zig/test/cases/math.zig

232 lines
5.5 KiB
Zig

const assert = @import("std").debug.assert;
test "division" {
testDivision();
comptime testDivision();
}
fn testDivision() {
assert(div(u32, 13, 3) == 4);
assert(div(f32, 1.0, 2.0) == 0.5);
assert(divExact(u32, 55, 11) == 5);
assert(divExact(i32, -55, 11) == -5);
assert(divExact(f32, 55.0, 11.0) == 5.0);
assert(divExact(f32, -55.0, 11.0) == -5.0);
assert(divFloor(i32, 5, 3) == 1);
assert(divFloor(i32, -5, 3) == -2);
assert(divFloor(f32, 5.0, 3.0) == 1.0);
assert(divFloor(f32, -5.0, 3.0) == -2.0);
assert(divFloor(i32, -0x80000000, -2) == 0x40000000);
assert(divFloor(i32, 0, -0x80000000) == 0);
assert(divFloor(i32, -0x40000001, 0x40000000) == -2);
assert(divFloor(i32, -0x80000000, 1) == -0x80000000);
assert(divTrunc(i32, 5, 3) == 1);
assert(divTrunc(i32, -5, 3) == -1);
assert(divTrunc(f32, 5.0, 3.0) == 1.0);
assert(divTrunc(f32, -5.0, 3.0) == -1.0);
}
fn div(comptime T: type, a: T, b: T) -> T {
a / b
}
fn divExact(comptime T: type, a: T, b: T) -> T {
@divExact(a, b)
}
fn divFloor(comptime T: type, a: T, b: T) -> T {
@divFloor(a, b)
}
fn divTrunc(comptime T: type, a: T, b: T) -> T {
@divTrunc(a, b)
}
test "@addWithOverflow" {
var result: u8 = undefined;
assert(@addWithOverflow(u8, 250, 100, &result));
assert(!@addWithOverflow(u8, 100, 150, &result));
assert(result == 250);
}
// TODO test mulWithOverflow
// TODO test subWithOverflow
test "@shlWithOverflow" {
var result: u16 = undefined;
assert(@shlWithOverflow(u16, 0b0010111111111111, 3, &result));
assert(!@shlWithOverflow(u16, 0b0010111111111111, 2, &result));
assert(result == 0b1011111111111100);
}
test "@clz" {
assert(@clz(u8(0b00001010)) == 4);
assert(@clz(u8(0b10001010)) == 0);
assert(@clz(u8(0b00000000)) == 8);
}
test "@ctz" {
assert(@ctz(u8(0b10100000)) == 5);
assert(@ctz(u8(0b10001010)) == 1);
assert(@ctz(u8(0b00000000)) == 8);
}
test "assignment operators" {
var i: u32 = 0;
i += 5; assert(i == 5);
i -= 2; assert(i == 3);
i *= 20; assert(i == 60);
i /= 3; assert(i == 20);
i %= 11; assert(i == 9);
i <<= 1; assert(i == 18);
i >>= 2; assert(i == 4);
i = 6;
i &= 5; assert(i == 4);
i ^= 6; assert(i == 2);
i = 6;
i |= 3; assert(i == 7);
}
test "threeExprInARow" {
testThreeExprInARow(false, true);
comptime testThreeExprInARow(false, true);
}
fn testThreeExprInARow(f: bool, t: bool) {
assertFalse(f or f or f);
assertFalse(t and t and f);
assertFalse(1 | 2 | 4 != 7);
assertFalse(3 ^ 6 ^ 8 != 13);
assertFalse(7 & 14 & 28 != 4);
assertFalse(9 << 1 << 2 != 9 << 3);
assertFalse(90 >> 1 >> 2 != 90 >> 3);
assertFalse(100 - 1 + 1000 != 1099);
assertFalse(5 * 4 / 2 % 3 != 1);
assertFalse(i32(i32(5)) != 5);
assertFalse(!!false);
assertFalse(i32(7) != --(i32(7)));
}
fn assertFalse(b: bool) {
assert(!b);
}
test "const number literal" {
const one = 1;
const eleven = ten + one;
assert(eleven == 11);
}
const ten = 10;
test "unsigned wrapping" {
testUnsignedWrappingEval(@maxValue(u32));
comptime testUnsignedWrappingEval(@maxValue(u32));
}
fn testUnsignedWrappingEval(x: u32) {
const zero = x +% 1;
assert(zero == 0);
const orig = zero -% 1;
assert(orig == @maxValue(u32));
}
test "signed wrapping" {
testSignedWrappingEval(@maxValue(i32));
comptime testSignedWrappingEval(@maxValue(i32));
}
fn testSignedWrappingEval(x: i32) {
const min_val = x +% 1;
assert(min_val == @minValue(i32));
const max_val = min_val -% 1;
assert(max_val == @maxValue(i32));
}
test "negation wrapping" {
testNegationWrappingEval(@minValue(i16));
comptime testNegationWrappingEval(@minValue(i16));
}
fn testNegationWrappingEval(x: i16) {
assert(x == -32768);
const neg = -%x;
assert(neg == -32768);
}
test "shift left wrapping" {
testShlWrappingEval(@maxValue(u16));
comptime testShlWrappingEval(@maxValue(u16));
}
fn testShlWrappingEval(x: u16) {
const shifted = x <<% 1;
assert(shifted == 65534);
}
test "unsigned 64-bit division" {
test_u64_div();
comptime test_u64_div();
}
fn test_u64_div() {
const result = divWithResult(1152921504606846976, 34359738365);
assert(result.quotient == 33554432);
assert(result.remainder == 100663296);
}
fn divWithResult(a: u64, b: u64) -> DivResult {
DivResult {
.quotient = a / b,
.remainder = a % b,
}
}
const DivResult = struct {
quotient: u64,
remainder: u64,
};
test "binary not" {
assert(comptime {~u16(0b1010101010101010) == 0b0101010101010101});
assert(comptime {~u64(2147483647) == 18446744071562067968});
testBinaryNot(0b1010101010101010);
}
fn testBinaryNot(x: u16) {
assert(~x == 0b0101010101010101);
}
test "small int addition" {
var x: @IntType(false, 2) = 0;
assert(x == 0);
x += 1;
assert(x == 1);
x += 1;
assert(x == 2);
x += 1;
assert(x == 3);
var result: @typeOf(x) = 3;
assert(@addWithOverflow(@typeOf(x), x, 1, &result));
assert(result == 0);
}
test "float equality" {
const x: f64 = 0.012;
const y: f64 = x + 1.0;
testFloatEqualityImpl(x, y);
comptime testFloatEqualityImpl(x, y);
}
fn testFloatEqualityImpl(x: f64, y: f64) {
const y2 = x + 1.0;
assert(y == y2);
}
test "allow signed integer division/remainder when values are comptime known and positive or exact" {
assert(5 / 3 == 1);
assert(-5 / -3 == 1);
assert(-6 / 3 == -2);
assert(5 % 3 == 2);
assert(-6 % 3 == 0);
}