'",
buf_ptr(&type_entry->name),
calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
return g->builtin_types.entry_invalid;
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
add_node_error(g, param_node->data.param_decl.type,
buf_sprintf("parameter of type '%s' not allowed", buf_ptr(&type_entry->name)));
return g->builtin_types.entry_invalid;
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdMetaType:
add_node_error(g, param_node->data.param_decl.type,
buf_sprintf("parameter of type '%s' must be declared comptime",
buf_ptr(&type_entry->name)));
return g->builtin_types.entry_invalid;
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdPromise:
break;
}
FnTypeParamInfo *param_info = &fn_type_id.param_info[fn_type_id.next_param_index];
param_info->type = type_entry;
param_info->is_noalias = param_node->data.param_decl.is_noalias;
}
if (fn_proto->align_expr != nullptr) {
if (!analyze_const_align(g, child_scope, fn_proto->align_expr, &fn_type_id.alignment)) {
return g->builtin_types.entry_invalid;
}
}
if (fn_proto->return_var_token != nullptr) {
if (!calling_convention_allows_zig_types(fn_type_id.cc)) {
add_node_error(g, fn_proto->return_type,
buf_sprintf("return type 'var' not allowed in function with calling convention '%s'",
calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
add_node_error(g, proto_node,
buf_sprintf("TODO implement inferred return types https://github.com/ziglang/zig/issues/447"));
return g->builtin_types.entry_invalid;
//return get_generic_fn_type(g, &fn_type_id);
}
TypeTableEntry *specified_return_type = analyze_type_expr(g, child_scope, fn_proto->return_type);
if (type_is_invalid(specified_return_type)) {
fn_type_id.return_type = g->builtin_types.entry_invalid;
return g->builtin_types.entry_invalid;
}
if (fn_proto->auto_err_set) {
TypeTableEntry *inferred_err_set_type = get_auto_err_set_type(g, fn_entry);
fn_type_id.return_type = get_error_union_type(g, inferred_err_set_type, specified_return_type);
} else {
fn_type_id.return_type = specified_return_type;
}
if (!calling_convention_allows_zig_types(fn_type_id.cc) && !type_allowed_in_extern(g, fn_type_id.return_type)) {
add_node_error(g, fn_proto->return_type,
buf_sprintf("return type '%s' not allowed in function with calling convention '%s'",
buf_ptr(&fn_type_id.return_type->name),
calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
switch (fn_type_id.return_type->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
add_node_error(g, fn_proto->return_type,
buf_sprintf("return type '%s' not allowed", buf_ptr(&fn_type_id.return_type->name)));
return g->builtin_types.entry_invalid;
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdMetaType:
if (!calling_convention_allows_zig_types(fn_type_id.cc)) {
add_node_error(g, fn_proto->return_type,
buf_sprintf("return type '%s' not allowed in function with calling convention '%s'",
buf_ptr(&fn_type_id.return_type->name),
calling_convention_name(fn_type_id.cc)));
return g->builtin_types.entry_invalid;
}
return get_generic_fn_type(g, &fn_type_id);
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdPromise:
break;
}
if (fn_type_id.cc == CallingConventionAsync) {
if (fn_proto->async_allocator_type == nullptr) {
return get_generic_fn_type(g, &fn_type_id);
}
fn_type_id.async_allocator_type = analyze_type_expr(g, child_scope, fn_proto->async_allocator_type);
if (type_is_invalid(fn_type_id.async_allocator_type)) {
return g->builtin_types.entry_invalid;
}
}
return get_fn_type(g, &fn_type_id);
}
bool type_is_invalid(TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
return true;
case TypeTableEntryIdStruct:
return type_entry->data.structure.is_invalid;
case TypeTableEntryIdEnum:
return type_entry->data.enumeration.is_invalid;
case TypeTableEntryIdUnion:
return type_entry->data.unionation.is_invalid;
default:
return false;
}
zig_unreachable();
}
static void resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type) {
assert(enum_type->id == TypeTableEntryIdEnum);
if (enum_type->data.enumeration.complete)
return;
resolve_enum_zero_bits(g, enum_type);
if (type_is_invalid(enum_type))
return;
AstNode *decl_node = enum_type->data.enumeration.decl_node;
if (enum_type->data.enumeration.embedded_in_current) {
if (!enum_type->data.enumeration.reported_infinite_err) {
enum_type->data.enumeration.reported_infinite_err = true;
add_node_error(g, decl_node, buf_sprintf("enum '%s' contains itself", buf_ptr(&enum_type->name)));
}
return;
}
assert(!enum_type->data.enumeration.zero_bits_loop_flag);
assert(decl_node->type == NodeTypeContainerDecl);
assert(enum_type->di_type);
uint32_t field_count = enum_type->data.enumeration.src_field_count;
assert(enum_type->data.enumeration.fields);
ZigLLVMDIEnumerator **di_enumerators = allocate<ZigLLVMDIEnumerator*>(field_count);
Scope *scope = &enum_type->data.enumeration.decls_scope->base;
ImportTableEntry *import = get_scope_import(scope);
// set temporary flag
enum_type->data.enumeration.embedded_in_current = true;
for (uint32_t i = 0; i < field_count; i += 1) {
TypeEnumField *enum_field = &enum_type->data.enumeration.fields[i];
// TODO send patch to LLVM to support APInt in createEnumerator instead of int64_t
// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119456.html
di_enumerators[i] = ZigLLVMCreateDebugEnumerator(g->dbuilder, buf_ptr(enum_field->name),
bigint_as_signed(&enum_field->value));
}
// unset temporary flag
enum_type->data.enumeration.embedded_in_current = false;
enum_type->data.enumeration.complete = true;
if (enum_type->data.enumeration.is_invalid)
return;
if (enum_type->zero_bits) {
enum_type->type_ref = LLVMVoidType();
uint64_t debug_size_in_bits = 0;
uint64_t debug_align_in_bits = 0;
ZigLLVMDIType **di_root_members = nullptr;
size_t debug_member_count = 0;
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
ZigLLVMFileToScope(import->di_file),
buf_ptr(&enum_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
debug_size_in_bits,
debug_align_in_bits,
0, nullptr, di_root_members, (int)debug_member_count, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, enum_type->di_type, replacement_di_type);
enum_type->di_type = replacement_di_type;
return;
}
TypeTableEntry *tag_int_type = enum_type->data.enumeration.tag_int_type;
// create debug type for tag
uint64_t tag_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, tag_int_type->type_ref);
uint64_t tag_debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, tag_int_type->type_ref);
ZigLLVMDIType *tag_di_type = ZigLLVMCreateDebugEnumerationType(g->dbuilder,
ZigLLVMFileToScope(import->di_file), buf_ptr(&enum_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
tag_debug_size_in_bits,
tag_debug_align_in_bits,
di_enumerators, field_count,
tag_int_type->di_type, "");
ZigLLVMReplaceTemporary(g->dbuilder, enum_type->di_type, tag_di_type);
enum_type->di_type = tag_di_type;
}
TypeTableEntry *get_struct_type(CodeGen *g, const char *type_name, const char *field_names[],
TypeTableEntry *field_types[], size_t field_count)
{
TypeTableEntry *struct_type = new_type_table_entry(TypeTableEntryIdStruct);
buf_init_from_str(&struct_type->name, type_name);
struct_type->data.structure.src_field_count = field_count;
struct_type->data.structure.gen_field_count = 0;
struct_type->data.structure.zero_bits_known = true;
struct_type->data.structure.complete = true;
struct_type->data.structure.fields = allocate<TypeStructField>(field_count);
struct_type->data.structure.fields_by_name.init(field_count);
ZigLLVMDIType **di_element_types = allocate<ZigLLVMDIType*>(field_count);
LLVMTypeRef *element_types = allocate<LLVMTypeRef>(field_count);
for (size_t i = 0; i < field_count; i += 1) {
element_types[struct_type->data.structure.gen_field_count] = field_types[i]->type_ref;
TypeStructField *field = &struct_type->data.structure.fields[i];
field->name = buf_create_from_str(field_names[i]);
field->type_entry = field_types[i];
field->src_index = i;
if (type_has_bits(field->type_entry)) {
field->gen_index = struct_type->data.structure.gen_field_count;
struct_type->data.structure.gen_field_count += 1;
} else {
field->gen_index = SIZE_MAX;
}
auto prev_entry = struct_type->data.structure.fields_by_name.put_unique(field->name, field);
assert(prev_entry == nullptr);
}
struct_type->type_ref = LLVMStructCreateNamed(LLVMGetGlobalContext(), type_name);
LLVMStructSetBody(struct_type->type_ref, element_types, struct_type->data.structure.gen_field_count, false);
struct_type->di_type = ZigLLVMCreateReplaceableCompositeType(g->dbuilder,
ZigLLVMTag_DW_structure_type(), type_name,
ZigLLVMCompileUnitToScope(g->compile_unit), nullptr, 0);
for (size_t i = 0; i < field_count; i += 1) {
TypeStructField *type_struct_field = &struct_type->data.structure.fields[i];
if (type_struct_field->gen_index == SIZE_MAX) {
continue;
}
TypeTableEntry *field_type = type_struct_field->type_entry;
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, field_type->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, field_type->type_ref);
uint64_t debug_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, struct_type->type_ref, type_struct_field->gen_index);
di_element_types[type_struct_field->gen_index] = ZigLLVMCreateDebugMemberType(g->dbuilder,
ZigLLVMTypeToScope(struct_type->di_type), buf_ptr(type_struct_field->name),
nullptr, 0,
debug_size_in_bits,
debug_align_in_bits,
debug_offset_in_bits,
0, field_type->di_type);
assert(di_element_types[type_struct_field->gen_index]);
}
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, struct_type->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, struct_type->type_ref);
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
ZigLLVMCompileUnitToScope(g->compile_unit),
type_name, nullptr, 0,
debug_size_in_bits,
debug_align_in_bits,
0,
nullptr, di_element_types, struct_type->data.structure.gen_field_count, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, struct_type->di_type, replacement_di_type);
struct_type->di_type = replacement_di_type;
struct_type->data.structure.abi_alignment = LLVMABIAlignmentOfType(g->target_data_ref, struct_type->type_ref);
return struct_type;
}
static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
assert(struct_type->id == TypeTableEntryIdStruct);
if (struct_type->data.structure.complete)
return;
resolve_struct_zero_bits(g, struct_type);
if (struct_type->data.structure.is_invalid)
return;
AstNode *decl_node = struct_type->data.structure.decl_node;
if (struct_type->data.structure.embedded_in_current) {
struct_type->data.structure.is_invalid = true;
if (!struct_type->data.structure.reported_infinite_err) {
struct_type->data.structure.reported_infinite_err = true;
add_node_error(g, decl_node,
buf_sprintf("struct '%s' contains itself", buf_ptr(&struct_type->name)));
}
return;
}
assert(!struct_type->data.structure.zero_bits_loop_flag);
assert(struct_type->data.structure.fields || struct_type->data.structure.src_field_count == 0);
assert(decl_node->type == NodeTypeContainerDecl);
size_t field_count = struct_type->data.structure.src_field_count;
size_t gen_field_count = struct_type->data.structure.gen_field_count;
LLVMTypeRef *element_types = allocate<LLVMTypeRef>(gen_field_count);
// this field should be set to true only during the recursive calls to resolve_struct_type
struct_type->data.structure.embedded_in_current = true;
Scope *scope = &struct_type->data.structure.decls_scope->base;
size_t gen_field_index = 0;
bool packed = (struct_type->data.structure.layout == ContainerLayoutPacked);
size_t packed_bits_offset = 0;
size_t first_packed_bits_offset_misalign = SIZE_MAX;
size_t debug_field_count = 0;
for (size_t i = 0; i < field_count; i += 1) {
TypeStructField *type_struct_field = &struct_type->data.structure.fields[i];
TypeTableEntry *field_type = type_struct_field->type_entry;
ensure_complete_type(g, field_type);
if (type_is_invalid(field_type)) {
struct_type->data.structure.is_invalid = true;
break;
}
if (!type_has_bits(field_type))
continue;
type_struct_field->gen_index = gen_field_index;
if (packed) {
if (!type_allowed_in_packed_struct(field_type)) {
AstNode *field_source_node = decl_node->data.container_decl.fields.at(i);
add_node_error(g, field_source_node,
buf_sprintf("packed structs cannot contain fields of type '%s'",
buf_ptr(&field_type->name)));
struct_type->data.structure.is_invalid = true;
break;
}
size_t field_size_in_bits = type_size_bits(g, field_type);
size_t next_packed_bits_offset = packed_bits_offset + field_size_in_bits;
type_struct_field->packed_bits_size = field_size_in_bits;
if (first_packed_bits_offset_misalign != SIZE_MAX) {
// this field is not byte-aligned; it is part of the previous field with a bit offset
type_struct_field->packed_bits_offset = packed_bits_offset - first_packed_bits_offset_misalign;
type_struct_field->unaligned_bit_count = field_size_in_bits;
size_t full_bit_count = next_packed_bits_offset - first_packed_bits_offset_misalign;
LLVMTypeRef int_type_ref = LLVMIntType((unsigned)(full_bit_count));
if (8 * LLVMStoreSizeOfType(g->target_data_ref, int_type_ref) == full_bit_count) {
// next field recovers store alignment
element_types[gen_field_index] = int_type_ref;
gen_field_index += 1;
first_packed_bits_offset_misalign = SIZE_MAX;
}
} else if (8 * LLVMStoreSizeOfType(g->target_data_ref, field_type->type_ref) != field_size_in_bits) {
first_packed_bits_offset_misalign = packed_bits_offset;
type_struct_field->packed_bits_offset = 0;
type_struct_field->unaligned_bit_count = field_size_in_bits;
} else {
// This is a byte-aligned field (both start and end) in a packed struct.
element_types[gen_field_index] = field_type->type_ref;
type_struct_field->packed_bits_offset = 0;
type_struct_field->unaligned_bit_count = 0;
gen_field_index += 1;
}
packed_bits_offset = next_packed_bits_offset;
} else {
element_types[gen_field_index] = field_type->type_ref;
assert(element_types[gen_field_index]);
gen_field_index += 1;
}
debug_field_count += 1;
}
if (first_packed_bits_offset_misalign != SIZE_MAX) {
size_t full_bit_count = packed_bits_offset - first_packed_bits_offset_misalign;
LLVMTypeRef int_type_ref = LLVMIntType((unsigned)full_bit_count);
size_t store_bit_count = 8 * LLVMStoreSizeOfType(g->target_data_ref, int_type_ref);
element_types[gen_field_index] = LLVMIntType((unsigned)store_bit_count);
gen_field_index += 1;
}
struct_type->data.structure.embedded_in_current = false;
struct_type->data.structure.complete = true;
if (struct_type->data.structure.is_invalid)
return;
if (struct_type->zero_bits) {
struct_type->type_ref = LLVMVoidType();
ImportTableEntry *import = get_scope_import(scope);
uint64_t debug_size_in_bits = 0;
uint64_t debug_align_in_bits = 0;
ZigLLVMDIType **di_element_types = nullptr;
size_t debug_field_count = 0;
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
ZigLLVMFileToScope(import->di_file),
buf_ptr(&struct_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
debug_size_in_bits,
debug_align_in_bits,
0, nullptr, di_element_types, (int)debug_field_count, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, struct_type->di_type, replacement_di_type);
struct_type->di_type = replacement_di_type;
return;
}
assert(struct_type->di_type);
// the count may have been adjusting from packing bit fields
gen_field_count = gen_field_index;
struct_type->data.structure.gen_field_count = (uint32_t)gen_field_count;
LLVMStructSetBody(struct_type->type_ref, element_types, (unsigned)gen_field_count, packed);
// if you hit this assert then probably this type or a related type didn't
// get ensure_complete_type called on it before using it with something that
// requires a complete type
assert(LLVMStoreSizeOfType(g->target_data_ref, struct_type->type_ref) > 0);
ZigLLVMDIType **di_element_types = allocate<ZigLLVMDIType*>(debug_field_count);
ImportTableEntry *import = get_scope_import(scope);
size_t debug_field_index = 0;
for (size_t i = 0; i < field_count; i += 1) {
AstNode *field_node = decl_node->data.container_decl.fields.at(i);
TypeStructField *type_struct_field = &struct_type->data.structure.fields[i];
size_t gen_field_index = type_struct_field->gen_index;
if (gen_field_index == SIZE_MAX) {
continue;
}
TypeTableEntry *field_type = type_struct_field->type_entry;
// if the field is a function, actually the debug info should be a pointer.
ZigLLVMDIType *field_di_type;
if (field_type->id == TypeTableEntryIdFn) {
TypeTableEntry *field_ptr_type = get_pointer_to_type(g, field_type, true);
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, field_ptr_type->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, field_ptr_type->type_ref);
field_di_type = ZigLLVMCreateDebugPointerType(g->dbuilder, field_type->di_type,
debug_size_in_bits, debug_align_in_bits, buf_ptr(&field_ptr_type->name));
} else {
field_di_type = field_type->di_type;
}
assert(field_type->type_ref);
assert(struct_type->type_ref);
assert(struct_type->data.structure.complete);
uint64_t debug_size_in_bits;
uint64_t debug_align_in_bits;
uint64_t debug_offset_in_bits;
if (packed) {
debug_size_in_bits = type_struct_field->packed_bits_size;
debug_align_in_bits = 1;
debug_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, struct_type->type_ref,
(unsigned)gen_field_index) + type_struct_field->packed_bits_offset;
} else {
debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, field_type->type_ref);
debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, field_type->type_ref);
debug_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, struct_type->type_ref,
(unsigned)gen_field_index);
}
di_element_types[debug_field_index] = ZigLLVMCreateDebugMemberType(g->dbuilder,
ZigLLVMTypeToScope(struct_type->di_type), buf_ptr(type_struct_field->name),
import->di_file, (unsigned)(field_node->line + 1),
debug_size_in_bits,
debug_align_in_bits,
debug_offset_in_bits,
0, field_di_type);
assert(di_element_types[debug_field_index]);
debug_field_index += 1;
}
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, struct_type->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, struct_type->type_ref);
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
ZigLLVMFileToScope(import->di_file),
buf_ptr(&struct_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
debug_size_in_bits,
debug_align_in_bits,
0, nullptr, di_element_types, (int)debug_field_count, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, struct_type->di_type, replacement_di_type);
struct_type->di_type = replacement_di_type;
}
static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
assert(union_type->id == TypeTableEntryIdUnion);
if (union_type->data.unionation.complete)
return;
resolve_union_zero_bits(g, union_type);
if (type_is_invalid(union_type))
return;
AstNode *decl_node = union_type->data.unionation.decl_node;
if (union_type->data.unionation.embedded_in_current) {
if (!union_type->data.unionation.reported_infinite_err) {
union_type->data.unionation.reported_infinite_err = true;
union_type->data.unionation.is_invalid = true;
add_node_error(g, decl_node, buf_sprintf("union '%s' contains itself", buf_ptr(&union_type->name)));
}
return;
}
assert(!union_type->data.unionation.zero_bits_loop_flag);
assert(decl_node->type == NodeTypeContainerDecl);
assert(union_type->di_type);
uint32_t field_count = union_type->data.unionation.src_field_count;
assert(union_type->data.unionation.fields);
uint32_t gen_field_count = union_type->data.unionation.gen_field_count;
ZigLLVMDIType **union_inner_di_types = allocate<ZigLLVMDIType*>(gen_field_count);
TypeTableEntry *most_aligned_union_member = nullptr;
uint64_t size_of_most_aligned_member_in_bits = 0;
uint64_t biggest_align_in_bits = 0;
uint64_t biggest_size_in_bits = 0;
Scope *scope = &union_type->data.unionation.decls_scope->base;
ImportTableEntry *import = get_scope_import(scope);
// set temporary flag
union_type->data.unionation.embedded_in_current = true;
for (uint32_t i = 0; i < field_count; i += 1) {
AstNode *field_node = decl_node->data.container_decl.fields.at(i);
TypeUnionField *union_field = &union_type->data.unionation.fields[i];
TypeTableEntry *field_type = union_field->type_entry;
ensure_complete_type(g, field_type);
if (type_is_invalid(field_type)) {
union_type->data.unionation.is_invalid = true;
continue;
}
if (!type_has_bits(field_type))
continue;
uint64_t store_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, field_type->type_ref);
uint64_t abi_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, field_type->type_ref);
assert(store_size_in_bits > 0);
assert(abi_align_in_bits > 0);
union_inner_di_types[union_field->gen_index] = ZigLLVMCreateDebugMemberType(g->dbuilder,
ZigLLVMTypeToScope(union_type->di_type), buf_ptr(union_field->enum_field->name),
import->di_file, (unsigned)(field_node->line + 1),
store_size_in_bits,
abi_align_in_bits,
0,
0, field_type->di_type);
biggest_size_in_bits = max(biggest_size_in_bits, store_size_in_bits);
if (!most_aligned_union_member || abi_align_in_bits > biggest_align_in_bits) {
most_aligned_union_member = field_type;
biggest_align_in_bits = abi_align_in_bits;
size_of_most_aligned_member_in_bits = store_size_in_bits;
}
}
// unset temporary flag
union_type->data.unionation.embedded_in_current = false;
union_type->data.unionation.complete = true;
union_type->data.unionation.union_size_bytes = biggest_size_in_bits / 8;
union_type->data.unionation.most_aligned_union_member = most_aligned_union_member;
if (union_type->data.unionation.is_invalid)
return;
if (union_type->zero_bits) {
union_type->type_ref = LLVMVoidType();
uint64_t debug_size_in_bits = 0;
uint64_t debug_align_in_bits = 0;
ZigLLVMDIType **di_root_members = nullptr;
size_t debug_member_count = 0;
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugUnionType(g->dbuilder,
ZigLLVMFileToScope(import->di_file),
buf_ptr(&union_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
debug_size_in_bits,
debug_align_in_bits,
0, di_root_members, (int)debug_member_count, 0, "");
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, replacement_di_type);
union_type->di_type = replacement_di_type;
return;
}
uint64_t padding_in_bits = biggest_size_in_bits - size_of_most_aligned_member_in_bits;
TypeTableEntry *tag_type = union_type->data.unionation.tag_type;
if (tag_type == nullptr || tag_type->zero_bits) {
assert(most_aligned_union_member != nullptr);
if (padding_in_bits > 0) {
TypeTableEntry *u8_type = get_int_type(g, false, 8);
TypeTableEntry *padding_array = get_array_type(g, u8_type, padding_in_bits / 8);
LLVMTypeRef union_element_types[] = {
most_aligned_union_member->type_ref,
padding_array->type_ref,
};
LLVMStructSetBody(union_type->type_ref, union_element_types, 2, false);
} else {
LLVMStructSetBody(union_type->type_ref, &most_aligned_union_member->type_ref, 1, false);
}
union_type->data.unionation.union_type_ref = union_type->type_ref;
union_type->data.unionation.gen_tag_index = SIZE_MAX;
union_type->data.unionation.gen_union_index = SIZE_MAX;
assert(8*LLVMABIAlignmentOfType(g->target_data_ref, union_type->type_ref) >= biggest_align_in_bits);
assert(8*LLVMStoreSizeOfType(g->target_data_ref, union_type->type_ref) >= biggest_size_in_bits);
// create debug type for union
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugUnionType(g->dbuilder,
ZigLLVMFileToScope(import->di_file), buf_ptr(&union_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
biggest_size_in_bits, biggest_align_in_bits, 0, union_inner_di_types,
gen_field_count, 0, "");
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, replacement_di_type);
union_type->di_type = replacement_di_type;
return;
}
LLVMTypeRef union_type_ref;
if (padding_in_bits > 0) {
TypeTableEntry *u8_type = get_int_type(g, false, 8);
TypeTableEntry *padding_array = get_array_type(g, u8_type, padding_in_bits / 8);
LLVMTypeRef union_element_types[] = {
most_aligned_union_member->type_ref,
padding_array->type_ref,
};
union_type_ref = LLVMStructType(union_element_types, 2, false);
} else if (most_aligned_union_member == nullptr) {
union_type->data.unionation.gen_tag_index = SIZE_MAX;
union_type->data.unionation.gen_union_index = SIZE_MAX;
union_type->type_ref = tag_type->type_ref;
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, tag_type->di_type);
union_type->di_type = tag_type->di_type;
return;
} else {
union_type_ref = most_aligned_union_member->type_ref;
}
union_type->data.unionation.union_type_ref = union_type_ref;
assert(8*LLVMABIAlignmentOfType(g->target_data_ref, union_type_ref) >= biggest_align_in_bits);
assert(8*LLVMStoreSizeOfType(g->target_data_ref, union_type_ref) >= biggest_size_in_bits);
// create llvm type for root struct
TypeTableEntry *tag_int_type = tag_type->data.enumeration.tag_int_type;
uint64_t align_of_tag_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, tag_int_type->type_ref);
if (align_of_tag_in_bits >= biggest_align_in_bits) {
union_type->data.unionation.gen_tag_index = 0;
union_type->data.unionation.gen_union_index = 1;
} else {
union_type->data.unionation.gen_union_index = 0;
union_type->data.unionation.gen_tag_index = 1;
}
LLVMTypeRef root_struct_element_types[2];
root_struct_element_types[union_type->data.unionation.gen_tag_index] = tag_type->type_ref;
root_struct_element_types[union_type->data.unionation.gen_union_index] = union_type_ref;
LLVMStructSetBody(union_type->type_ref, root_struct_element_types, 2, false);
// create debug type for union
ZigLLVMDIType *union_di_type = ZigLLVMCreateDebugUnionType(g->dbuilder,
ZigLLVMTypeToScope(union_type->di_type), "AnonUnion",
import->di_file, (unsigned)(decl_node->line + 1),
biggest_size_in_bits, biggest_align_in_bits, 0, union_inner_di_types,
gen_field_count, 0, "");
uint64_t union_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, union_type->type_ref,
union_type->data.unionation.gen_union_index);
uint64_t tag_offset_in_bits = 8*LLVMOffsetOfElement(g->target_data_ref, union_type->type_ref,
union_type->data.unionation.gen_tag_index);
ZigLLVMDIType *union_member_di_type = ZigLLVMCreateDebugMemberType(g->dbuilder,
ZigLLVMTypeToScope(union_type->di_type), "payload",
import->di_file, (unsigned)(decl_node->line + 1),
biggest_size_in_bits,
biggest_align_in_bits,
union_offset_in_bits,
0, union_di_type);
uint64_t tag_debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, tag_type->type_ref);
uint64_t tag_debug_align_in_bits = 8*LLVMABIAlignmentOfType(g->target_data_ref, tag_type->type_ref);
ZigLLVMDIType *tag_member_di_type = ZigLLVMCreateDebugMemberType(g->dbuilder,
ZigLLVMTypeToScope(union_type->di_type), "tag",
import->di_file, (unsigned)(decl_node->line + 1),
tag_debug_size_in_bits,
tag_debug_align_in_bits,
tag_offset_in_bits,
0, tag_type->di_type);
ZigLLVMDIType *di_root_members[2];
di_root_members[union_type->data.unionation.gen_tag_index] = tag_member_di_type;
di_root_members[union_type->data.unionation.gen_union_index] = union_member_di_type;
uint64_t debug_size_in_bits = 8*LLVMStoreSizeOfType(g->target_data_ref, union_type->type_ref);
uint64_t debug_align_in_bits = 8*LLVMABISizeOfType(g->target_data_ref, union_type->type_ref);
ZigLLVMDIType *replacement_di_type = ZigLLVMCreateDebugStructType(g->dbuilder,
ZigLLVMFileToScope(import->di_file),
buf_ptr(&union_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
debug_size_in_bits,
debug_align_in_bits,
0, nullptr, di_root_members, 2, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, replacement_di_type);
union_type->di_type = replacement_di_type;
}
static void resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type) {
assert(enum_type->id == TypeTableEntryIdEnum);
if (enum_type->data.enumeration.zero_bits_known)
return;
if (enum_type->data.enumeration.zero_bits_loop_flag) {
enum_type->data.enumeration.zero_bits_known = true;
enum_type->data.enumeration.zero_bits_loop_flag = false;
return;
}
enum_type->data.enumeration.zero_bits_loop_flag = true;
AstNode *decl_node = enum_type->data.enumeration.decl_node;
assert(decl_node->type == NodeTypeContainerDecl);
assert(enum_type->di_type);
assert(!enum_type->data.enumeration.fields);
uint32_t field_count = (uint32_t)decl_node->data.container_decl.fields.length;
if (field_count == 0) {
add_node_error(g, decl_node, buf_sprintf("enums must have 1 or more fields"));
enum_type->data.enumeration.src_field_count = field_count;
enum_type->data.enumeration.fields = nullptr;
enum_type->data.enumeration.is_invalid = true;
enum_type->data.enumeration.zero_bits_loop_flag = false;
enum_type->data.enumeration.zero_bits_known = true;
return;
}
enum_type->data.enumeration.src_field_count = field_count;
enum_type->data.enumeration.fields = allocate<TypeEnumField>(field_count);
enum_type->data.enumeration.fields_by_name.init(field_count);
Scope *scope = &enum_type->data.enumeration.decls_scope->base;
HashMap<BigInt, AstNode *, bigint_hash, bigint_eql> occupied_tag_values = {};
occupied_tag_values.init(field_count);
TypeTableEntry *tag_int_type;
if (enum_type->data.enumeration.layout == ContainerLayoutExtern) {
tag_int_type = get_c_int_type(g, CIntTypeInt);
} else {
tag_int_type = get_smallest_unsigned_int_type(g, field_count - 1);
}
// TODO: Are extern enums allowed to have an init_arg_expr?
if (decl_node->data.container_decl.init_arg_expr != nullptr) {
TypeTableEntry *wanted_tag_int_type = analyze_type_expr(g, scope, decl_node->data.container_decl.init_arg_expr);
if (type_is_invalid(wanted_tag_int_type)) {
enum_type->data.enumeration.is_invalid = true;
} else if (wanted_tag_int_type->id != TypeTableEntryIdInt) {
enum_type->data.enumeration.is_invalid = true;
add_node_error(g, decl_node->data.container_decl.init_arg_expr,
buf_sprintf("expected integer, found '%s'", buf_ptr(&wanted_tag_int_type->name)));
} else if (wanted_tag_int_type->data.integral.is_signed) {
enum_type->data.enumeration.is_invalid = true;
add_node_error(g, decl_node->data.container_decl.init_arg_expr,
buf_sprintf("expected unsigned integer, found '%s'", buf_ptr(&wanted_tag_int_type->name)));
} else if (wanted_tag_int_type->data.integral.bit_count < tag_int_type->data.integral.bit_count) {
enum_type->data.enumeration.is_invalid = true;
add_node_error(g, decl_node->data.container_decl.init_arg_expr,
buf_sprintf("'%s' too small to hold all bits; must be at least '%s'",
buf_ptr(&wanted_tag_int_type->name), buf_ptr(&tag_int_type->name)));
} else {
tag_int_type = wanted_tag_int_type;
}
}
enum_type->data.enumeration.tag_int_type = tag_int_type;
enum_type->type_ref = tag_int_type->type_ref;
for (uint32_t field_i = 0; field_i < field_count; field_i += 1) {
AstNode *field_node = decl_node->data.container_decl.fields.at(field_i);
TypeEnumField *type_enum_field = &enum_type->data.enumeration.fields[field_i];
type_enum_field->name = field_node->data.struct_field.name;
type_enum_field->decl_index = field_i;
type_enum_field->decl_node = field_node;
if (field_node->data.struct_field.type != nullptr) {
ErrorMsg *msg = add_node_error(g, field_node->data.struct_field.type,
buf_sprintf("structs and unions, not enums, support field types"));
add_error_note(g, msg, decl_node,
buf_sprintf("consider 'union(enum)' here"));
}
auto field_entry = enum_type->data.enumeration.fields_by_name.put_unique(type_enum_field->name, type_enum_field);
if (field_entry != nullptr) {
ErrorMsg *msg = add_node_error(g, field_node,
buf_sprintf("duplicate enum field: '%s'", buf_ptr(type_enum_field->name)));
add_error_note(g, msg, field_entry->value->decl_node, buf_sprintf("other field here"));
enum_type->data.enumeration.is_invalid = true;
continue;
}
AstNode *tag_value = field_node->data.struct_field.value;
// In this first pass we resolve explicit tag values.
// In a second pass we will fill in the unspecified ones.
if (tag_value != nullptr) {
IrInstruction *result_inst = analyze_const_value(g, scope, tag_value, tag_int_type, nullptr);
if (result_inst->value.type->id == TypeTableEntryIdInvalid) {
enum_type->data.enumeration.is_invalid = true;
continue;
}
assert(result_inst->value.special != ConstValSpecialRuntime);
assert(result_inst->value.type->id == TypeTableEntryIdInt);
auto entry = occupied_tag_values.put_unique(result_inst->value.data.x_bigint, tag_value);
if (entry == nullptr) {
bigint_init_bigint(&type_enum_field->value, &result_inst->value.data.x_bigint);
} else {
Buf *val_buf = buf_alloc();
bigint_append_buf(val_buf, &result_inst->value.data.x_bigint, 10);
ErrorMsg *msg = add_node_error(g, tag_value,
buf_sprintf("enum tag value %s already taken", buf_ptr(val_buf)));
add_error_note(g, msg, entry->value,
buf_sprintf("other occurrence here"));
enum_type->data.enumeration.is_invalid = true;
continue;
}
}
}
// Now iterate again and populate the unspecified tag values
uint32_t next_maybe_unoccupied_index = 0;
for (uint32_t field_i = 0; field_i < field_count; field_i += 1) {
AstNode *field_node = decl_node->data.container_decl.fields.at(field_i);
TypeEnumField *type_enum_field = &enum_type->data.enumeration.fields[field_i];
AstNode *tag_value = field_node->data.struct_field.value;
if (tag_value == nullptr) {
if (occupied_tag_values.size() == 0) {
bigint_init_unsigned(&type_enum_field->value, next_maybe_unoccupied_index);
next_maybe_unoccupied_index += 1;
} else {
BigInt proposed_value;
for (;;) {
bigint_init_unsigned(&proposed_value, next_maybe_unoccupied_index);
next_maybe_unoccupied_index += 1;
auto entry = occupied_tag_values.put_unique(proposed_value, field_node);
if (entry != nullptr) {
continue;
}
break;
}
bigint_init_bigint(&type_enum_field->value, &proposed_value);
}
}
}
enum_type->data.enumeration.zero_bits_loop_flag = false;
enum_type->zero_bits = !type_has_bits(tag_int_type);
enum_type->data.enumeration.zero_bits_known = true;
}
static void resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type) {
assert(struct_type->id == TypeTableEntryIdStruct);
if (struct_type->data.structure.zero_bits_known)
return;
if (struct_type->data.structure.zero_bits_loop_flag) {
// If we get here it's due to recursion. This is a design flaw in the compiler,
// we should be able to still figure out alignment, but here we give up and say that
// the alignment is pointer width, then assert that the first field is within that
// alignment
struct_type->data.structure.zero_bits_known = true;
struct_type->data.structure.zero_bits_loop_flag = false;
if (struct_type->data.structure.abi_alignment == 0) {
if (struct_type->data.structure.layout == ContainerLayoutPacked) {
struct_type->data.structure.abi_alignment = 1;
} else {
struct_type->data.structure.abi_alignment = LLVMABIAlignmentOfType(g->target_data_ref, LLVMPointerType(LLVMInt8Type(), 0));
}
}
return;
}
struct_type->data.structure.zero_bits_loop_flag = true;
AstNode *decl_node = struct_type->data.structure.decl_node;
assert(decl_node->type == NodeTypeContainerDecl);
assert(struct_type->di_type);
assert(!struct_type->data.structure.fields);
size_t field_count = decl_node->data.container_decl.fields.length;
struct_type->data.structure.src_field_count = (uint32_t)field_count;
struct_type->data.structure.fields = allocate<TypeStructField>(field_count);
struct_type->data.structure.fields_by_name.init(field_count);
Scope *scope = &struct_type->data.structure.decls_scope->base;
size_t gen_field_index = 0;
for (size_t i = 0; i < field_count; i += 1) {
AstNode *field_node = decl_node->data.container_decl.fields.at(i);
TypeStructField *type_struct_field = &struct_type->data.structure.fields[i];
type_struct_field->name = field_node->data.struct_field.name;
type_struct_field->decl_node = field_node;
if (field_node->data.struct_field.type == nullptr) {
add_node_error(g, field_node, buf_sprintf("struct field missing type"));
struct_type->data.structure.is_invalid = true;
continue;
}
auto field_entry = struct_type->data.structure.fields_by_name.put_unique(type_struct_field->name, type_struct_field);
if (field_entry != nullptr) {
ErrorMsg *msg = add_node_error(g, field_node,
buf_sprintf("duplicate struct field: '%s'", buf_ptr(type_struct_field->name)));
add_error_note(g, msg, field_entry->value->decl_node, buf_sprintf("other field here"));
struct_type->data.structure.is_invalid = true;
continue;
}
TypeTableEntry *field_type = analyze_type_expr(g, scope, field_node->data.struct_field.type);
type_struct_field->type_entry = field_type;
type_struct_field->src_index = i;
type_struct_field->gen_index = SIZE_MAX;
if (field_node->data.struct_field.value != nullptr) {
add_node_error(g, field_node->data.struct_field.value,
buf_sprintf("enums, not structs, support field assignment"));
}
type_ensure_zero_bits_known(g, field_type);
if (type_is_invalid(field_type)) {
struct_type->data.structure.is_invalid = true;
continue;
}
if (type_requires_comptime(field_type)) {
struct_type->data.structure.requires_comptime = true;
}
if (!type_has_bits(field_type))
continue;
if (gen_field_index == 0) {
if (struct_type->data.structure.layout == ContainerLayoutPacked) {
struct_type->data.structure.abi_alignment = 1;
} else if (struct_type->data.structure.abi_alignment == 0) {
// Alignment of structs is the alignment of the first field, for now.
// TODO change this when we re-order struct fields (issue #168)
struct_type->data.structure.abi_alignment = get_abi_alignment(g, field_type);
assert(struct_type->data.structure.abi_alignment != 0);
} else {
// due to a design flaw in the compiler we assumed that alignment was
// pointer width, so we assert that this wasn't violated.
if (get_abi_alignment(g, field_type) > struct_type->data.structure.abi_alignment) {
zig_panic("compiler design flaw: incorrect alignment assumption");
}
}
}
type_struct_field->gen_index = gen_field_index;
gen_field_index += 1;
}
struct_type->data.structure.zero_bits_loop_flag = false;
struct_type->data.structure.gen_field_count = (uint32_t)gen_field_index;
struct_type->zero_bits = (gen_field_index == 0);
struct_type->data.structure.zero_bits_known = true;
}
static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
assert(union_type->id == TypeTableEntryIdUnion);
if (union_type->data.unionation.zero_bits_known)
return;
if (type_is_invalid(union_type))
return;
if (union_type->data.unionation.zero_bits_loop_flag) {
// If we get here it's due to recursion. From this we conclude that the struct is
// not zero bits, and if abi_alignment == 0 we further conclude that the first field
// is a pointer to this very struct, or a function pointer with parameters that
// reference such a type.
union_type->data.unionation.zero_bits_known = true;
union_type->data.unionation.zero_bits_loop_flag = false;
if (union_type->data.unionation.abi_alignment == 0) {
if (union_type->data.unionation.layout == ContainerLayoutPacked) {
union_type->data.unionation.abi_alignment = 1;
} else {
union_type->data.unionation.abi_alignment = LLVMABIAlignmentOfType(g->target_data_ref,
LLVMPointerType(LLVMInt8Type(), 0));
}
}
return;
}
union_type->data.unionation.zero_bits_loop_flag = true;
AstNode *decl_node = union_type->data.unionation.decl_node;
assert(decl_node->type == NodeTypeContainerDecl);
assert(union_type->di_type);
assert(!union_type->data.unionation.fields);
uint32_t field_count = (uint32_t)decl_node->data.container_decl.fields.length;
if (field_count == 0) {
add_node_error(g, decl_node, buf_sprintf("unions must have 1 or more fields"));
union_type->data.unionation.src_field_count = field_count;
union_type->data.unionation.fields = nullptr;
union_type->data.unionation.is_invalid = true;
union_type->data.unionation.zero_bits_loop_flag = false;
union_type->data.unionation.zero_bits_known = true;
return;
}
union_type->data.unionation.src_field_count = field_count;
union_type->data.unionation.fields = allocate<TypeUnionField>(field_count);
union_type->data.unionation.fields_by_name.init(field_count);
uint32_t biggest_align_bytes = 0;
Scope *scope = &union_type->data.unionation.decls_scope->base;
HashMap<BigInt, AstNode *, bigint_hash, bigint_eql> occupied_tag_values = {};
AstNode *enum_type_node = decl_node->data.container_decl.init_arg_expr;
union_type->data.unionation.have_explicit_tag_type = decl_node->data.container_decl.auto_enum ||
enum_type_node != nullptr;
bool auto_layout = (union_type->data.unionation.layout == ContainerLayoutAuto);
bool want_safety = (field_count >= 2) && (auto_layout || enum_type_node != nullptr);
TypeTableEntry *tag_type;
bool create_enum_type = decl_node->data.container_decl.auto_enum || (enum_type_node == nullptr && want_safety);
bool *covered_enum_fields;
ZigLLVMDIEnumerator **di_enumerators;
uint32_t abi_alignment_so_far;
if (create_enum_type) {
occupied_tag_values.init(field_count);
di_enumerators = allocate<ZigLLVMDIEnumerator*>(field_count);
TypeTableEntry *tag_int_type;
if (enum_type_node != nullptr) {
tag_int_type = analyze_type_expr(g, scope, enum_type_node);
if (type_is_invalid(tag_int_type)) {
union_type->data.unionation.is_invalid = true;
return;
}
if (tag_int_type->id != TypeTableEntryIdInt) {
add_node_error(g, enum_type_node,
buf_sprintf("expected integer tag type, found '%s'", buf_ptr(&tag_int_type->name)));
union_type->data.unionation.is_invalid = true;
return;
}
} else {
tag_int_type = get_smallest_unsigned_int_type(g, field_count - 1);
}
abi_alignment_so_far = get_abi_alignment(g, tag_int_type);
tag_type = new_type_table_entry(TypeTableEntryIdEnum);
buf_resize(&tag_type->name, 0);
buf_appendf(&tag_type->name, "@TagType(%s)", buf_ptr(&union_type->name));
tag_type->is_copyable = true;
tag_type->type_ref = tag_int_type->type_ref;
tag_type->zero_bits = tag_int_type->zero_bits;
tag_type->data.enumeration.tag_int_type = tag_int_type;
tag_type->data.enumeration.zero_bits_known = true;
tag_type->data.enumeration.decl_node = decl_node;
tag_type->data.enumeration.layout = ContainerLayoutAuto;
tag_type->data.enumeration.src_field_count = field_count;
tag_type->data.enumeration.fields = allocate<TypeEnumField>(field_count);
tag_type->data.enumeration.fields_by_name.init(field_count);
tag_type->data.enumeration.decls_scope = union_type->data.unionation.decls_scope;
tag_type->data.enumeration.complete = true;
} else if (enum_type_node != nullptr) {
TypeTableEntry *enum_type = analyze_type_expr(g, scope, enum_type_node);
if (type_is_invalid(enum_type)) {
union_type->data.unionation.is_invalid = true;
return;
}
if (enum_type->id != TypeTableEntryIdEnum) {
union_type->data.unionation.is_invalid = true;
add_node_error(g, enum_type_node,
buf_sprintf("expected enum tag type, found '%s'", buf_ptr(&enum_type->name)));
return;
}
tag_type = enum_type;
abi_alignment_so_far = get_abi_alignment(g, enum_type); // this populates src_field_count
covered_enum_fields = allocate<bool>(enum_type->data.enumeration.src_field_count);
} else {
tag_type = nullptr;
abi_alignment_so_far = 0;
}
union_type->data.unionation.tag_type = tag_type;
uint32_t gen_field_index = 0;
for (uint32_t i = 0; i < field_count; i += 1) {
AstNode *field_node = decl_node->data.container_decl.fields.at(i);
Buf *field_name = field_node->data.struct_field.name;
TypeUnionField *union_field = &union_type->data.unionation.fields[i];
union_field->name = field_node->data.struct_field.name;
union_field->decl_node = field_node;
auto field_entry = union_type->data.unionation.fields_by_name.put_unique(union_field->name, union_field);
if (field_entry != nullptr) {
ErrorMsg *msg = add_node_error(g, field_node,
buf_sprintf("duplicate union field: '%s'", buf_ptr(union_field->name)));
add_error_note(g, msg, field_entry->value->decl_node, buf_sprintf("other field here"));
union_type->data.unionation.is_invalid = true;
continue;
}
TypeTableEntry *field_type;
if (field_node->data.struct_field.type == nullptr) {
if (decl_node->data.container_decl.auto_enum || decl_node->data.container_decl.init_arg_expr != nullptr) {
field_type = g->builtin_types.entry_void;
} else {
add_node_error(g, field_node, buf_sprintf("union field missing type"));
union_type->data.unionation.is_invalid = true;
continue;
}
} else {
field_type = analyze_type_expr(g, scope, field_node->data.struct_field.type);
type_ensure_zero_bits_known(g, field_type);
if (type_is_invalid(field_type)) {
union_type->data.unionation.is_invalid = true;
continue;
}
}
union_field->type_entry = field_type;
if (type_requires_comptime(field_type)) {
union_type->data.unionation.requires_comptime = true;
}
if (field_node->data.struct_field.value != nullptr && !decl_node->data.container_decl.auto_enum) {
ErrorMsg *msg = add_node_error(g, field_node->data.struct_field.value,
buf_sprintf("non-enum union field assignment"));
add_error_note(g, msg, decl_node,
buf_sprintf("consider 'union(enum)' here"));
}
if (create_enum_type) {
di_enumerators[i] = ZigLLVMCreateDebugEnumerator(g->dbuilder, buf_ptr(field_name), i);
union_field->enum_field = &tag_type->data.enumeration.fields[i];
union_field->enum_field->name = field_name;
union_field->enum_field->decl_index = i;
union_field->enum_field->decl_node = field_node;
auto prev_entry = tag_type->data.enumeration.fields_by_name.put_unique(union_field->enum_field->name, union_field->enum_field);
assert(prev_entry == nullptr); // caught by union de-duplicator above
AstNode *tag_value = field_node->data.struct_field.value;
// In this first pass we resolve explicit tag values.
// In a second pass we will fill in the unspecified ones.
if (tag_value != nullptr) {
TypeTableEntry *tag_int_type = tag_type->data.enumeration.tag_int_type;
IrInstruction *result_inst = analyze_const_value(g, scope, tag_value, tag_int_type, nullptr);
if (result_inst->value.type->id == TypeTableEntryIdInvalid) {
union_type->data.unionation.is_invalid = true;
continue;
}
assert(result_inst->value.special != ConstValSpecialRuntime);
assert(result_inst->value.type->id == TypeTableEntryIdInt);
auto entry = occupied_tag_values.put_unique(result_inst->value.data.x_bigint, tag_value);
if (entry == nullptr) {
bigint_init_bigint(&union_field->enum_field->value, &result_inst->value.data.x_bigint);
} else {
Buf *val_buf = buf_alloc();
bigint_append_buf(val_buf, &result_inst->value.data.x_bigint, 10);
ErrorMsg *msg = add_node_error(g, tag_value,
buf_sprintf("enum tag value %s already taken", buf_ptr(val_buf)));
add_error_note(g, msg, entry->value,
buf_sprintf("other occurrence here"));
union_type->data.unionation.is_invalid = true;
continue;
}
}
} else if (enum_type_node != nullptr) {
union_field->enum_field = find_enum_type_field(tag_type, field_name);
if (union_field->enum_field == nullptr) {
ErrorMsg *msg = add_node_error(g, field_node,
buf_sprintf("enum field not found: '%s'", buf_ptr(field_name)));
add_error_note(g, msg, tag_type->data.enumeration.decl_node,
buf_sprintf("enum declared here"));
union_type->data.unionation.is_invalid = true;
continue;
}
covered_enum_fields[union_field->enum_field->decl_index] = true;
} else {
union_field->enum_field = allocate<TypeEnumField>(1);
union_field->enum_field->name = field_name;
union_field->enum_field->decl_index = i;
bigint_init_unsigned(&union_field->enum_field->value, i);
}
assert(union_field->enum_field != nullptr);
if (!type_has_bits(field_type))
continue;
union_field->gen_index = gen_field_index;
gen_field_index += 1;
uint32_t field_align_bytes = get_abi_alignment(g, field_type);
if (field_align_bytes > biggest_align_bytes) {
biggest_align_bytes = field_align_bytes;
if (biggest_align_bytes > abi_alignment_so_far) {
abi_alignment_so_far = biggest_align_bytes;
}
}
}
union_type->data.unionation.abi_alignment = abi_alignment_so_far;
if (union_type->data.unionation.is_invalid)
return;
bool src_have_tag = decl_node->data.container_decl.auto_enum ||
decl_node->data.container_decl.init_arg_expr != nullptr;
if (src_have_tag && union_type->data.unionation.layout != ContainerLayoutAuto) {
const char *qual_str;
switch (union_type->data.unionation.layout) {
case ContainerLayoutAuto:
zig_unreachable();
case ContainerLayoutPacked:
qual_str = "packed";
break;
case ContainerLayoutExtern:
qual_str = "extern";
break;
}
AstNode *source_node = (decl_node->data.container_decl.init_arg_expr != nullptr) ?
decl_node->data.container_decl.init_arg_expr : decl_node;
add_node_error(g, source_node,
buf_sprintf("%s union does not support enum tag type", qual_str));
union_type->data.unionation.is_invalid = true;
return;
}
if (create_enum_type) {
// Now iterate again and populate the unspecified tag values
uint32_t next_maybe_unoccupied_index = 0;
for (uint32_t field_i = 0; field_i < field_count; field_i += 1) {
AstNode *field_node = decl_node->data.container_decl.fields.at(field_i);
TypeUnionField *union_field = &union_type->data.unionation.fields[field_i];
AstNode *tag_value = field_node->data.struct_field.value;
if (tag_value == nullptr) {
if (occupied_tag_values.size() == 0) {
bigint_init_unsigned(&union_field->enum_field->value, next_maybe_unoccupied_index);
next_maybe_unoccupied_index += 1;
} else {
BigInt proposed_value;
for (;;) {
bigint_init_unsigned(&proposed_value, next_maybe_unoccupied_index);
next_maybe_unoccupied_index += 1;
auto entry = occupied_tag_values.put_unique(proposed_value, field_node);
if (entry != nullptr) {
continue;
}
break;
}
bigint_init_bigint(&union_field->enum_field->value, &proposed_value);
}
}
}
} else if (enum_type_node != nullptr) {
for (uint32_t i = 0; i < tag_type->data.enumeration.src_field_count; i += 1) {
TypeEnumField *enum_field = &tag_type->data.enumeration.fields[i];
if (!covered_enum_fields[i]) {
AstNode *enum_decl_node = tag_type->data.enumeration.decl_node;
AstNode *field_node = enum_decl_node->data.container_decl.fields.at(i);
ErrorMsg *msg = add_node_error(g, decl_node,
buf_sprintf("enum field missing: '%s'", buf_ptr(enum_field->name)));
add_error_note(g, msg, field_node,
buf_sprintf("declared here"));
union_type->data.unionation.is_invalid = true;
}
}
}
if (create_enum_type) {
ImportTableEntry *import = get_scope_import(scope);
uint64_t tag_debug_size_in_bits = tag_type->zero_bits ? 0 :
8*LLVMStoreSizeOfType(g->target_data_ref, tag_type->type_ref);
uint64_t tag_debug_align_in_bits = tag_type->zero_bits ? 0 :
8*LLVMABIAlignmentOfType(g->target_data_ref, tag_type->type_ref);
// TODO get a more accurate debug scope
ZigLLVMDIType *tag_di_type = ZigLLVMCreateDebugEnumerationType(g->dbuilder,
ZigLLVMFileToScope(import->di_file), buf_ptr(&tag_type->name),
import->di_file, (unsigned)(decl_node->line + 1),
tag_debug_size_in_bits, tag_debug_align_in_bits, di_enumerators, field_count,
tag_type->di_type, "");
tag_type->di_type = tag_di_type;
}
union_type->data.unionation.zero_bits_loop_flag = false;
union_type->data.unionation.gen_field_count = gen_field_index;
union_type->zero_bits = (gen_field_index == 0 && (field_count < 2 || !src_have_tag));
union_type->data.unionation.zero_bits_known = true;
}
static void get_fully_qualified_decl_name_internal(Buf *buf, Scope *scope, uint8_t sep) {
if (!scope)
return;
if (scope->id == ScopeIdDecls) {
get_fully_qualified_decl_name_internal(buf, scope->parent, sep);
ScopeDecls *scope_decls = (ScopeDecls *)scope;
if (scope_decls->container_type) {
buf_append_buf(buf, &scope_decls->container_type->name);
buf_append_char(buf, sep);
}
return;
}
get_fully_qualified_decl_name_internal(buf, scope->parent, sep);
}
static void get_fully_qualified_decl_name(Buf *buf, Tld *tld, uint8_t sep) {
buf_resize(buf, 0);
get_fully_qualified_decl_name_internal(buf, tld->parent_scope, sep);
buf_append_buf(buf, tld->name);
}
FnTableEntry *create_fn_raw(FnInline inline_value) {
FnTableEntry *fn_entry = allocate<FnTableEntry>(1);
fn_entry->analyzed_executable.backward_branch_count = &fn_entry->prealloc_bbc;
fn_entry->analyzed_executable.backward_branch_quota = default_backward_branch_quota;
fn_entry->analyzed_executable.fn_entry = fn_entry;
fn_entry->ir_executable.fn_entry = fn_entry;
fn_entry->fn_inline = inline_value;
return fn_entry;
}
FnTableEntry *create_fn(AstNode *proto_node) {
assert(proto_node->type == NodeTypeFnProto);
AstNodeFnProto *fn_proto = &proto_node->data.fn_proto;
FnInline inline_value = fn_proto->is_inline ? FnInlineAlways : FnInlineAuto;
FnTableEntry *fn_entry = create_fn_raw(inline_value);
fn_entry->proto_node = proto_node;
fn_entry->body_node = (proto_node->data.fn_proto.fn_def_node == nullptr) ? nullptr :
proto_node->data.fn_proto.fn_def_node->data.fn_def.body;
return fn_entry;
}
static bool scope_is_root_decls(Scope *scope) {
while (scope) {
if (scope->id == ScopeIdDecls) {
ScopeDecls *scope_decls = (ScopeDecls *)scope;
return (scope_decls->container_type == nullptr);
}
scope = scope->parent;
}
zig_unreachable();
}
static void wrong_panic_prototype(CodeGen *g, AstNode *proto_node, TypeTableEntry *fn_type) {
add_node_error(g, proto_node,
buf_sprintf("expected 'fn([]const u8, ?&builtin.StackTrace) unreachable', found '%s'",
buf_ptr(&fn_type->name)));
}
static void typecheck_panic_fn(CodeGen *g, FnTableEntry *panic_fn) {
AstNode *proto_node = panic_fn->proto_node;
assert(proto_node->type == NodeTypeFnProto);
TypeTableEntry *fn_type = panic_fn->type_entry;
FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id;
if (fn_type_id->param_count != 2) {
return wrong_panic_prototype(g, proto_node, fn_type);
}
TypeTableEntry *const_u8_ptr = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, true, false,
PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0);
TypeTableEntry *const_u8_slice = get_slice_type(g, const_u8_ptr);
if (fn_type_id->param_info[0].type != const_u8_slice) {
return wrong_panic_prototype(g, proto_node, fn_type);
}
TypeTableEntry *optional_ptr_to_stack_trace_type = get_maybe_type(g, get_ptr_to_stack_trace_type(g));
if (fn_type_id->param_info[1].type != optional_ptr_to_stack_trace_type) {
return wrong_panic_prototype(g, proto_node, fn_type);
}
TypeTableEntry *actual_return_type = fn_type_id->return_type;
if (actual_return_type != g->builtin_types.entry_unreachable) {
return wrong_panic_prototype(g, proto_node, fn_type);
}
}
TypeTableEntry *get_test_fn_type(CodeGen *g) {
if (g->test_fn_type)
return g->test_fn_type;
FnTypeId fn_type_id = {0};
fn_type_id.return_type = get_error_union_type(g, g->builtin_types.entry_global_error_set,
g->builtin_types.entry_void);
g->test_fn_type = get_fn_type(g, &fn_type_id);
return g->test_fn_type;
}
void add_fn_export(CodeGen *g, FnTableEntry *fn_table_entry, Buf *symbol_name, GlobalLinkageId linkage, bool ccc) {
if (ccc) {
if (buf_eql_str(symbol_name, "main") && g->libc_link_lib != nullptr) {
g->have_c_main = true;
g->windows_subsystem_windows = false;
g->windows_subsystem_console = true;
} else if (buf_eql_str(symbol_name, "WinMain") &&
g->zig_target.os == OsWindows)
{
g->have_winmain = true;
g->windows_subsystem_windows = true;
g->windows_subsystem_console = false;
} else if (buf_eql_str(symbol_name, "WinMainCRTStartup") &&
g->zig_target.os == OsWindows)
{
g->have_winmain_crt_startup = true;
} else if (buf_eql_str(symbol_name, "DllMainCRTStartup") &&
g->zig_target.os == OsWindows)
{
g->have_dllmain_crt_startup = true;
}
}
FnExport *fn_export = fn_table_entry->export_list.add_one();
memset(fn_export, 0, sizeof(FnExport));
buf_init_from_buf(&fn_export->name, symbol_name);
fn_export->linkage = linkage;
}
static void resolve_decl_fn(CodeGen *g, TldFn *tld_fn) {
ImportTableEntry *import = tld_fn->base.import;
AstNode *source_node = tld_fn->base.source_node;
if (source_node->type == NodeTypeFnProto) {
AstNodeFnProto *fn_proto = &source_node->data.fn_proto;
AstNode *fn_def_node = fn_proto->fn_def_node;
FnTableEntry *fn_table_entry = create_fn(source_node);
get_fully_qualified_decl_name(&fn_table_entry->symbol_name, &tld_fn->base, '_');
if (fn_proto->is_export) {
bool ccc = (fn_proto->cc == CallingConventionUnspecified || fn_proto->cc == CallingConventionC);
add_fn_export(g, fn_table_entry, &fn_table_entry->symbol_name, GlobalLinkageIdStrong, ccc);
}
tld_fn->fn_entry = fn_table_entry;
if (fn_table_entry->body_node) {
fn_table_entry->fndef_scope = create_fndef_scope(
fn_table_entry->body_node, tld_fn->base.parent_scope, fn_table_entry);
for (size_t i = 0; i < fn_proto->params.length; i += 1) {
AstNode *param_node = fn_proto->params.at(i);
assert(param_node->type == NodeTypeParamDecl);
if (param_node->data.param_decl.name == nullptr) {
add_node_error(g, param_node, buf_sprintf("missing parameter name"));
}
}
} else {
g->external_prototypes.put_unique(tld_fn->base.name, &tld_fn->base);
}
Scope *child_scope = fn_table_entry->fndef_scope ? &fn_table_entry->fndef_scope->base : tld_fn->base.parent_scope;
fn_table_entry->type_entry = analyze_fn_type(g, source_node, child_scope, fn_table_entry);
if (fn_proto->section_expr != nullptr) {
if (fn_table_entry->body_node == nullptr) {
add_node_error(g, fn_proto->section_expr,
buf_sprintf("cannot set section of external function '%s'", buf_ptr(&fn_table_entry->symbol_name)));
} else {
analyze_const_string(g, child_scope, fn_proto->section_expr, &fn_table_entry->section_name);
}
}
if (fn_table_entry->type_entry->id == TypeTableEntryIdInvalid) {
tld_fn->base.resolution = TldResolutionInvalid;
return;
}
if (!fn_table_entry->type_entry->data.fn.is_generic) {
if (fn_def_node)
g->fn_defs.append(fn_table_entry);
if (scope_is_root_decls(tld_fn->base.parent_scope) &&
(import == g->root_import || import->package == g->panic_package))
{
if (g->have_pub_main && buf_eql_str(&fn_table_entry->symbol_name, "main")) {
g->main_fn = fn_table_entry;
} else if ((import->package == g->panic_package || g->have_pub_panic) &&
buf_eql_str(&fn_table_entry->symbol_name, "panic"))
{
g->panic_fn = fn_table_entry;
typecheck_panic_fn(g, fn_table_entry);
}
}
}
} else if (source_node->type == NodeTypeTestDecl) {
FnTableEntry *fn_table_entry = create_fn_raw(FnInlineAuto);
get_fully_qualified_decl_name(&fn_table_entry->symbol_name, &tld_fn->base, '_');
tld_fn->fn_entry = fn_table_entry;
fn_table_entry->proto_node = source_node;
fn_table_entry->fndef_scope = create_fndef_scope(source_node, tld_fn->base.parent_scope, fn_table_entry);
fn_table_entry->type_entry = get_test_fn_type(g);
fn_table_entry->body_node = source_node->data.test_decl.body;
fn_table_entry->is_test = true;
g->fn_defs.append(fn_table_entry);
g->test_fns.append(fn_table_entry);
} else {
zig_unreachable();
}
}
static void resolve_decl_comptime(CodeGen *g, TldCompTime *tld_comptime) {
assert(tld_comptime->base.source_node->type == NodeTypeCompTime);
AstNode *expr_node = tld_comptime->base.source_node->data.comptime_expr.expr;
analyze_const_value(g, tld_comptime->base.parent_scope, expr_node, g->builtin_types.entry_void, nullptr);
}
static void add_top_level_decl(CodeGen *g, ScopeDecls *decls_scope, Tld *tld) {
bool is_export = false;
if (tld->id == TldIdVar) {
assert(tld->source_node->type == NodeTypeVariableDeclaration);
is_export = tld->source_node->data.variable_declaration.is_export;
} else if (tld->id == TldIdFn) {
assert(tld->source_node->type == NodeTypeFnProto);
is_export = tld->source_node->data.fn_proto.is_export;
}
if (is_export) {
g->resolve_queue.append(tld);
auto entry = g->exported_symbol_names.put_unique(tld->name, tld->source_node);
if (entry) {
AstNode *other_source_node = entry->value;
ErrorMsg *msg = add_node_error(g, tld->source_node,
buf_sprintf("exported symbol collision: '%s'", buf_ptr(tld->name)));
add_error_note(g, msg, other_source_node, buf_sprintf("other symbol here"));
}
}
{
auto entry = decls_scope->decl_table.put_unique(tld->name, tld);
if (entry) {
Tld *other_tld = entry->value;
ErrorMsg *msg = add_node_error(g, tld->source_node, buf_sprintf("redefinition of '%s'", buf_ptr(tld->name)));
add_error_note(g, msg, other_tld->source_node, buf_sprintf("previous definition is here"));
return;
}
}
{
auto entry = g->primitive_type_table.maybe_get(tld->name);
if (entry) {
TypeTableEntry *type = entry->value;
add_node_error(g, tld->source_node,
buf_sprintf("declaration shadows type '%s'", buf_ptr(&type->name)));
}
}
}
static void preview_test_decl(CodeGen *g, AstNode *node, ScopeDecls *decls_scope) {
assert(node->type == NodeTypeTestDecl);
if (!g->is_test_build)
return;
ImportTableEntry *import = get_scope_import(&decls_scope->base);
if (import->package != g->root_package)
return;
Buf *decl_name_buf = node->data.test_decl.name;
Buf *test_name = g->test_name_prefix ?
buf_sprintf("%s%s", buf_ptr(g->test_name_prefix), buf_ptr(decl_name_buf)) : decl_name_buf;
if (g->test_filter != nullptr && strstr(buf_ptr(test_name), buf_ptr(g->test_filter)) == nullptr) {
return;
}
TldFn *tld_fn = allocate<TldFn>(1);
init_tld(&tld_fn->base, TldIdFn, test_name, VisibModPrivate, node, &decls_scope->base);
g->resolve_queue.append(&tld_fn->base);
}
static void preview_comptime_decl(CodeGen *g, AstNode *node, ScopeDecls *decls_scope) {
assert(node->type == NodeTypeCompTime);
TldCompTime *tld_comptime = allocate<TldCompTime>(1);
init_tld(&tld_comptime->base, TldIdCompTime, nullptr, VisibModPrivate, node, &decls_scope->base);
g->resolve_queue.append(&tld_comptime->base);
}
void init_tld(Tld *tld, TldId id, Buf *name, VisibMod visib_mod, AstNode *source_node,
Scope *parent_scope)
{
tld->id = id;
tld->name = name;
tld->visib_mod = visib_mod;
tld->source_node = source_node;
tld->import = source_node ? source_node->owner : nullptr;
tld->parent_scope = parent_scope;
}
void update_compile_var(CodeGen *g, Buf *name, ConstExprValue *value) {
Tld *tld = g->compile_var_import->decls_scope->decl_table.get(name);
resolve_top_level_decl(g, tld, false, tld->source_node);
assert(tld->id == TldIdVar);
TldVar *tld_var = (TldVar *)tld;
tld_var->var->value = value;
tld_var->var->align_bytes = get_abi_alignment(g, value->type);
}
void scan_decls(CodeGen *g, ScopeDecls *decls_scope, AstNode *node) {
switch (node->type) {
case NodeTypeRoot:
for (size_t i = 0; i < node->data.root.top_level_decls.length; i += 1) {
AstNode *child = node->data.root.top_level_decls.at(i);
scan_decls(g, decls_scope, child);
}
break;
case NodeTypeFnDef:
scan_decls(g, decls_scope, node->data.fn_def.fn_proto);
break;
case NodeTypeVariableDeclaration:
{
Buf *name = node->data.variable_declaration.symbol;
VisibMod visib_mod = node->data.variable_declaration.visib_mod;
TldVar *tld_var = allocate<TldVar>(1);
init_tld(&tld_var->base, TldIdVar, name, visib_mod, node, &decls_scope->base);
tld_var->extern_lib_name = node->data.variable_declaration.lib_name;
add_top_level_decl(g, decls_scope, &tld_var->base);
break;
}
case NodeTypeFnProto:
{
// if the name is missing, we immediately announce an error
Buf *fn_name = node->data.fn_proto.name;
if (fn_name == nullptr) {
add_node_error(g, node, buf_sprintf("missing function name"));
break;
}
VisibMod visib_mod = node->data.fn_proto.visib_mod;
TldFn *tld_fn = allocate<TldFn>(1);
init_tld(&tld_fn->base, TldIdFn, fn_name, visib_mod, node, &decls_scope->base);
tld_fn->extern_lib_name = node->data.fn_proto.lib_name;
add_top_level_decl(g, decls_scope, &tld_fn->base);
break;
}
case NodeTypeUse:
{
g->use_queue.append(node);
ImportTableEntry *import = get_scope_import(&decls_scope->base);
import->use_decls.append(node);
break;
}
case NodeTypeTestDecl:
preview_test_decl(g, node, decls_scope);
break;
case NodeTypeCompTime:
preview_comptime_decl(g, node, decls_scope);
break;
case NodeTypeContainerDecl:
case NodeTypeParamDecl:
case NodeTypeReturnExpr:
case NodeTypeDefer:
case NodeTypeBlock:
case NodeTypeGroupedExpr:
case NodeTypeBinOpExpr:
case NodeTypeUnwrapErrorExpr:
case NodeTypeFnCallExpr:
case NodeTypeArrayAccessExpr:
case NodeTypeSliceExpr:
case NodeTypeFloatLiteral:
case NodeTypeIntLiteral:
case NodeTypeStringLiteral:
case NodeTypeCharLiteral:
case NodeTypeBoolLiteral:
case NodeTypeNullLiteral:
case NodeTypeUndefinedLiteral:
case NodeTypeThisLiteral:
case NodeTypeSymbol:
case NodeTypePrefixOpExpr:
case NodeTypePointerType:
case NodeTypeIfBoolExpr:
case NodeTypeWhileExpr:
case NodeTypeForExpr:
case NodeTypeSwitchExpr:
case NodeTypeSwitchProng:
case NodeTypeSwitchRange:
case NodeTypeBreak:
case NodeTypeContinue:
case NodeTypeUnreachable:
case NodeTypeAsmExpr:
case NodeTypeFieldAccessExpr:
case NodeTypePtrDeref:
case NodeTypeUnwrapOptional:
case NodeTypeStructField:
case NodeTypeContainerInitExpr:
case NodeTypeStructValueField:
case NodeTypeArrayType:
case NodeTypeErrorType:
case NodeTypeIfErrorExpr:
case NodeTypeTestExpr:
case NodeTypeErrorSetDecl:
case NodeTypeCancel:
case NodeTypeResume:
case NodeTypeAwaitExpr:
case NodeTypeSuspend:
case NodeTypePromiseType:
zig_unreachable();
}
}
static void resolve_decl_container(CodeGen *g, TldContainer *tld_container) {
TypeTableEntry *type_entry = tld_container->type_entry;
assert(type_entry);
switch (type_entry->id) {
case TypeTableEntryIdStruct:
resolve_struct_type(g, tld_container->type_entry);
return;
case TypeTableEntryIdEnum:
resolve_enum_type(g, tld_container->type_entry);
return;
case TypeTableEntryIdUnion:
resolve_union_type(g, tld_container->type_entry);
return;
default:
zig_unreachable();
}
}
TypeTableEntry *validate_var_type(CodeGen *g, AstNode *source_node, TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
return g->builtin_types.entry_invalid;
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdBlock:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
add_node_error(g, source_node, buf_sprintf("variable of type '%s' not allowed",
buf_ptr(&type_entry->name)));
return g->builtin_types.entry_invalid;
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdPromise:
return type_entry;
}
zig_unreachable();
}
// Set name to nullptr to make the variable anonymous (not visible to programmer).
// TODO merge with definition of add_local_var in ir.cpp
VariableTableEntry *add_variable(CodeGen *g, AstNode *source_node, Scope *parent_scope, Buf *name,
bool is_const, ConstExprValue *value, Tld *src_tld)
{
assert(value);
VariableTableEntry *variable_entry = allocate<VariableTableEntry>(1);
variable_entry->value = value;
variable_entry->parent_scope = parent_scope;
variable_entry->shadowable = false;
variable_entry->mem_slot_index = SIZE_MAX;
variable_entry->src_arg_index = SIZE_MAX;
variable_entry->align_bytes = get_abi_alignment(g, value->type);
assert(name);
buf_init_from_buf(&variable_entry->name, name);
if (value->type->id != TypeTableEntryIdInvalid) {
VariableTableEntry *existing_var = find_variable(g, parent_scope, name);
if (existing_var && !existing_var->shadowable) {
ErrorMsg *msg = add_node_error(g, source_node,
buf_sprintf("redeclaration of variable '%s'", buf_ptr(name)));
add_error_note(g, msg, existing_var->decl_node, buf_sprintf("previous declaration is here"));
variable_entry->value->type = g->builtin_types.entry_invalid;
} else {
auto primitive_table_entry = g->primitive_type_table.maybe_get(name);
if (primitive_table_entry) {
TypeTableEntry *type = primitive_table_entry->value;
add_node_error(g, source_node,
buf_sprintf("variable shadows type '%s'", buf_ptr(&type->name)));
variable_entry->value->type = g->builtin_types.entry_invalid;
} else {
Scope *search_scope = nullptr;
if (src_tld == nullptr) {
search_scope = parent_scope;
} else if (src_tld->parent_scope != nullptr && src_tld->parent_scope->parent != nullptr) {
search_scope = src_tld->parent_scope->parent;
}
if (search_scope != nullptr) {
Tld *tld = find_decl(g, search_scope, name);
if (tld != nullptr) {
ErrorMsg *msg = add_node_error(g, source_node,
buf_sprintf("redefinition of '%s'", buf_ptr(name)));
add_error_note(g, msg, tld->source_node, buf_sprintf("previous definition is here"));
variable_entry->value->type = g->builtin_types.entry_invalid;
}
}
}
}
}
Scope *child_scope;
if (source_node && source_node->type == NodeTypeParamDecl) {
child_scope = create_var_scope(source_node, parent_scope, variable_entry);
} else {
// it's already in the decls table
child_scope = parent_scope;
}
variable_entry->src_is_const = is_const;
variable_entry->gen_is_const = is_const;
variable_entry->decl_node = source_node;
variable_entry->child_scope = child_scope;
return variable_entry;
}
static void resolve_decl_var(CodeGen *g, TldVar *tld_var) {
AstNode *source_node = tld_var->base.source_node;
AstNodeVariableDeclaration *var_decl = &source_node->data.variable_declaration;
bool is_const = var_decl->is_const;
bool is_extern = var_decl->is_extern;
bool is_export = var_decl->is_export;
TypeTableEntry *explicit_type = nullptr;
if (var_decl->type) {
TypeTableEntry *proposed_type = analyze_type_expr(g, tld_var->base.parent_scope, var_decl->type);
explicit_type = validate_var_type(g, var_decl->type, proposed_type);
}
assert(!is_export || !is_extern);
VarLinkage linkage;
if (is_export) {
linkage = VarLinkageExport;
} else if (is_extern) {
linkage = VarLinkageExternal;
} else {
linkage = VarLinkageInternal;
}
IrInstruction *init_value = nullptr;
// TODO more validation for types that can't be used for export/extern variables
TypeTableEntry *implicit_type = nullptr;
if (explicit_type && explicit_type->id == TypeTableEntryIdInvalid) {
implicit_type = explicit_type;
} else if (var_decl->expr) {
init_value = analyze_const_value(g, tld_var->base.parent_scope, var_decl->expr, explicit_type, var_decl->symbol);
assert(init_value);
implicit_type = init_value->value.type;
if (implicit_type->id == TypeTableEntryIdUnreachable) {
add_node_error(g, source_node, buf_sprintf("variable initialization is unreachable"));
implicit_type = g->builtin_types.entry_invalid;
} else if ((!is_const || linkage == VarLinkageExternal) &&
(implicit_type->id == TypeTableEntryIdComptimeFloat ||
implicit_type->id == TypeTableEntryIdComptimeInt))
{
add_node_error(g, source_node, buf_sprintf("unable to infer variable type"));
implicit_type = g->builtin_types.entry_invalid;
} else if (implicit_type->id == TypeTableEntryIdNull) {
add_node_error(g, source_node, buf_sprintf("unable to infer variable type"));
implicit_type = g->builtin_types.entry_invalid;
} else if (implicit_type->id == TypeTableEntryIdMetaType && !is_const) {
add_node_error(g, source_node, buf_sprintf("variable of type 'type' must be constant"));
implicit_type = g->builtin_types.entry_invalid;
}
assert(implicit_type->id == TypeTableEntryIdInvalid || init_value->value.special != ConstValSpecialRuntime);
} else if (linkage != VarLinkageExternal) {
add_node_error(g, source_node, buf_sprintf("variables must be initialized"));
implicit_type = g->builtin_types.entry_invalid;
}
TypeTableEntry *type = explicit_type ? explicit_type : implicit_type;
assert(type != nullptr); // should have been caught by the parser
ConstExprValue *init_val = init_value ? &init_value->value : create_const_runtime(type);
tld_var->var = add_variable(g, source_node, tld_var->base.parent_scope, var_decl->symbol,
is_const, init_val, &tld_var->base);
tld_var->var->linkage = linkage;
if (implicit_type != nullptr && type_is_invalid(implicit_type)) {
tld_var->var->value->type = g->builtin_types.entry_invalid;
}
if (var_decl->align_expr != nullptr) {
if (!analyze_const_align(g, tld_var->base.parent_scope, var_decl->align_expr, &tld_var->var->align_bytes)) {
tld_var->var->value->type = g->builtin_types.entry_invalid;
}
}
if (var_decl->section_expr != nullptr) {
if (var_decl->is_extern) {
add_node_error(g, var_decl->section_expr,
buf_sprintf("cannot set section of external variable '%s'", buf_ptr(var_decl->symbol)));
} else if (!analyze_const_string(g, tld_var->base.parent_scope, var_decl->section_expr, &tld_var->section_name)) {
tld_var->section_name = nullptr;
}
}
g->global_vars.append(tld_var);
}
void resolve_top_level_decl(CodeGen *g, Tld *tld, bool pointer_only, AstNode *source_node) {
if (tld->resolution != TldResolutionUnresolved)
return;
if (tld->dep_loop_flag) {
add_node_error(g, tld->source_node, buf_sprintf("'%s' depends on itself", buf_ptr(tld->name)));
tld->resolution = TldResolutionInvalid;
return;
}
tld->dep_loop_flag = true;
g->tld_ref_source_node_stack.append(source_node);
switch (tld->id) {
case TldIdVar:
{
TldVar *tld_var = (TldVar *)tld;
resolve_decl_var(g, tld_var);
break;
}
case TldIdFn:
{
TldFn *tld_fn = (TldFn *)tld;
resolve_decl_fn(g, tld_fn);
break;
}
case TldIdContainer:
{
TldContainer *tld_container = (TldContainer *)tld;
resolve_decl_container(g, tld_container);
break;
}
case TldIdCompTime:
{
TldCompTime *tld_comptime = (TldCompTime *)tld;
resolve_decl_comptime(g, tld_comptime);
break;
}
}
tld->resolution = TldResolutionOk;
tld->dep_loop_flag = false;
g->tld_ref_source_node_stack.pop();
}
Tld *find_decl(CodeGen *g, Scope *scope, Buf *name) {
// we must resolve all the use decls
ImportTableEntry *import = get_scope_import(scope);
for (size_t i = 0; i < import->use_decls.length; i += 1) {
AstNode *use_decl_node = import->use_decls.at(i);
if (use_decl_node->data.use.resolution == TldResolutionUnresolved) {
preview_use_decl(g, use_decl_node);
resolve_use_decl(g, use_decl_node);
}
}
while (scope) {
if (scope->id == ScopeIdDecls) {
ScopeDecls *decls_scope = (ScopeDecls *)scope;
auto entry = decls_scope->decl_table.maybe_get(name);
if (entry)
return entry->value;
}
scope = scope->parent;
}
return nullptr;
}
VariableTableEntry *find_variable(CodeGen *g, Scope *scope, Buf *name) {
while (scope) {
if (scope->id == ScopeIdVarDecl) {
ScopeVarDecl *var_scope = (ScopeVarDecl *)scope;
if (buf_eql_buf(name, &var_scope->var->name))
return var_scope->var;
} else if (scope->id == ScopeIdDecls) {
ScopeDecls *decls_scope = (ScopeDecls *)scope;
auto entry = decls_scope->decl_table.maybe_get(name);
if (entry) {
Tld *tld = entry->value;
if (tld->id == TldIdVar) {
TldVar *tld_var = (TldVar *)tld;
if (tld_var->var)
return tld_var->var;
}
}
}
scope = scope->parent;
}
return nullptr;
}
FnTableEntry *scope_fn_entry(Scope *scope) {
while (scope) {
if (scope->id == ScopeIdFnDef) {
ScopeFnDef *fn_scope = (ScopeFnDef *)scope;
return fn_scope->fn_entry;
}
scope = scope->parent;
}
return nullptr;
}
FnTableEntry *scope_get_fn_if_root(Scope *scope) {
assert(scope);
scope = scope->parent;
while (scope) {
switch (scope->id) {
case ScopeIdBlock:
return nullptr;
case ScopeIdDecls:
case ScopeIdDefer:
case ScopeIdDeferExpr:
case ScopeIdVarDecl:
case ScopeIdCImport:
case ScopeIdLoop:
case ScopeIdSuspend:
case ScopeIdCompTime:
case ScopeIdCoroPrelude:
scope = scope->parent;
continue;
case ScopeIdFnDef:
ScopeFnDef *fn_scope = (ScopeFnDef *)scope;
return fn_scope->fn_entry;
}
zig_unreachable();
}
return nullptr;
}
TypeEnumField *find_enum_type_field(TypeTableEntry *enum_type, Buf *name) {
assert(enum_type->id == TypeTableEntryIdEnum);
if (enum_type->data.enumeration.src_field_count == 0)
return nullptr;
auto entry = enum_type->data.enumeration.fields_by_name.maybe_get(name);
if (entry == nullptr)
return nullptr;
return entry->value;
}
TypeStructField *find_struct_type_field(TypeTableEntry *type_entry, Buf *name) {
assert(type_entry->id == TypeTableEntryIdStruct);
assert(type_entry->data.structure.complete);
if (type_entry->data.structure.src_field_count == 0)
return nullptr;
auto entry = type_entry->data.structure.fields_by_name.maybe_get(name);
if (entry == nullptr)
return nullptr;
return entry->value;
}
TypeUnionField *find_union_type_field(TypeTableEntry *type_entry, Buf *name) {
assert(type_entry->id == TypeTableEntryIdUnion);
assert(type_entry->data.unionation.zero_bits_known);
if (type_entry->data.unionation.src_field_count == 0)
return nullptr;
auto entry = type_entry->data.unionation.fields_by_name.maybe_get(name);
if (entry == nullptr)
return nullptr;
return entry->value;
}
TypeUnionField *find_union_field_by_tag(TypeTableEntry *type_entry, const BigInt *tag) {
assert(type_entry->id == TypeTableEntryIdUnion);
assert(type_entry->data.unionation.zero_bits_known);
for (uint32_t i = 0; i < type_entry->data.unionation.src_field_count; i += 1) {
TypeUnionField *field = &type_entry->data.unionation.fields[i];
if (bigint_cmp(&field->enum_field->value, tag) == CmpEQ) {
return field;
}
}
return nullptr;
}
TypeEnumField *find_enum_field_by_tag(TypeTableEntry *enum_type, const BigInt *tag) {
for (uint32_t i = 0; i < enum_type->data.enumeration.src_field_count; i += 1) {
TypeEnumField *field = &enum_type->data.enumeration.fields[i];
if (bigint_cmp(&field->value, tag) == CmpEQ) {
return field;
}
}
return nullptr;
}
static bool is_container(TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdStruct:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
return true;
case TypeTableEntryIdPointer:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdArray:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
case TypeTableEntryIdPromise:
return false;
}
zig_unreachable();
}
bool is_ref(TypeTableEntry *type_entry) {
return type_entry->id == TypeTableEntryIdPointer && type_entry->data.pointer.ptr_len == PtrLenSingle;
}
bool is_array_ref(TypeTableEntry *type_entry) {
TypeTableEntry *array = is_ref(type_entry) ?
type_entry->data.pointer.child_type : type_entry;
return array->id == TypeTableEntryIdArray;
}
bool is_container_ref(TypeTableEntry *type_entry) {
return is_ref(type_entry) ?
is_container(type_entry->data.pointer.child_type) : is_container(type_entry);
}
TypeTableEntry *container_ref_type(TypeTableEntry *type_entry) {
assert(is_container_ref(type_entry));
return is_ref(type_entry) ?
type_entry->data.pointer.child_type : type_entry;
}
void resolve_container_type(CodeGen *g, TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdStruct:
resolve_struct_type(g, type_entry);
break;
case TypeTableEntryIdEnum:
resolve_enum_type(g, type_entry);
break;
case TypeTableEntryIdUnion:
resolve_union_type(g, type_entry);
break;
case TypeTableEntryIdPointer:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdArray:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdInvalid:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
case TypeTableEntryIdPromise:
zig_unreachable();
}
}
TypeTableEntry *get_codegen_ptr_type(TypeTableEntry *type) {
if (type->id == TypeTableEntryIdPointer) return type;
if (type->id == TypeTableEntryIdFn) return type;
if (type->id == TypeTableEntryIdPromise) return type;
if (type->id == TypeTableEntryIdOptional) {
if (type->data.maybe.child_type->id == TypeTableEntryIdPointer) return type->data.maybe.child_type;
if (type->data.maybe.child_type->id == TypeTableEntryIdFn) return type->data.maybe.child_type;
if (type->data.maybe.child_type->id == TypeTableEntryIdPromise) return type->data.maybe.child_type;
}
return nullptr;
}
bool type_is_codegen_pointer(TypeTableEntry *type) {
return get_codegen_ptr_type(type) == type;
}
uint32_t get_ptr_align(TypeTableEntry *type) {
TypeTableEntry *ptr_type = get_codegen_ptr_type(type);
if (ptr_type->id == TypeTableEntryIdPointer) {
return ptr_type->data.pointer.alignment;
} else if (ptr_type->id == TypeTableEntryIdFn) {
return (ptr_type->data.fn.fn_type_id.alignment == 0) ? 1 : ptr_type->data.fn.fn_type_id.alignment;
} else if (ptr_type->id == TypeTableEntryIdPromise) {
return 1;
} else {
zig_unreachable();
}
}
bool get_ptr_const(TypeTableEntry *type) {
TypeTableEntry *ptr_type = get_codegen_ptr_type(type);
if (ptr_type->id == TypeTableEntryIdPointer) {
return ptr_type->data.pointer.is_const;
} else if (ptr_type->id == TypeTableEntryIdFn) {
return true;
} else if (ptr_type->id == TypeTableEntryIdPromise) {
return true;
} else {
zig_unreachable();
}
}
AstNode *get_param_decl_node(FnTableEntry *fn_entry, size_t index) {
if (fn_entry->param_source_nodes)
return fn_entry->param_source_nodes[index];
else if (fn_entry->proto_node)
return fn_entry->proto_node->data.fn_proto.params.at(index);
else
return nullptr;
}
static void define_local_param_variables(CodeGen *g, FnTableEntry *fn_table_entry, VariableTableEntry **arg_vars) {
TypeTableEntry *fn_type = fn_table_entry->type_entry;
assert(!fn_type->data.fn.is_generic);
FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id;
for (size_t i = 0; i < fn_type_id->param_count; i += 1) {
FnTypeParamInfo *param_info = &fn_type_id->param_info[i];
AstNode *param_decl_node = get_param_decl_node(fn_table_entry, i);
Buf *param_name;
bool is_var_args = param_decl_node && param_decl_node->data.param_decl.is_var_args;
if (param_decl_node && !is_var_args) {
param_name = param_decl_node->data.param_decl.name;
} else {
param_name = buf_sprintf("arg%" ZIG_PRI_usize "", i);
}
if (param_name == nullptr) {
continue;
}
TypeTableEntry *param_type = param_info->type;
bool is_noalias = param_info->is_noalias;
if (is_noalias && get_codegen_ptr_type(param_type) == nullptr) {
add_node_error(g, param_decl_node, buf_sprintf("noalias on non-pointer parameter"));
}
VariableTableEntry *var = add_variable(g, param_decl_node, fn_table_entry->child_scope,
param_name, true, create_const_runtime(param_type), nullptr);
var->src_arg_index = i;
fn_table_entry->child_scope = var->child_scope;
var->shadowable = var->shadowable || is_var_args;
if (type_has_bits(param_type)) {
fn_table_entry->variable_list.append(var);
}
if (fn_type->data.fn.gen_param_info) {
var->gen_arg_index = fn_type->data.fn.gen_param_info[i].gen_index;
}
if (arg_vars) {
arg_vars[i] = var;
}
}
}
bool resolve_inferred_error_set(CodeGen *g, TypeTableEntry *err_set_type, AstNode *source_node) {
FnTableEntry *infer_fn = err_set_type->data.error_set.infer_fn;
if (infer_fn != nullptr) {
if (infer_fn->anal_state == FnAnalStateInvalid) {
return false;
} else if (infer_fn->anal_state == FnAnalStateReady) {
analyze_fn_body(g, infer_fn);
if (err_set_type->data.error_set.infer_fn != nullptr) {
assert(g->errors.length != 0);
return false;
}
} else {
add_node_error(g, source_node,
buf_sprintf("cannot resolve inferred error set '%s': function '%s' not fully analyzed yet",
buf_ptr(&err_set_type->name), buf_ptr(&err_set_type->data.error_set.infer_fn->symbol_name)));
return false;
}
}
return true;
}
void analyze_fn_ir(CodeGen *g, FnTableEntry *fn_table_entry, AstNode *return_type_node) {
TypeTableEntry *fn_type = fn_table_entry->type_entry;
assert(!fn_type->data.fn.is_generic);
FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id;
TypeTableEntry *block_return_type = ir_analyze(g, &fn_table_entry->ir_executable,
&fn_table_entry->analyzed_executable, fn_type_id->return_type, return_type_node);
fn_table_entry->src_implicit_return_type = block_return_type;
if (type_is_invalid(block_return_type) || fn_table_entry->analyzed_executable.invalid) {
assert(g->errors.length > 0);
fn_table_entry->anal_state = FnAnalStateInvalid;
return;
}
if (fn_type_id->return_type->id == TypeTableEntryIdErrorUnion) {
TypeTableEntry *return_err_set_type = fn_type_id->return_type->data.error_union.err_set_type;
if (return_err_set_type->data.error_set.infer_fn != nullptr) {
TypeTableEntry *inferred_err_set_type;
if (fn_table_entry->src_implicit_return_type->id == TypeTableEntryIdErrorSet) {
inferred_err_set_type = fn_table_entry->src_implicit_return_type;
} else if (fn_table_entry->src_implicit_return_type->id == TypeTableEntryIdErrorUnion) {
inferred_err_set_type = fn_table_entry->src_implicit_return_type->data.error_union.err_set_type;
} else {
add_node_error(g, return_type_node,
buf_sprintf("function with inferred error set must return at least one possible error"));
fn_table_entry->anal_state = FnAnalStateInvalid;
return;
}
if (inferred_err_set_type->data.error_set.infer_fn != nullptr) {
if (!resolve_inferred_error_set(g, inferred_err_set_type, return_type_node)) {
fn_table_entry->anal_state = FnAnalStateInvalid;
return;
}
}
return_err_set_type->data.error_set.infer_fn = nullptr;
if (type_is_global_error_set(inferred_err_set_type)) {
return_err_set_type->data.error_set.err_count = UINT32_MAX;
} else {
return_err_set_type->data.error_set.err_count = inferred_err_set_type->data.error_set.err_count;
if (inferred_err_set_type->data.error_set.err_count > 0) {
return_err_set_type->data.error_set.errors = allocate<ErrorTableEntry *>(inferred_err_set_type->data.error_set.err_count);
for (uint32_t i = 0; i < inferred_err_set_type->data.error_set.err_count; i += 1) {
return_err_set_type->data.error_set.errors[i] = inferred_err_set_type->data.error_set.errors[i];
}
}
}
}
}
if (g->verbose_ir) {
fprintf(stderr, "{ // (analyzed)\n");
ir_print(g, stderr, &fn_table_entry->analyzed_executable, 4);
fprintf(stderr, "}\n");
}
fn_table_entry->anal_state = FnAnalStateComplete;
}
static void analyze_fn_body(CodeGen *g, FnTableEntry *fn_table_entry) {
assert(fn_table_entry->anal_state != FnAnalStateProbing);
if (fn_table_entry->anal_state != FnAnalStateReady)
return;
fn_table_entry->anal_state = FnAnalStateProbing;
AstNode *return_type_node = (fn_table_entry->proto_node != nullptr) ?
fn_table_entry->proto_node->data.fn_proto.return_type : fn_table_entry->fndef_scope->base.source_node;
assert(fn_table_entry->fndef_scope);
if (!fn_table_entry->child_scope)
fn_table_entry->child_scope = &fn_table_entry->fndef_scope->base;
define_local_param_variables(g, fn_table_entry, nullptr);
TypeTableEntry *fn_type = fn_table_entry->type_entry;
assert(!fn_type->data.fn.is_generic);
ir_gen_fn(g, fn_table_entry);
if (fn_table_entry->ir_executable.invalid) {
fn_table_entry->anal_state = FnAnalStateInvalid;
return;
}
if (g->verbose_ir) {
fprintf(stderr, "\n");
ast_render(g, stderr, fn_table_entry->body_node, 4);
fprintf(stderr, "\n{ // (IR)\n");
ir_print(g, stderr, &fn_table_entry->ir_executable, 4);
fprintf(stderr, "}\n");
}
analyze_fn_ir(g, fn_table_entry, return_type_node);
}
static void add_symbols_from_import(CodeGen *g, AstNode *src_use_node, AstNode *dst_use_node) {
if (src_use_node->data.use.resolution == TldResolutionUnresolved) {
preview_use_decl(g, src_use_node);
}
IrInstruction *use_target_value = src_use_node->data.use.value;
if (use_target_value->value.type->id == TypeTableEntryIdInvalid) {
dst_use_node->owner->any_imports_failed = true;
return;
}
dst_use_node->data.use.resolution = TldResolutionOk;
ConstExprValue *const_val = &use_target_value->value;
assert(const_val->special != ConstValSpecialRuntime);
ImportTableEntry *target_import = const_val->data.x_import;
assert(target_import);
if (target_import->any_imports_failed) {
dst_use_node->owner->any_imports_failed = true;
}
auto it = target_import->decls_scope->decl_table.entry_iterator();
for (;;) {
auto *entry = it.next();
if (!entry)
break;
Tld *target_tld = entry->value;
if (target_tld->import != target_import ||
target_tld->visib_mod == VisibModPrivate)
{
continue;
}
Buf *target_tld_name = entry->key;
auto existing_entry = dst_use_node->owner->decls_scope->decl_table.put_unique(target_tld_name, target_tld);
if (existing_entry) {
Tld *existing_decl = existing_entry->value;
if (existing_decl != target_tld) {
ErrorMsg *msg = add_node_error(g, dst_use_node,
buf_sprintf("import of '%s' overrides existing definition",
buf_ptr(target_tld_name)));
add_error_note(g, msg, existing_decl->source_node, buf_sprintf("previous definition here"));
add_error_note(g, msg, target_tld->source_node, buf_sprintf("imported definition here"));
}
}
}
for (size_t i = 0; i < target_import->use_decls.length; i += 1) {
AstNode *use_decl_node = target_import->use_decls.at(i);
if (use_decl_node->data.use.visib_mod != VisibModPrivate)
add_symbols_from_import(g, use_decl_node, dst_use_node);
}
}
void resolve_use_decl(CodeGen *g, AstNode *node) {
assert(node->type == NodeTypeUse);
if (node->data.use.resolution == TldResolutionOk ||
node->data.use.resolution == TldResolutionInvalid)
{
return;
}
add_symbols_from_import(g, node, node);
}
void preview_use_decl(CodeGen *g, AstNode *node) {
assert(node->type == NodeTypeUse);
if (node->data.use.resolution == TldResolutionOk ||
node->data.use.resolution == TldResolutionInvalid)
{
return;
}
node->data.use.resolution = TldResolutionResolving;
IrInstruction *result = analyze_const_value(g, &node->owner->decls_scope->base,
node->data.use.expr, g->builtin_types.entry_namespace, nullptr);
if (result->value.type->id == TypeTableEntryIdInvalid)
node->owner->any_imports_failed = true;
node->data.use.value = result;
}
ImportTableEntry *add_source_file(CodeGen *g, PackageTableEntry *package, Buf *abs_full_path, Buf *source_code) {
if (g->verbose_tokenize) {
fprintf(stderr, "\nOriginal Source (%s):\n", buf_ptr(abs_full_path));
fprintf(stderr, "----------------\n");
fprintf(stderr, "%s\n", buf_ptr(source_code));
fprintf(stderr, "\nTokens:\n");
fprintf(stderr, "---------\n");
}
Tokenization tokenization = {0};
tokenize(source_code, &tokenization);
if (tokenization.err) {
ErrorMsg *err = err_msg_create_with_line(abs_full_path, tokenization.err_line, tokenization.err_column,
source_code, tokenization.line_offsets, tokenization.err);
print_err_msg(err, g->err_color);
exit(1);
}
if (g->verbose_tokenize) {
print_tokens(source_code, tokenization.tokens);
fprintf(stderr, "\nAST:\n");
fprintf(stderr, "------\n");
}
ImportTableEntry *import_entry = allocate<ImportTableEntry>(1);
import_entry->package = package;
import_entry->source_code = source_code;
import_entry->line_offsets = tokenization.line_offsets;
import_entry->path = abs_full_path;
import_entry->root = ast_parse(source_code, tokenization.tokens, import_entry, g->err_color);
assert(import_entry->root);
if (g->verbose_ast) {
ast_print(stderr, import_entry->root, 0);
}
Buf *src_dirname = buf_alloc();
Buf *src_basename = buf_alloc();
os_path_split(abs_full_path, src_dirname, src_basename);
import_entry->di_file = ZigLLVMCreateFile(g->dbuilder, buf_ptr(src_basename), buf_ptr(src_dirname));
g->import_table.put(abs_full_path, import_entry);
g->import_queue.append(import_entry);
import_entry->decls_scope = create_decls_scope(import_entry->root, nullptr, nullptr, import_entry);
assert(import_entry->root->type == NodeTypeRoot);
for (size_t decl_i = 0; decl_i < import_entry->root->data.root.top_level_decls.length; decl_i += 1) {
AstNode *top_level_decl = import_entry->root->data.root.top_level_decls.at(decl_i);
if (top_level_decl->type == NodeTypeFnDef) {
AstNode *proto_node = top_level_decl->data.fn_def.fn_proto;
assert(proto_node->type == NodeTypeFnProto);
Buf *proto_name = proto_node->data.fn_proto.name;
bool is_pub = (proto_node->data.fn_proto.visib_mod == VisibModPub);
bool ok_cc = (proto_node->data.fn_proto.cc == CallingConventionUnspecified ||
proto_node->data.fn_proto.cc == CallingConventionCold);
if (is_pub && ok_cc) {
if (buf_eql_str(proto_name, "main")) {
g->have_pub_main = true;
g->windows_subsystem_windows = false;
g->windows_subsystem_console = true;
} else if (buf_eql_str(proto_name, "panic")) {
g->have_pub_panic = true;
}
}
}
}
return import_entry;
}
void scan_import(CodeGen *g, ImportTableEntry *import) {
if (!import->scanned) {
import->scanned = true;
scan_decls(g, import->decls_scope, import->root);
}
}
void semantic_analyze(CodeGen *g) {
for (; g->import_queue_index < g->import_queue.length; g->import_queue_index += 1) {
ImportTableEntry *import = g->import_queue.at(g->import_queue_index);
scan_import(g, import);
}
for (; g->use_queue_index < g->use_queue.length; g->use_queue_index += 1) {
AstNode *use_decl_node = g->use_queue.at(g->use_queue_index);
preview_use_decl(g, use_decl_node);
}
for (size_t i = 0; i < g->use_queue.length; i += 1) {
AstNode *use_decl_node = g->use_queue.at(i);
resolve_use_decl(g, use_decl_node);
}
while (g->resolve_queue_index < g->resolve_queue.length ||
g->fn_defs_index < g->fn_defs.length)
{
for (; g->resolve_queue_index < g->resolve_queue.length; g->resolve_queue_index += 1) {
Tld *tld = g->resolve_queue.at(g->resolve_queue_index);
bool pointer_only = false;
AstNode *source_node = nullptr;
resolve_top_level_decl(g, tld, pointer_only, source_node);
}
for (; g->fn_defs_index < g->fn_defs.length; g->fn_defs_index += 1) {
FnTableEntry *fn_entry = g->fn_defs.at(g->fn_defs_index);
analyze_fn_body(g, fn_entry);
}
}
}
TypeTableEntry **get_int_type_ptr(CodeGen *g, bool is_signed, uint32_t size_in_bits) {
size_t index;
if (size_in_bits == 2) {
index = 0;
} else if (size_in_bits == 3) {
index = 1;
} else if (size_in_bits == 4) {
index = 2;
} else if (size_in_bits == 5) {
index = 3;
} else if (size_in_bits == 6) {
index = 4;
} else if (size_in_bits == 7) {
index = 5;
} else if (size_in_bits == 8) {
index = 6;
} else if (size_in_bits == 16) {
index = 7;
} else if (size_in_bits == 29) {
index = 8;
} else if (size_in_bits == 32) {
index = 9;
} else if (size_in_bits == 64) {
index = 10;
} else if (size_in_bits == 128) {
index = 11;
} else {
return nullptr;
}
return &g->builtin_types.entry_int[is_signed ? 0 : 1][index];
}
TypeTableEntry *get_int_type(CodeGen *g, bool is_signed, uint32_t size_in_bits) {
TypeTableEntry **common_entry = get_int_type_ptr(g, is_signed, size_in_bits);
if (common_entry)
return *common_entry;
TypeId type_id = {};
type_id.id = TypeTableEntryIdInt;
type_id.data.integer.is_signed = is_signed;
type_id.data.integer.bit_count = size_in_bits;
{
auto entry = g->type_table.maybe_get(type_id);
if (entry)
return entry->value;
}
TypeTableEntry *new_entry = make_int_type(g, is_signed, size_in_bits);
g->type_table.put(type_id, new_entry);
return new_entry;
}
TypeTableEntry **get_c_int_type_ptr(CodeGen *g, CIntType c_int_type) {
return &g->builtin_types.entry_c_int[c_int_type];
}
TypeTableEntry *get_c_int_type(CodeGen *g, CIntType c_int_type) {
return *get_c_int_type_ptr(g, c_int_type);
}
bool handle_is_ptr(TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
zig_unreachable();
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdFn:
case TypeTableEntryIdEnum:
case TypeTableEntryIdPromise:
return false;
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
return type_has_bits(type_entry);
case TypeTableEntryIdErrorUnion:
return type_has_bits(type_entry->data.error_union.payload_type);
case TypeTableEntryIdOptional:
return type_has_bits(type_entry->data.maybe.child_type) &&
!type_is_codegen_pointer(type_entry->data.maybe.child_type);
case TypeTableEntryIdUnion:
assert(type_entry->data.unionation.complete);
if (type_entry->data.unionation.gen_field_count == 0)
return false;
if (!type_has_bits(type_entry))
return false;
return true;
}
zig_unreachable();
}
static ZigWindowsSDK *get_windows_sdk(CodeGen *g) {
if (g->win_sdk == nullptr) {
if (os_find_windows_sdk(&g->win_sdk)) {
fprintf(stderr, "unable to determine windows sdk path\n");
exit(1);
}
}
assert(g->win_sdk != nullptr);
return g->win_sdk;
}
Buf *get_linux_libc_lib_path(const char *o_file) {
const char *cc_exe = getenv("CC");
cc_exe = (cc_exe == nullptr) ? "cc" : cc_exe;
ZigList<const char *> args = {};
args.append(buf_ptr(buf_sprintf("-print-file-name=%s", o_file)));
Termination term;
Buf *out_stderr = buf_alloc();
Buf *out_stdout = buf_alloc();
int err;
if ((err = os_exec_process(cc_exe, args, &term, out_stderr, out_stdout))) {
zig_panic("unable to determine libc lib path: executing C compiler: %s", err_str(err));
}
if (term.how != TerminationIdClean || term.code != 0) {
zig_panic("unable to determine libc lib path: executing C compiler command failed");
}
if (buf_ends_with_str(out_stdout, "\n")) {
buf_resize(out_stdout, buf_len(out_stdout) - 1);
}
if (buf_len(out_stdout) == 0 || buf_eql_str(out_stdout, o_file)) {
zig_panic("unable to determine libc lib path: C compiler could not find %s", o_file);
}
Buf *result = buf_alloc();
os_path_dirname(out_stdout, result);
return result;
}
Buf *get_linux_libc_include_path(void) {
const char *cc_exe = getenv("CC");
cc_exe = (cc_exe == nullptr) ? "cc" : cc_exe;
ZigList<const char *> args = {};
args.append("-E");
args.append("-Wp,-v");
args.append("-xc");
args.append("/dev/null");
Termination term;
Buf *out_stderr = buf_alloc();
Buf *out_stdout = buf_alloc();
int err;
if ((err = os_exec_process(cc_exe, args, &term, out_stderr, out_stdout))) {
zig_panic("unable to determine libc include path: executing C compiler: %s", err_str(err));
}
if (term.how != TerminationIdClean || term.code != 0) {
zig_panic("unable to determine libc include path: executing C compiler command failed");
}
char *prev_newline = buf_ptr(out_stderr);
ZigList<const char *> search_paths = {};
bool found_search_paths = false;
for (;;) {
char *newline = strchr(prev_newline, '\n');
if (newline == nullptr) {
zig_panic("unable to determine libc include path: bad output from C compiler command");
}
*newline = 0;
if (found_search_paths) {
if (strcmp(prev_newline, "End of search list.") == 0) {
break;
}
search_paths.append(prev_newline);
} else {
if (strcmp(prev_newline, "#include <...> search starts here:") == 0) {
found_search_paths = true;
}
}
prev_newline = newline + 1;
}
if (search_paths.length == 0) {
zig_panic("unable to determine libc include path: even C compiler does not know where libc headers are");
}
for (size_t i = 0; i < search_paths.length; i += 1) {
// search in reverse order
const char *search_path = search_paths.items[search_paths.length - i - 1];
// cut off spaces
while (*search_path == ' ') {
search_path += 1;
}
Buf *stdlib_path = buf_sprintf("%s/stdlib.h", search_path);
bool exists;
if ((err = os_file_exists(stdlib_path, &exists))) {
exists = false;
}
if (exists) {
return buf_create_from_str(search_path);
}
}
zig_panic("unable to determine libc include path: stdlib.h not found in C compiler search paths");
}
void find_libc_include_path(CodeGen *g) {
if (g->libc_include_dir == nullptr) {
if (g->zig_target.os == OsWindows) {
ZigWindowsSDK *sdk = get_windows_sdk(g);
g->libc_include_dir = buf_alloc();
if (os_get_win32_ucrt_include_path(sdk, g->libc_include_dir)) {
fprintf(stderr, "Unable to determine libc include path. --libc-include-dir");
exit(1);
}
} else if (g->zig_target.os == OsLinux) {
g->libc_include_dir = get_linux_libc_include_path();
} else if (g->zig_target.os == OsMacOSX) {
g->libc_include_dir = buf_create_from_str("/usr/include");
} else {
// TODO find libc at runtime for other operating systems
zig_panic("Unable to determine libc include path.");
}
}
assert(buf_len(g->libc_include_dir) != 0);
}
void find_libc_lib_path(CodeGen *g) {
// later we can handle this better by reporting an error via the normal mechanism
if (g->libc_lib_dir == nullptr ||
(g->zig_target.os == OsWindows && (g->msvc_lib_dir == nullptr || g->kernel32_lib_dir == nullptr)))
{
if (g->zig_target.os == OsWindows) {
ZigWindowsSDK *sdk = get_windows_sdk(g);
if (g->msvc_lib_dir == nullptr) {
Buf* vc_lib_dir = buf_alloc();
if (os_get_win32_vcruntime_path(vc_lib_dir, g->zig_target.arch.arch)) {
fprintf(stderr, "Unable to determine vcruntime path. --msvc-lib-dir");
exit(1);
}
g->msvc_lib_dir = vc_lib_dir;
}
if (g->libc_lib_dir == nullptr) {
Buf* ucrt_lib_path = buf_alloc();
if (os_get_win32_ucrt_lib_path(sdk, ucrt_lib_path, g->zig_target.arch.arch)) {
fprintf(stderr, "Unable to determine ucrt path. --libc-lib-dir");
exit(1);
}
g->libc_lib_dir = ucrt_lib_path;
}
if (g->kernel32_lib_dir == nullptr) {
Buf* kern_lib_path = buf_alloc();
if (os_get_win32_kern32_path(sdk, kern_lib_path, g->zig_target.arch.arch)) {
fprintf(stderr, "Unable to determine kernel32 path. --kernel32-lib-dir");
exit(1);
}
g->kernel32_lib_dir = kern_lib_path;
}
} else if (g->zig_target.os == OsLinux) {
g->libc_lib_dir = get_linux_libc_lib_path("crt1.o");
} else {
zig_panic("Unable to determine libc lib path.");
}
} else {
assert(buf_len(g->libc_lib_dir) != 0);
}
if (g->libc_static_lib_dir == nullptr) {
if ((g->zig_target.os == OsWindows) && (g->msvc_lib_dir != NULL)) {
return;
} else if (g->zig_target.os == OsLinux) {
g->libc_static_lib_dir = get_linux_libc_lib_path("crtbegin.o");
} else {
zig_panic("Unable to determine libc static lib path.");
}
} else {
assert(buf_len(g->libc_static_lib_dir) != 0);
}
}
static uint32_t hash_ptr(void *ptr) {
return (uint32_t)(((uintptr_t)ptr) % UINT32_MAX);
}
static uint32_t hash_size(size_t x) {
return (uint32_t)(x % UINT32_MAX);
}
uint32_t fn_table_entry_hash(FnTableEntry* value) {
return ptr_hash(value);
}
bool fn_table_entry_eql(FnTableEntry *a, FnTableEntry *b) {
return ptr_eq(a, b);
}
uint32_t fn_type_id_hash(FnTypeId *id) {
uint32_t result = 0;
result += ((uint32_t)(id->cc)) * (uint32_t)3349388391;
result += id->is_var_args ? (uint32_t)1931444534 : 0;
result += hash_ptr(id->return_type);
result += hash_ptr(id->async_allocator_type);
result += id->alignment * 0xd3b3f3e2;
for (size_t i = 0; i < id->param_count; i += 1) {
FnTypeParamInfo *info = &id->param_info[i];
result += info->is_noalias ? (uint32_t)892356923 : 0;
result += hash_ptr(info->type);
}
return result;
}
bool fn_type_id_eql(FnTypeId *a, FnTypeId *b) {
if (a->cc != b->cc ||
a->return_type != b->return_type ||
a->is_var_args != b->is_var_args ||
a->param_count != b->param_count ||
a->alignment != b->alignment ||
a->async_allocator_type != b->async_allocator_type)
{
return false;
}
for (size_t i = 0; i < a->param_count; i += 1) {
FnTypeParamInfo *a_param_info = &a->param_info[i];
FnTypeParamInfo *b_param_info = &b->param_info[i];
if (a_param_info->type != b_param_info->type ||
a_param_info->is_noalias != b_param_info->is_noalias)
{
return false;
}
}
return true;
}
static uint32_t hash_const_val_ptr(ConstExprValue *const_val) {
uint32_t hash_val = 0;
switch (const_val->data.x_ptr.mut) {
case ConstPtrMutRuntimeVar:
hash_val += (uint32_t)3500721036;
break;
case ConstPtrMutComptimeConst:
hash_val += (uint32_t)4214318515;
break;
case ConstPtrMutComptimeVar:
hash_val += (uint32_t)1103195694;
break;
}
switch (const_val->data.x_ptr.special) {
case ConstPtrSpecialInvalid:
zig_unreachable();
case ConstPtrSpecialRef:
hash_val += (uint32_t)2478261866;
hash_val += hash_ptr(const_val->data.x_ptr.data.ref.pointee);
return hash_val;
case ConstPtrSpecialBaseArray:
hash_val += (uint32_t)1764906839;
hash_val += hash_ptr(const_val->data.x_ptr.data.base_array.array_val);
hash_val += hash_size(const_val->data.x_ptr.data.base_array.elem_index);
hash_val += const_val->data.x_ptr.data.base_array.is_cstr ? 1297263887 : 200363492;
return hash_val;
case ConstPtrSpecialBaseStruct:
hash_val += (uint32_t)3518317043;
hash_val += hash_ptr(const_val->data.x_ptr.data.base_struct.struct_val);
hash_val += hash_size(const_val->data.x_ptr.data.base_struct.field_index);
return hash_val;
case ConstPtrSpecialHardCodedAddr:
hash_val += (uint32_t)4048518294;
hash_val += hash_size(const_val->data.x_ptr.data.hard_coded_addr.addr);
return hash_val;
case ConstPtrSpecialDiscard:
hash_val += 2010123162;
return hash_val;
case ConstPtrSpecialFunction:
hash_val += (uint32_t)2590901619;
hash_val += hash_ptr(const_val->data.x_ptr.data.fn.fn_entry);
return hash_val;
}
zig_unreachable();
}
static uint32_t hash_const_val(ConstExprValue *const_val) {
assert(const_val->special == ConstValSpecialStatic);
switch (const_val->type->id) {
case TypeTableEntryIdOpaque:
zig_unreachable();
case TypeTableEntryIdBool:
return const_val->data.x_bool ? (uint32_t)127863866 : (uint32_t)215080464;
case TypeTableEntryIdMetaType:
return hash_ptr(const_val->data.x_type);
case TypeTableEntryIdVoid:
return (uint32_t)4149439618;
case TypeTableEntryIdInt:
case TypeTableEntryIdComptimeInt:
{
uint32_t result = 1331471175;
for (size_t i = 0; i < const_val->data.x_bigint.digit_count; i += 1) {
uint64_t digit = bigint_ptr(&const_val->data.x_bigint)[i];
result ^= ((uint32_t)(digit >> 32)) ^ (uint32_t)(result);
}
return result;
}
case TypeTableEntryIdEnum:
{
uint32_t result = 31643936;
for (size_t i = 0; i < const_val->data.x_enum_tag.digit_count; i += 1) {
uint64_t digit = bigint_ptr(&const_val->data.x_enum_tag)[i];
result ^= ((uint32_t)(digit >> 32)) ^ (uint32_t)(result);
}
return result;
}
case TypeTableEntryIdFloat:
switch (const_val->type->data.floating.bit_count) {
case 32:
{
uint32_t result;
memcpy(&result, &const_val->data.x_f32, 4);
return result ^ 4084870010;
}
case 64:
{
uint32_t ints[2];
memcpy(&ints[0], &const_val->data.x_f64, 8);
return ints[0] ^ ints[1] ^ 0x22ed43c6;
}
case 128:
{
uint32_t ints[4];
memcpy(&ints[0], &const_val->data.x_f128, 16);
return ints[0] ^ ints[1] ^ ints[2] ^ ints[3] ^ 0xb5ffef27;
}
default:
zig_unreachable();
}
case TypeTableEntryIdComptimeFloat:
{
float128_t f128 = bigfloat_to_f128(&const_val->data.x_bigfloat);
uint32_t ints[4];
memcpy(&ints[0], &f128, 16);
return ints[0] ^ ints[1] ^ ints[2] ^ ints[3] ^ 0xed8b3dfb;
}
case TypeTableEntryIdArgTuple:
return (uint32_t)const_val->data.x_arg_tuple.start_index * (uint32_t)281907309 +
(uint32_t)const_val->data.x_arg_tuple.end_index * (uint32_t)2290442768;
case TypeTableEntryIdFn:
assert(const_val->data.x_ptr.mut == ConstPtrMutComptimeConst);
assert(const_val->data.x_ptr.special == ConstPtrSpecialFunction);
return 3677364617 ^ hash_ptr(const_val->data.x_ptr.data.fn.fn_entry);
case TypeTableEntryIdPointer:
return hash_const_val_ptr(const_val);
case TypeTableEntryIdPromise:
// TODO better hashing algorithm
return 223048345;
case TypeTableEntryIdUndefined:
return 162837799;
case TypeTableEntryIdNull:
return 844854567;
case TypeTableEntryIdArray:
// TODO better hashing algorithm
return 1166190605;
case TypeTableEntryIdStruct:
// TODO better hashing algorithm
return 1532530855;
case TypeTableEntryIdUnion:
// TODO better hashing algorithm
return 2709806591;
case TypeTableEntryIdOptional:
if (get_codegen_ptr_type(const_val->type) != nullptr) {
return hash_const_val(const_val) * 1992916303;
} else {
if (const_val->data.x_optional) {
return hash_const_val(const_val->data.x_optional) * 1992916303;
} else {
return 4016830364;
}
}
case TypeTableEntryIdErrorUnion:
// TODO better hashing algorithm
return 3415065496;
case TypeTableEntryIdErrorSet:
assert(const_val->data.x_err_set != nullptr);
return const_val->data.x_err_set->value ^ 2630160122;
case TypeTableEntryIdNamespace:
return hash_ptr(const_val->data.x_import);
case TypeTableEntryIdBlock:
return hash_ptr(const_val->data.x_block);
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdInvalid:
case TypeTableEntryIdUnreachable:
zig_unreachable();
}
zig_unreachable();
}
uint32_t generic_fn_type_id_hash(GenericFnTypeId *id) {
uint32_t result = 0;
result += hash_ptr(id->fn_entry);
for (size_t i = 0; i < id->param_count; i += 1) {
ConstExprValue *generic_param = &id->params[i];
if (generic_param->special != ConstValSpecialRuntime) {
result += hash_const_val(generic_param);
result += hash_ptr(generic_param->type);
}
}
return result;
}
bool generic_fn_type_id_eql(GenericFnTypeId *a, GenericFnTypeId *b) {
assert(a->fn_entry);
if (a->fn_entry != b->fn_entry) return false;
if (a->param_count != b->param_count) return false;
for (size_t i = 0; i < a->param_count; i += 1) {
ConstExprValue *a_val = &a->params[i];
ConstExprValue *b_val = &b->params[i];
if (a_val->type != b_val->type) return false;
if (a_val->special != ConstValSpecialRuntime && b_val->special != ConstValSpecialRuntime) {
assert(a_val->special == ConstValSpecialStatic);
assert(b_val->special == ConstValSpecialStatic);
if (!const_values_equal(a_val, b_val)) {
return false;
}
} else {
assert(a_val->special == ConstValSpecialRuntime && b_val->special == ConstValSpecialRuntime);
}
}
return true;
}
static bool can_mutate_comptime_var_state(ConstExprValue *value) {
assert(value != nullptr);
switch (value->type->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdFn:
case TypeTableEntryIdBlock:
case TypeTableEntryIdOpaque:
case TypeTableEntryIdPromise:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdEnum:
return false;
case TypeTableEntryIdPointer:
return value->data.x_ptr.mut == ConstPtrMutComptimeVar;
case TypeTableEntryIdArray:
if (value->type->data.array.len == 0)
return false;
if (value->data.x_array.special == ConstArraySpecialUndef)
return false;
for (uint32_t i = 0; i < value->type->data.array.len; i += 1) {
if (can_mutate_comptime_var_state(&value->data.x_array.s_none.elements[i]))
return true;
}
return false;
case TypeTableEntryIdStruct:
for (uint32_t i = 0; i < value->type->data.structure.src_field_count; i += 1) {
if (can_mutate_comptime_var_state(&value->data.x_struct.fields[i]))
return true;
}
return false;
case TypeTableEntryIdOptional:
if (get_codegen_ptr_type(value->type) != nullptr)
return value->data.x_ptr.mut == ConstPtrMutComptimeVar;
if (value->data.x_optional == nullptr)
return false;
return can_mutate_comptime_var_state(value->data.x_optional);
case TypeTableEntryIdErrorUnion:
if (value->data.x_err_union.err != nullptr)
return false;
assert(value->data.x_err_union.payload != nullptr);
return can_mutate_comptime_var_state(value->data.x_err_union.payload);
case TypeTableEntryIdUnion:
return can_mutate_comptime_var_state(value->data.x_union.payload);
case TypeTableEntryIdArgTuple:
zig_panic("TODO var args at comptime is currently not supported");
}
zig_unreachable();
}
static bool return_type_is_cacheable(TypeTableEntry *return_type) {
switch (return_type->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdFn:
case TypeTableEntryIdBlock:
case TypeTableEntryIdOpaque:
case TypeTableEntryIdPromise:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdEnum:
case TypeTableEntryIdPointer:
return true;
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
case TypeTableEntryIdUnion:
return false;
case TypeTableEntryIdOptional:
return return_type_is_cacheable(return_type->data.maybe.child_type);
case TypeTableEntryIdErrorUnion:
return return_type_is_cacheable(return_type->data.error_union.payload_type);
case TypeTableEntryIdArgTuple:
zig_panic("TODO var args at comptime is currently not supported");
}
zig_unreachable();
}
bool fn_eval_cacheable(Scope *scope, TypeTableEntry *return_type) {
if (!return_type_is_cacheable(return_type))
return false;
while (scope) {
if (scope->id == ScopeIdVarDecl) {
ScopeVarDecl *var_scope = (ScopeVarDecl *)scope;
if (can_mutate_comptime_var_state(var_scope->var->value))
return false;
} else if (scope->id == ScopeIdFnDef) {
return true;
} else {
zig_unreachable();
}
scope = scope->parent;
}
zig_unreachable();
}
uint32_t fn_eval_hash(Scope* scope) {
uint32_t result = 0;
while (scope) {
if (scope->id == ScopeIdVarDecl) {
ScopeVarDecl *var_scope = (ScopeVarDecl *)scope;
result += hash_const_val(var_scope->var->value);
} else if (scope->id == ScopeIdFnDef) {
ScopeFnDef *fn_scope = (ScopeFnDef *)scope;
result += hash_ptr(fn_scope->fn_entry);
return result;
} else {
zig_unreachable();
}
scope = scope->parent;
}
zig_unreachable();
}
bool fn_eval_eql(Scope *a, Scope *b) {
while (a && b) {
if (a->id != b->id)
return false;
if (a->id == ScopeIdVarDecl) {
ScopeVarDecl *a_var_scope = (ScopeVarDecl *)a;
ScopeVarDecl *b_var_scope = (ScopeVarDecl *)b;
if (a_var_scope->var->value->type != b_var_scope->var->value->type)
return false;
if (!const_values_equal(a_var_scope->var->value, b_var_scope->var->value))
return false;
} else if (a->id == ScopeIdFnDef) {
ScopeFnDef *a_fn_scope = (ScopeFnDef *)a;
ScopeFnDef *b_fn_scope = (ScopeFnDef *)b;
if (a_fn_scope->fn_entry != b_fn_scope->fn_entry)
return false;
return true;
} else {
zig_unreachable();
}
a = a->parent;
b = b->parent;
}
return false;
}
bool type_has_bits(TypeTableEntry *type_entry) {
assert(type_entry);
assert(type_entry->id != TypeTableEntryIdInvalid);
assert(type_has_zero_bits_known(type_entry));
return !type_entry->zero_bits;
}
bool type_requires_comptime(TypeTableEntry *type_entry) {
switch (type_entry->id) {
case TypeTableEntryIdInvalid:
case TypeTableEntryIdOpaque:
zig_unreachable();
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
return true;
case TypeTableEntryIdArray:
return type_requires_comptime(type_entry->data.array.child_type);
case TypeTableEntryIdStruct:
assert(type_has_zero_bits_known(type_entry));
return type_entry->data.structure.requires_comptime;
case TypeTableEntryIdUnion:
assert(type_has_zero_bits_known(type_entry));
return type_entry->data.unionation.requires_comptime;
case TypeTableEntryIdOptional:
return type_requires_comptime(type_entry->data.maybe.child_type);
case TypeTableEntryIdErrorUnion:
return type_requires_comptime(type_entry->data.error_union.payload_type);
case TypeTableEntryIdPointer:
if (type_entry->data.pointer.child_type->id == TypeTableEntryIdOpaque) {
return false;
} else {
return type_requires_comptime(type_entry->data.pointer.child_type);
}
case TypeTableEntryIdEnum:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdFn:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdVoid:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdPromise:
return false;
}
zig_unreachable();
}
void init_const_str_lit(CodeGen *g, ConstExprValue *const_val, Buf *str) {
auto entry = g->string_literals_table.maybe_get(str);
if (entry != nullptr) {
*const_val = *entry->value;
return;
}
const_val->special = ConstValSpecialStatic;
const_val->type = get_array_type(g, g->builtin_types.entry_u8, buf_len(str));
const_val->data.x_array.s_none.elements = create_const_vals(buf_len(str));
for (size_t i = 0; i < buf_len(str); i += 1) {
ConstExprValue *this_char = &const_val->data.x_array.s_none.elements[i];
this_char->special = ConstValSpecialStatic;
this_char->type = g->builtin_types.entry_u8;
bigint_init_unsigned(&this_char->data.x_bigint, (uint8_t)buf_ptr(str)[i]);
}
g->string_literals_table.put(str, const_val);
}
ConstExprValue *create_const_str_lit(CodeGen *g, Buf *str) {
ConstExprValue *const_val = create_const_vals(1);
init_const_str_lit(g, const_val, str);
return const_val;
}
void init_const_c_str_lit(CodeGen *g, ConstExprValue *const_val, Buf *str) {
// first we build the underlying array
size_t len_with_null = buf_len(str) + 1;
ConstExprValue *array_val = create_const_vals(1);
array_val->special = ConstValSpecialStatic;
array_val->type = get_array_type(g, g->builtin_types.entry_u8, len_with_null);
array_val->data.x_array.s_none.elements = create_const_vals(len_with_null);
for (size_t i = 0; i < buf_len(str); i += 1) {
ConstExprValue *this_char = &array_val->data.x_array.s_none.elements[i];
this_char->special = ConstValSpecialStatic;
this_char->type = g->builtin_types.entry_u8;
bigint_init_unsigned(&this_char->data.x_bigint, (uint8_t)buf_ptr(str)[i]);
}
ConstExprValue *null_char = &array_val->data.x_array.s_none.elements[len_with_null - 1];
null_char->special = ConstValSpecialStatic;
null_char->type = g->builtin_types.entry_u8;
bigint_init_unsigned(&null_char->data.x_bigint, 0);
// then make the pointer point to it
const_val->special = ConstValSpecialStatic;
// TODO make this `[*]null u8` instead of `[*]u8`
const_val->type = get_pointer_to_type_extra(g, g->builtin_types.entry_u8, true, false,
PtrLenUnknown, get_abi_alignment(g, g->builtin_types.entry_u8), 0, 0);
const_val->data.x_ptr.special = ConstPtrSpecialBaseArray;
const_val->data.x_ptr.data.base_array.array_val = array_val;
const_val->data.x_ptr.data.base_array.elem_index = 0;
const_val->data.x_ptr.data.base_array.is_cstr = true;
}
ConstExprValue *create_const_c_str_lit(CodeGen *g, Buf *str) {
ConstExprValue *const_val = create_const_vals(1);
init_const_c_str_lit(g, const_val, str);
return const_val;
}
void init_const_bigint(ConstExprValue *const_val, TypeTableEntry *type, const BigInt *bigint) {
const_val->special = ConstValSpecialStatic;
const_val->type = type;
bigint_init_bigint(&const_val->data.x_bigint, bigint);
}
ConstExprValue *create_const_bigint(TypeTableEntry *type, const BigInt *bigint) {
ConstExprValue *const_val = create_const_vals(1);
init_const_bigint(const_val, type, bigint);
return const_val;
}
void init_const_unsigned_negative(ConstExprValue *const_val, TypeTableEntry *type, uint64_t x, bool negative) {
const_val->special = ConstValSpecialStatic;
const_val->type = type;
bigint_init_unsigned(&const_val->data.x_bigint, x);
const_val->data.x_bigint.is_negative = negative;
}
ConstExprValue *create_const_unsigned_negative(TypeTableEntry *type, uint64_t x, bool negative) {
ConstExprValue *const_val = create_const_vals(1);
init_const_unsigned_negative(const_val, type, x, negative);
return const_val;
}
void init_const_usize(CodeGen *g, ConstExprValue *const_val, uint64_t x) {
return init_const_unsigned_negative(const_val, g->builtin_types.entry_usize, x, false);
}
ConstExprValue *create_const_usize(CodeGen *g, uint64_t x) {
return create_const_unsigned_negative(g->builtin_types.entry_usize, x, false);
}
void init_const_signed(ConstExprValue *const_val, TypeTableEntry *type, int64_t x) {
const_val->special = ConstValSpecialStatic;
const_val->type = type;
bigint_init_signed(&const_val->data.x_bigint, x);
}
ConstExprValue *create_const_signed(TypeTableEntry *type, int64_t x) {
ConstExprValue *const_val = create_const_vals(1);
init_const_signed(const_val, type, x);
return const_val;
}
void init_const_float(ConstExprValue *const_val, TypeTableEntry *type, double value) {
const_val->special = ConstValSpecialStatic;
const_val->type = type;
if (type->id == TypeTableEntryIdComptimeFloat) {
bigfloat_init_64(&const_val->data.x_bigfloat, value);
} else if (type->id == TypeTableEntryIdFloat) {
switch (type->data.floating.bit_count) {
case 32:
const_val->data.x_f32 = value;
break;
case 64:
const_val->data.x_f64 = value;
break;
case 128:
// if we need this, we should add a function that accepts a float128_t param
zig_unreachable();
default:
zig_unreachable();
}
} else {
zig_unreachable();
}
}
ConstExprValue *create_const_float(TypeTableEntry *type, double value) {
ConstExprValue *const_val = create_const_vals(1);
init_const_float(const_val, type, value);
return const_val;
}
void init_const_enum(ConstExprValue *const_val, TypeTableEntry *type, const BigInt *tag) {
const_val->special = ConstValSpecialStatic;
const_val->type = type;
bigint_init_bigint(&const_val->data.x_enum_tag, tag);
}
ConstExprValue *create_const_enum(TypeTableEntry *type, const BigInt *tag) {
ConstExprValue *const_val = create_const_vals(1);
init_const_enum(const_val, type, tag);
return const_val;
}
void init_const_bool(CodeGen *g, ConstExprValue *const_val, bool value) {
const_val->special = ConstValSpecialStatic;
const_val->type = g->builtin_types.entry_bool;
const_val->data.x_bool = value;
}
ConstExprValue *create_const_bool(CodeGen *g, bool value) {
ConstExprValue *const_val = create_const_vals(1);
init_const_bool(g, const_val, value);
return const_val;
}
void init_const_runtime(ConstExprValue *const_val, TypeTableEntry *type) {
const_val->special = ConstValSpecialRuntime;
const_val->type = type;
}
ConstExprValue *create_const_runtime(TypeTableEntry *type) {
ConstExprValue *const_val = create_const_vals(1);
init_const_runtime(const_val, type);
return const_val;
}
void init_const_type(CodeGen *g, ConstExprValue *const_val, TypeTableEntry *type_value) {
const_val->special = ConstValSpecialStatic;
const_val->type = g->builtin_types.entry_type;
const_val->data.x_type = type_value;
}
ConstExprValue *create_const_type(CodeGen *g, TypeTableEntry *type_value) {
ConstExprValue *const_val = create_const_vals(1);
init_const_type(g, const_val, type_value);
return const_val;
}
void init_const_slice(CodeGen *g, ConstExprValue *const_val, ConstExprValue *array_val,
size_t start, size_t len, bool is_const)
{
assert(array_val->type->id == TypeTableEntryIdArray);
TypeTableEntry *ptr_type = get_pointer_to_type_extra(g, array_val->type->data.array.child_type,
is_const, false, PtrLenUnknown, get_abi_alignment(g, array_val->type->data.array.child_type),
0, 0);
const_val->special = ConstValSpecialStatic;
const_val->type = get_slice_type(g, ptr_type);
const_val->data.x_struct.fields = create_const_vals(2);
init_const_ptr_array(g, &const_val->data.x_struct.fields[slice_ptr_index], array_val, start, is_const,
PtrLenUnknown);
init_const_usize(g, &const_val->data.x_struct.fields[slice_len_index], len);
}
ConstExprValue *create_const_slice(CodeGen *g, ConstExprValue *array_val, size_t start, size_t len, bool is_const) {
ConstExprValue *const_val = create_const_vals(1);
init_const_slice(g, const_val, array_val, start, len, is_const);
return const_val;
}
void init_const_ptr_array(CodeGen *g, ConstExprValue *const_val, ConstExprValue *array_val,
size_t elem_index, bool is_const, PtrLen ptr_len)
{
assert(array_val->type->id == TypeTableEntryIdArray);
TypeTableEntry *child_type = array_val->type->data.array.child_type;
const_val->special = ConstValSpecialStatic;
const_val->type = get_pointer_to_type_extra(g, child_type, is_const, false,
ptr_len, get_abi_alignment(g, child_type), 0, 0);
const_val->data.x_ptr.special = ConstPtrSpecialBaseArray;
const_val->data.x_ptr.data.base_array.array_val = array_val;
const_val->data.x_ptr.data.base_array.elem_index = elem_index;
}
ConstExprValue *create_const_ptr_array(CodeGen *g, ConstExprValue *array_val, size_t elem_index, bool is_const,
PtrLen ptr_len)
{
ConstExprValue *const_val = create_const_vals(1);
init_const_ptr_array(g, const_val, array_val, elem_index, is_const, ptr_len);
return const_val;
}
void init_const_ptr_ref(CodeGen *g, ConstExprValue *const_val, ConstExprValue *pointee_val, bool is_const) {
const_val->special = ConstValSpecialStatic;
const_val->type = get_pointer_to_type(g, pointee_val->type, is_const);
const_val->data.x_ptr.special = ConstPtrSpecialRef;
const_val->data.x_ptr.data.ref.pointee = pointee_val;
}
ConstExprValue *create_const_ptr_ref(CodeGen *g, ConstExprValue *pointee_val, bool is_const) {
ConstExprValue *const_val = create_const_vals(1);
init_const_ptr_ref(g, const_val, pointee_val, is_const);
return const_val;
}
void init_const_ptr_hard_coded_addr(CodeGen *g, ConstExprValue *const_val, TypeTableEntry *pointee_type,
size_t addr, bool is_const)
{
const_val->special = ConstValSpecialStatic;
const_val->type = get_pointer_to_type(g, pointee_type, is_const);
const_val->data.x_ptr.special = ConstPtrSpecialHardCodedAddr;
const_val->data.x_ptr.data.hard_coded_addr.addr = addr;
}
ConstExprValue *create_const_ptr_hard_coded_addr(CodeGen *g, TypeTableEntry *pointee_type,
size_t addr, bool is_const)
{
ConstExprValue *const_val = create_const_vals(1);
init_const_ptr_hard_coded_addr(g, const_val, pointee_type, addr, is_const);
return const_val;
}
void init_const_arg_tuple(CodeGen *g, ConstExprValue *const_val, size_t arg_index_start, size_t arg_index_end) {
const_val->special = ConstValSpecialStatic;
const_val->type = g->builtin_types.entry_arg_tuple;
const_val->data.x_arg_tuple.start_index = arg_index_start;
const_val->data.x_arg_tuple.end_index = arg_index_end;
}
ConstExprValue *create_const_arg_tuple(CodeGen *g, size_t arg_index_start, size_t arg_index_end) {
ConstExprValue *const_val = create_const_vals(1);
init_const_arg_tuple(g, const_val, arg_index_start, arg_index_end);
return const_val;
}
void init_const_undefined(CodeGen *g, ConstExprValue *const_val) {
TypeTableEntry *wanted_type = const_val->type;
if (wanted_type->id == TypeTableEntryIdArray) {
const_val->special = ConstValSpecialStatic;
const_val->data.x_array.special = ConstArraySpecialUndef;
} else if (wanted_type->id == TypeTableEntryIdStruct) {
ensure_complete_type(g, wanted_type);
if (type_is_invalid(wanted_type)) {
return;
}
const_val->special = ConstValSpecialStatic;
size_t field_count = wanted_type->data.structure.src_field_count;
const_val->data.x_struct.fields = create_const_vals(field_count);
for (size_t i = 0; i < field_count; i += 1) {
ConstExprValue *field_val = &const_val->data.x_struct.fields[i];
field_val->type = wanted_type->data.structure.fields[i].type_entry;
assert(field_val->type);
init_const_undefined(g, field_val);
ConstParent *parent = get_const_val_parent(g, field_val);
if (parent != nullptr) {
parent->id = ConstParentIdStruct;
parent->data.p_struct.struct_val = const_val;
parent->data.p_struct.field_index = i;
}
}
} else {
const_val->special = ConstValSpecialUndef;
}
}
ConstExprValue *create_const_vals(size_t count) {
ConstGlobalRefs *global_refs = allocate<ConstGlobalRefs>(count);
ConstExprValue *vals = allocate<ConstExprValue>(count);
for (size_t i = 0; i < count; i += 1) {
vals[i].global_refs = &global_refs[i];
}
return vals;
}
void ensure_complete_type(CodeGen *g, TypeTableEntry *type_entry) {
if (type_entry->id == TypeTableEntryIdStruct) {
if (!type_entry->data.structure.complete)
resolve_struct_type(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdEnum) {
if (!type_entry->data.enumeration.complete)
resolve_enum_type(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdUnion) {
if (!type_entry->data.unionation.complete)
resolve_union_type(g, type_entry);
}
}
void type_ensure_zero_bits_known(CodeGen *g, TypeTableEntry *type_entry) {
if (type_entry->id == TypeTableEntryIdStruct) {
resolve_struct_zero_bits(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdEnum) {
resolve_enum_zero_bits(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdUnion) {
resolve_union_zero_bits(g, type_entry);
}
}
bool ir_get_var_is_comptime(VariableTableEntry *var) {
if (!var->is_comptime)
return false;
if (var->is_comptime->other)
return var->is_comptime->other->value.data.x_bool;
return var->is_comptime->value.data.x_bool;
}
bool const_values_equal_ptr(ConstExprValue *a, ConstExprValue *b) {
if (a->data.x_ptr.special != b->data.x_ptr.special)
return false;
if (a->data.x_ptr.mut != b->data.x_ptr.mut)
return false;
switch (a->data.x_ptr.special) {
case ConstPtrSpecialInvalid:
zig_unreachable();
case ConstPtrSpecialRef:
if (a->data.x_ptr.data.ref.pointee != b->data.x_ptr.data.ref.pointee)
return false;
return true;
case ConstPtrSpecialBaseArray:
if (a->data.x_ptr.data.base_array.array_val != b->data.x_ptr.data.base_array.array_val &&
a->data.x_ptr.data.base_array.array_val->global_refs !=
b->data.x_ptr.data.base_array.array_val->global_refs)
{
return false;
}
if (a->data.x_ptr.data.base_array.elem_index != b->data.x_ptr.data.base_array.elem_index)
return false;
if (a->data.x_ptr.data.base_array.is_cstr != b->data.x_ptr.data.base_array.is_cstr)
return false;
return true;
case ConstPtrSpecialBaseStruct:
if (a->data.x_ptr.data.base_struct.struct_val != b->data.x_ptr.data.base_struct.struct_val &&
a->data.x_ptr.data.base_struct.struct_val->global_refs !=
b->data.x_ptr.data.base_struct.struct_val->global_refs)
{
return false;
}
if (a->data.x_ptr.data.base_struct.field_index != b->data.x_ptr.data.base_struct.field_index)
return false;
return true;
case ConstPtrSpecialHardCodedAddr:
if (a->data.x_ptr.data.hard_coded_addr.addr != b->data.x_ptr.data.hard_coded_addr.addr)
return false;
return true;
case ConstPtrSpecialDiscard:
return true;
case ConstPtrSpecialFunction:
return a->data.x_ptr.data.fn.fn_entry == b->data.x_ptr.data.fn.fn_entry;
}
zig_unreachable();
}
bool const_values_equal(ConstExprValue *a, ConstExprValue *b) {
assert(a->type->id == b->type->id);
assert(a->special == ConstValSpecialStatic);
assert(b->special == ConstValSpecialStatic);
switch (a->type->id) {
case TypeTableEntryIdOpaque:
zig_unreachable();
case TypeTableEntryIdEnum:
return bigint_cmp(&a->data.x_enum_tag, &b->data.x_enum_tag) == CmpEQ;
case TypeTableEntryIdUnion: {
ConstUnionValue *union1 = &a->data.x_union;
ConstUnionValue *union2 = &b->data.x_union;
if (bigint_cmp(&union1->tag, &union2->tag) == CmpEQ) {
TypeUnionField *field = find_union_field_by_tag(a->type, &union1->tag);
assert(field != nullptr);
if (type_has_bits(field->type_entry)) {
zig_panic("TODO const expr analyze union field value for equality");
} else {
return true;
}
}
return false;
}
case TypeTableEntryIdMetaType:
return a->data.x_type == b->data.x_type;
case TypeTableEntryIdVoid:
return true;
case TypeTableEntryIdErrorSet:
return a->data.x_err_set->value == b->data.x_err_set->value;
case TypeTableEntryIdBool:
return a->data.x_bool == b->data.x_bool;
case TypeTableEntryIdFloat:
assert(a->type->data.floating.bit_count == b->type->data.floating.bit_count);
switch (a->type->data.floating.bit_count) {
case 32:
return a->data.x_f32 == b->data.x_f32;
case 64:
return a->data.x_f64 == b->data.x_f64;
case 128:
return f128M_eq(&a->data.x_f128, &b->data.x_f128);
default:
zig_unreachable();
}
case TypeTableEntryIdComptimeFloat:
return bigfloat_cmp(&a->data.x_bigfloat, &b->data.x_bigfloat) == CmpEQ;
case TypeTableEntryIdInt:
case TypeTableEntryIdComptimeInt:
return bigint_cmp(&a->data.x_bigint, &b->data.x_bigint) == CmpEQ;
case TypeTableEntryIdPointer:
case TypeTableEntryIdFn:
return const_values_equal_ptr(a, b);
case TypeTableEntryIdArray:
zig_panic("TODO");
case TypeTableEntryIdStruct:
for (size_t i = 0; i < a->type->data.structure.src_field_count; i += 1) {
ConstExprValue *field_a = &a->data.x_struct.fields[i];
ConstExprValue *field_b = &b->data.x_struct.fields[i];
if (!const_values_equal(field_a, field_b))
return false;
}
return true;
case TypeTableEntryIdUndefined:
zig_panic("TODO");
case TypeTableEntryIdNull:
zig_panic("TODO");
case TypeTableEntryIdOptional:
if (get_codegen_ptr_type(a->type) != nullptr)
return const_values_equal_ptr(a, b);
if (a->data.x_optional == nullptr || b->data.x_optional == nullptr) {
return (a->data.x_optional == nullptr && b->data.x_optional == nullptr);
} else {
return const_values_equal(a->data.x_optional, b->data.x_optional);
}
case TypeTableEntryIdErrorUnion:
zig_panic("TODO");
case TypeTableEntryIdNamespace:
return a->data.x_import == b->data.x_import;
case TypeTableEntryIdBlock:
return a->data.x_block == b->data.x_block;
case TypeTableEntryIdArgTuple:
return a->data.x_arg_tuple.start_index == b->data.x_arg_tuple.start_index &&
a->data.x_arg_tuple.end_index == b->data.x_arg_tuple.end_index;
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdInvalid:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdPromise:
zig_unreachable();
}
zig_unreachable();
}
void eval_min_max_value_int(CodeGen *g, TypeTableEntry *int_type, BigInt *bigint, bool is_max) {
assert(int_type->id == TypeTableEntryIdInt);
if (int_type->data.integral.bit_count == 0) {
bigint_init_unsigned(bigint, 0);
return;
}
if (is_max) {
// is_signed=true (1 << (bit_count - 1)) - 1
// is_signed=false (1 << (bit_count - 0)) - 1
BigInt one = {0};
bigint_init_unsigned(&one, 1);
size_t shift_amt = int_type->data.integral.bit_count - (int_type->data.integral.is_signed ? 1 : 0);
BigInt bit_count_bi = {0};
bigint_init_unsigned(&bit_count_bi, shift_amt);
BigInt shifted_bi = {0};
bigint_shl(&shifted_bi, &one, &bit_count_bi);
bigint_sub(bigint, &shifted_bi, &one);
} else if (int_type->data.integral.is_signed) {
// - (1 << (bit_count - 1))
BigInt one = {0};
bigint_init_unsigned(&one, 1);
BigInt bit_count_bi = {0};
bigint_init_unsigned(&bit_count_bi, int_type->data.integral.bit_count - 1);
BigInt shifted_bi = {0};
bigint_shl(&shifted_bi, &one, &bit_count_bi);
bigint_negate(bigint, &shifted_bi);
} else {
bigint_init_unsigned(bigint, 0);
}
}
void eval_min_max_value(CodeGen *g, TypeTableEntry *type_entry, ConstExprValue *const_val, bool is_max) {
if (type_entry->id == TypeTableEntryIdInt) {
const_val->special = ConstValSpecialStatic;
eval_min_max_value_int(g, type_entry, &const_val->data.x_bigint, is_max);
} else if (type_entry->id == TypeTableEntryIdFloat) {
zig_panic("TODO analyze_min_max_value float");
} else if (type_entry->id == TypeTableEntryIdBool) {
const_val->special = ConstValSpecialStatic;
const_val->data.x_bool = is_max;
} else if (type_entry->id == TypeTableEntryIdVoid) {
// nothing to do
} else {
zig_unreachable();
}
}
void render_const_val_ptr(CodeGen *g, Buf *buf, ConstExprValue *const_val, TypeTableEntry *type_entry) {
switch (const_val->data.x_ptr.special) {
case ConstPtrSpecialInvalid:
zig_unreachable();
case ConstPtrSpecialRef:
case ConstPtrSpecialBaseStruct:
buf_appendf(buf, "*");
render_const_value(g, buf, const_ptr_pointee(g, const_val));
return;
case ConstPtrSpecialBaseArray:
if (const_val->data.x_ptr.data.base_array.is_cstr) {
buf_appendf(buf, "*(c str lit)");
return;
} else {
buf_appendf(buf, "*");
render_const_value(g, buf, const_ptr_pointee(g, const_val));
return;
}
case ConstPtrSpecialHardCodedAddr:
buf_appendf(buf, "(*%s)(%" ZIG_PRI_x64 ")", buf_ptr(&type_entry->data.pointer.child_type->name),
const_val->data.x_ptr.data.hard_coded_addr.addr);
return;
case ConstPtrSpecialDiscard:
buf_append_str(buf, "*_");
return;
case ConstPtrSpecialFunction:
{
FnTableEntry *fn_entry = const_val->data.x_ptr.data.fn.fn_entry;
buf_appendf(buf, "@ptrCast(%s, %s)", buf_ptr(&const_val->type->name), buf_ptr(&fn_entry->symbol_name));
return;
}
}
zig_unreachable();
}
void render_const_value(CodeGen *g, Buf *buf, ConstExprValue *const_val) {
switch (const_val->special) {
case ConstValSpecialRuntime:
buf_appendf(buf, "(runtime value)");
return;
case ConstValSpecialUndef:
buf_appendf(buf, "undefined");
return;
case ConstValSpecialStatic:
break;
}
assert(const_val->type);
TypeTableEntry *type_entry = const_val->type;
switch (type_entry->id) {
case TypeTableEntryIdOpaque:
zig_unreachable();
case TypeTableEntryIdInvalid:
buf_appendf(buf, "(invalid)");
return;
case TypeTableEntryIdVoid:
buf_appendf(buf, "{}");
return;
case TypeTableEntryIdComptimeFloat:
bigfloat_append_buf(buf, &const_val->data.x_bigfloat);
return;
case TypeTableEntryIdFloat:
switch (type_entry->data.floating.bit_count) {
case 32:
buf_appendf(buf, "%f", const_val->data.x_f32);
return;
case 64:
buf_appendf(buf, "%f", const_val->data.x_f64);
return;
case 128:
{
const size_t extra_len = 100;
size_t old_len = buf_len(buf);
buf_resize(buf, old_len + extra_len);
float64_t f64_value = f128M_to_f64(&const_val->data.x_f128);
double double_value;
memcpy(&double_value, &f64_value, sizeof(double));
// TODO actual f128 printing to decimal
int len = snprintf(buf_ptr(buf) + old_len, extra_len, "%f", double_value);
assert(len > 0);
buf_resize(buf, old_len + len);
return;
}
default:
zig_unreachable();
}
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdInt:
bigint_append_buf(buf, &const_val->data.x_bigint, 10);
return;
case TypeTableEntryIdMetaType:
buf_appendf(buf, "%s", buf_ptr(&const_val->data.x_type->name));
return;
case TypeTableEntryIdUnreachable:
buf_appendf(buf, "unreachable");
return;
case TypeTableEntryIdBool:
{
const char *value = const_val->data.x_bool ? "true" : "false";
buf_appendf(buf, "%s", value);
return;
}
case TypeTableEntryIdFn:
{
assert(const_val->data.x_ptr.mut == ConstPtrMutComptimeConst);
assert(const_val->data.x_ptr.special == ConstPtrSpecialFunction);
FnTableEntry *fn_entry = const_val->data.x_ptr.data.fn.fn_entry;
buf_appendf(buf, "%s", buf_ptr(&fn_entry->symbol_name));
return;
}
case TypeTableEntryIdPointer:
return render_const_val_ptr(g, buf, const_val, type_entry);
case TypeTableEntryIdBlock:
{
AstNode *node = const_val->data.x_block->source_node;
buf_appendf(buf, "(scope:%" ZIG_PRI_usize ":%" ZIG_PRI_usize ")", node->line + 1, node->column + 1);
return;
}
case TypeTableEntryIdArray:
{
TypeTableEntry *child_type = type_entry->data.array.child_type;
uint64_t len = type_entry->data.array.len;
if (const_val->data.x_array.special == ConstArraySpecialUndef) {
buf_append_str(buf, "undefined");
return;
}
// if it's []u8, assume UTF-8 and output a string
if (child_type->id == TypeTableEntryIdInt &&
child_type->data.integral.bit_count == 8 &&
!child_type->data.integral.is_signed)
{
buf_append_char(buf, '"');
for (uint64_t i = 0; i < len; i += 1) {
ConstExprValue *child_value = &const_val->data.x_array.s_none.elements[i];
uint64_t big_c = bigint_as_unsigned(&child_value->data.x_bigint);
assert(big_c <= UINT8_MAX);
uint8_t c = (uint8_t)big_c;
if (c == '"') {
buf_append_str(buf, "\\\"");
} else {
buf_append_char(buf, c);
}
}
buf_append_char(buf, '"');
return;
}
buf_appendf(buf, "%s{", buf_ptr(&type_entry->name));
for (uint64_t i = 0; i < len; i += 1) {
if (i != 0)
buf_appendf(buf, ",");
ConstExprValue *child_value = &const_val->data.x_array.s_none.elements[i];
render_const_value(g, buf, child_value);
}
buf_appendf(buf, "}");
return;
}
case TypeTableEntryIdNull:
{
buf_appendf(buf, "null");
return;
}
case TypeTableEntryIdUndefined:
{
buf_appendf(buf, "undefined");
return;
}
case TypeTableEntryIdOptional:
{
if (get_codegen_ptr_type(const_val->type) != nullptr)
return render_const_val_ptr(g, buf, const_val, type_entry->data.maybe.child_type);
if (const_val->data.x_optional) {
render_const_value(g, buf, const_val->data.x_optional);
} else {
buf_appendf(buf, "null");
}
return;
}
case TypeTableEntryIdNamespace:
{
ImportTableEntry *import = const_val->data.x_import;
if (import->c_import_node) {
buf_appendf(buf, "(namespace from C import)");
} else {
buf_appendf(buf, "(namespace: %s)", buf_ptr(import->path));
}
return;
}
case TypeTableEntryIdBoundFn:
{
FnTableEntry *fn_entry = const_val->data.x_bound_fn.fn;
buf_appendf(buf, "(bound fn %s)", buf_ptr(&fn_entry->symbol_name));
return;
}
case TypeTableEntryIdStruct:
{
buf_appendf(buf, "(struct %s constant)", buf_ptr(&type_entry->name));
return;
}
case TypeTableEntryIdEnum:
{
TypeEnumField *field = find_enum_field_by_tag(type_entry, &const_val->data.x_enum_tag);
buf_appendf(buf, "%s.%s", buf_ptr(&type_entry->name), buf_ptr(field->name));
return;
}
case TypeTableEntryIdErrorUnion:
{
buf_appendf(buf, "(error union %s constant)", buf_ptr(&type_entry->name));
return;
}
case TypeTableEntryIdUnion:
{
buf_appendf(buf, "(union %s constant)", buf_ptr(&type_entry->name));
return;
}
case TypeTableEntryIdErrorSet:
{
buf_appendf(buf, "%s.%s", buf_ptr(&type_entry->name), buf_ptr(&const_val->data.x_err_set->name));
return;
}
case TypeTableEntryIdArgTuple:
{
buf_appendf(buf, "(args value)");
return;
}
case TypeTableEntryIdPromise:
zig_unreachable();
}
zig_unreachable();
}
TypeTableEntry *make_int_type(CodeGen *g, bool is_signed, uint32_t size_in_bits) {
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdInt);
entry->is_copyable = true;
entry->type_ref = (size_in_bits == 0) ? LLVMVoidType() : LLVMIntType(size_in_bits);
entry->zero_bits = (size_in_bits == 0);
const char u_or_i = is_signed ? 'i' : 'u';
buf_resize(&entry->name, 0);
buf_appendf(&entry->name, "%c%" PRIu32, u_or_i, size_in_bits);
unsigned dwarf_tag;
if (is_signed) {
if (size_in_bits == 8) {
dwarf_tag = ZigLLVMEncoding_DW_ATE_signed_char();
} else {
dwarf_tag = ZigLLVMEncoding_DW_ATE_signed();
}
} else {
if (size_in_bits == 8) {
dwarf_tag = ZigLLVMEncoding_DW_ATE_unsigned_char();
} else {
dwarf_tag = ZigLLVMEncoding_DW_ATE_unsigned();
}
}
uint64_t debug_size_in_bits = (size_in_bits == 0) ?
0 : (8*LLVMStoreSizeOfType(g->target_data_ref, entry->type_ref));
entry->di_type = ZigLLVMCreateDebugBasicType(g->dbuilder, buf_ptr(&entry->name), debug_size_in_bits, dwarf_tag);
entry->data.integral.is_signed = is_signed;
entry->data.integral.bit_count = size_in_bits;
return entry;
}
uint32_t type_id_hash(TypeId x) {
switch (x.id) {
case TypeTableEntryIdInvalid:
case TypeTableEntryIdOpaque:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdFloat:
case TypeTableEntryIdStruct:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdOptional:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdPromise:
zig_unreachable();
case TypeTableEntryIdErrorUnion:
return hash_ptr(x.data.error_union.err_set_type) ^ hash_ptr(x.data.error_union.payload_type);
case TypeTableEntryIdPointer:
return hash_ptr(x.data.pointer.child_type) +
((x.data.pointer.ptr_len == PtrLenSingle) ? (uint32_t)1120226602 : (uint32_t)3200913342) +
(x.data.pointer.is_const ? (uint32_t)2749109194 : (uint32_t)4047371087) +
(x.data.pointer.is_volatile ? (uint32_t)536730450 : (uint32_t)1685612214) +
(((uint32_t)x.data.pointer.alignment) ^ (uint32_t)0x777fbe0e) +
(((uint32_t)x.data.pointer.bit_offset) ^ (uint32_t)2639019452) +
(((uint32_t)x.data.pointer.unaligned_bit_count) ^ (uint32_t)529908881);
case TypeTableEntryIdArray:
return hash_ptr(x.data.array.child_type) +
((uint32_t)x.data.array.size ^ (uint32_t)2122979968);
case TypeTableEntryIdInt:
return (x.data.integer.is_signed ? (uint32_t)2652528194 : (uint32_t)163929201) +
(((uint32_t)x.data.integer.bit_count) ^ (uint32_t)2998081557);
}
zig_unreachable();
}
bool type_id_eql(TypeId a, TypeId b) {
if (a.id != b.id)
return false;
switch (a.id) {
case TypeTableEntryIdInvalid:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdFloat:
case TypeTableEntryIdStruct:
case TypeTableEntryIdComptimeFloat:
case TypeTableEntryIdComptimeInt:
case TypeTableEntryIdUndefined:
case TypeTableEntryIdNull:
case TypeTableEntryIdOptional:
case TypeTableEntryIdPromise:
case TypeTableEntryIdErrorSet:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdBlock:
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdArgTuple:
case TypeTableEntryIdOpaque:
zig_unreachable();
case TypeTableEntryIdErrorUnion:
return a.data.error_union.err_set_type == b.data.error_union.err_set_type &&
a.data.error_union.payload_type == b.data.error_union.payload_type;
case TypeTableEntryIdPointer:
return a.data.pointer.child_type == b.data.pointer.child_type &&
a.data.pointer.ptr_len == b.data.pointer.ptr_len &&
a.data.pointer.is_const == b.data.pointer.is_const &&
a.data.pointer.is_volatile == b.data.pointer.is_volatile &&
a.data.pointer.alignment == b.data.pointer.alignment &&
a.data.pointer.bit_offset == b.data.pointer.bit_offset &&
a.data.pointer.unaligned_bit_count == b.data.pointer.unaligned_bit_count;
case TypeTableEntryIdArray:
return a.data.array.child_type == b.data.array.child_type &&
a.data.array.size == b.data.array.size;
case TypeTableEntryIdInt:
return a.data.integer.is_signed == b.data.integer.is_signed &&
a.data.integer.bit_count == b.data.integer.bit_count;
}
zig_unreachable();
}
uint32_t zig_llvm_fn_key_hash(ZigLLVMFnKey x) {
switch (x.id) {
case ZigLLVMFnIdCtz:
return (uint32_t)(x.data.ctz.bit_count) * (uint32_t)810453934;
case ZigLLVMFnIdClz:
return (uint32_t)(x.data.clz.bit_count) * (uint32_t)2428952817;
case ZigLLVMFnIdFloor:
return (uint32_t)(x.data.floating.bit_count) * (uint32_t)1899859168;
case ZigLLVMFnIdCeil:
return (uint32_t)(x.data.floating.bit_count) * (uint32_t)1953839089;
case ZigLLVMFnIdSqrt:
return (uint32_t)(x.data.floating.bit_count) * (uint32_t)2225366385;
case ZigLLVMFnIdOverflowArithmetic:
return ((uint32_t)(x.data.overflow_arithmetic.bit_count) * 87135777) +
((uint32_t)(x.data.overflow_arithmetic.add_sub_mul) * 31640542) +
((uint32_t)(x.data.overflow_arithmetic.is_signed) ? 1062315172 : 314955820);
}
zig_unreachable();
}
bool zig_llvm_fn_key_eql(ZigLLVMFnKey a, ZigLLVMFnKey b) {
if (a.id != b.id)
return false;
switch (a.id) {
case ZigLLVMFnIdCtz:
return a.data.ctz.bit_count == b.data.ctz.bit_count;
case ZigLLVMFnIdClz:
return a.data.clz.bit_count == b.data.clz.bit_count;
case ZigLLVMFnIdFloor:
case ZigLLVMFnIdCeil:
case ZigLLVMFnIdSqrt:
return a.data.floating.bit_count == b.data.floating.bit_count;
case ZigLLVMFnIdOverflowArithmetic:
return (a.data.overflow_arithmetic.bit_count == b.data.overflow_arithmetic.bit_count) &&
(a.data.overflow_arithmetic.add_sub_mul == b.data.overflow_arithmetic.add_sub_mul) &&
(a.data.overflow_arithmetic.is_signed == b.data.overflow_arithmetic.is_signed);
}
zig_unreachable();
}
void expand_undef_array(CodeGen *g, ConstExprValue *const_val) {
assert(const_val->type->id == TypeTableEntryIdArray);
if (const_val->data.x_array.special == ConstArraySpecialUndef) {
const_val->data.x_array.special = ConstArraySpecialNone;
size_t elem_count = const_val->type->data.array.len;
const_val->data.x_array.s_none.elements = create_const_vals(elem_count);
for (size_t i = 0; i < elem_count; i += 1) {
ConstExprValue *element_val = &const_val->data.x_array.s_none.elements[i];
element_val->type = const_val->type->data.array.child_type;
init_const_undefined(g, element_val);
ConstParent *parent = get_const_val_parent(g, element_val);
if (parent != nullptr) {
parent->id = ConstParentIdArray;
parent->data.p_array.array_val = const_val;
parent->data.p_array.elem_index = i;
}
}
}
}
ConstParent *get_const_val_parent(CodeGen *g, ConstExprValue *value) {
assert(value->type);
TypeTableEntry *type_entry = value->type;
if (type_entry->id == TypeTableEntryIdArray) {
expand_undef_array(g, value);
return &value->data.x_array.s_none.parent;
} else if (type_entry->id == TypeTableEntryIdStruct) {
return &value->data.x_struct.parent;
} else if (type_entry->id == TypeTableEntryIdUnion) {
return &value->data.x_union.parent;
}
return nullptr;
}
static const TypeTableEntryId all_type_ids[] = {
TypeTableEntryIdMetaType,
TypeTableEntryIdVoid,
TypeTableEntryIdBool,
TypeTableEntryIdUnreachable,
TypeTableEntryIdInt,
TypeTableEntryIdFloat,
TypeTableEntryIdPointer,
TypeTableEntryIdArray,
TypeTableEntryIdStruct,
TypeTableEntryIdComptimeFloat,
TypeTableEntryIdComptimeInt,
TypeTableEntryIdUndefined,
TypeTableEntryIdNull,
TypeTableEntryIdOptional,
TypeTableEntryIdErrorUnion,
TypeTableEntryIdErrorSet,
TypeTableEntryIdEnum,
TypeTableEntryIdUnion,
TypeTableEntryIdFn,
TypeTableEntryIdNamespace,
TypeTableEntryIdBlock,
TypeTableEntryIdBoundFn,
TypeTableEntryIdArgTuple,
TypeTableEntryIdOpaque,
TypeTableEntryIdPromise,
};
TypeTableEntryId type_id_at_index(size_t index) {
assert(index < array_length(all_type_ids));
return all_type_ids[index];
}
size_t type_id_len() {
return array_length(all_type_ids);
}
size_t type_id_index(TypeTableEntry *entry) {
switch (entry->id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdMetaType:
return 0;
case TypeTableEntryIdVoid:
return 1;
case TypeTableEntryIdBool:
return 2;
case TypeTableEntryIdUnreachable:
return 3;
case TypeTableEntryIdInt:
return 4;
case TypeTableEntryIdFloat:
return 5;
case TypeTableEntryIdPointer:
return 6;
case TypeTableEntryIdArray:
return 7;
case TypeTableEntryIdStruct:
if (entry->data.structure.is_slice)
return 6;
return 8;
case TypeTableEntryIdComptimeFloat:
return 9;
case TypeTableEntryIdComptimeInt:
return 10;
case TypeTableEntryIdUndefined:
return 11;
case TypeTableEntryIdNull:
return 12;
case TypeTableEntryIdOptional:
return 13;
case TypeTableEntryIdErrorUnion:
return 14;
case TypeTableEntryIdErrorSet:
return 15;
case TypeTableEntryIdEnum:
return 16;
case TypeTableEntryIdUnion:
return 17;
case TypeTableEntryIdFn:
return 18;
case TypeTableEntryIdNamespace:
return 19;
case TypeTableEntryIdBlock:
return 20;
case TypeTableEntryIdBoundFn:
return 21;
case TypeTableEntryIdArgTuple:
return 22;
case TypeTableEntryIdOpaque:
return 23;
case TypeTableEntryIdPromise:
return 24;
}
zig_unreachable();
}
const char *type_id_name(TypeTableEntryId id) {
switch (id) {
case TypeTableEntryIdInvalid:
zig_unreachable();
case TypeTableEntryIdMetaType:
return "Type";
case TypeTableEntryIdVoid:
return "Void";
case TypeTableEntryIdBool:
return "Bool";
case TypeTableEntryIdUnreachable:
return "NoReturn";
case TypeTableEntryIdInt:
return "Int";
case TypeTableEntryIdFloat:
return "Float";
case TypeTableEntryIdPointer:
return "Pointer";
case TypeTableEntryIdArray:
return "Array";
case TypeTableEntryIdStruct:
return "Struct";
case TypeTableEntryIdComptimeFloat:
return "ComptimeFloat";
case TypeTableEntryIdComptimeInt:
return "ComptimeInt";
case TypeTableEntryIdUndefined:
return "Undefined";
case TypeTableEntryIdNull:
return "Null";
case TypeTableEntryIdOptional:
return "Optional";
case TypeTableEntryIdErrorUnion:
return "ErrorUnion";
case TypeTableEntryIdErrorSet:
return "ErrorSet";
case TypeTableEntryIdEnum:
return "Enum";
case TypeTableEntryIdUnion:
return "Union";
case TypeTableEntryIdFn:
return "Fn";
case TypeTableEntryIdNamespace:
return "Namespace";
case TypeTableEntryIdBlock:
return "Block";
case TypeTableEntryIdBoundFn:
return "BoundFn";
case TypeTableEntryIdArgTuple:
return "ArgTuple";
case TypeTableEntryIdOpaque:
return "Opaque";
case TypeTableEntryIdPromise:
return "Promise";
}
zig_unreachable();
}
LinkLib *create_link_lib(Buf *name) {
LinkLib *link_lib = allocate<LinkLib>(1);
link_lib->name = name;
return link_lib;
}
LinkLib *add_link_lib(CodeGen *g, Buf *name) {
bool is_libc = buf_eql_str(name, "c");
if (is_libc && g->libc_link_lib != nullptr)
return g->libc_link_lib;
for (size_t i = 0; i < g->link_libs_list.length; i += 1) {
LinkLib *existing_lib = g->link_libs_list.at(i);
if (buf_eql_buf(existing_lib->name, name)) {
return existing_lib;
}
}
LinkLib *link_lib = create_link_lib(name);
g->link_libs_list.append(link_lib);
if (is_libc)
g->libc_link_lib = link_lib;
return link_lib;
}
uint32_t get_abi_alignment(CodeGen *g, TypeTableEntry *type_entry) {
type_ensure_zero_bits_known(g, type_entry);
if (type_entry->zero_bits) return 0;
// We need to make this function work without requiring ensure_complete_type
// so that we can have structs with fields that are pointers to their own type.
if (type_entry->id == TypeTableEntryIdStruct) {
assert(type_entry->data.structure.abi_alignment != 0);
return type_entry->data.structure.abi_alignment;
} else if (type_entry->id == TypeTableEntryIdUnion) {
assert(type_entry->data.unionation.abi_alignment != 0);
return type_entry->data.unionation.abi_alignment;
} else if (type_entry->id == TypeTableEntryIdOpaque) {
return 1;
} else {
return LLVMABIAlignmentOfType(g->target_data_ref, type_entry->type_ref);
}
}
TypeTableEntry *get_align_amt_type(CodeGen *g) {
if (g->align_amt_type == nullptr) {
// according to LLVM the maximum alignment is 1 << 29.
g->align_amt_type = get_int_type(g, false, 29);
}
return g->align_amt_type;
}
uint32_t type_ptr_hash(const TypeTableEntry *ptr) {
return hash_ptr((void*)ptr);
}
bool type_ptr_eql(const TypeTableEntry *a, const TypeTableEntry *b) {
return a == b;
}
ConstExprValue *get_builtin_value(CodeGen *codegen, const char *name) {
Tld *tld = codegen->compile_var_import->decls_scope->decl_table.get(buf_create_from_str(name));
resolve_top_level_decl(codegen, tld, false, nullptr);
assert(tld->id == TldIdVar);
TldVar *tld_var = (TldVar *)tld;
ConstExprValue *var_value = tld_var->var->value;
assert(var_value != nullptr);
return var_value;
}
bool type_is_global_error_set(TypeTableEntry *err_set_type) {
assert(err_set_type->id == TypeTableEntryIdErrorSet);
assert(err_set_type->data.error_set.infer_fn == nullptr);
return err_set_type->data.error_set.err_count == UINT32_MAX;
}
uint32_t get_coro_frame_align_bytes(CodeGen *g) {
return g->pointer_size_bytes * 2;
}
bool type_can_fail(TypeTableEntry *type_entry) {
return type_entry->id == TypeTableEntryIdErrorUnion || type_entry->id == TypeTableEntryIdErrorSet;
}
bool fn_type_can_fail(FnTypeId *fn_type_id) {
return type_can_fail(fn_type_id->return_type) || fn_type_id->cc == CallingConventionAsync;
}