zig/src/codegen/x86_64.zig

221 lines
6.9 KiB
Zig

const std = @import("std");
const Type = @import("../Type.zig");
const DW = std.dwarf;
// zig fmt: off
/// Definitions of all of the x64 registers. The order is semantically meaningful.
/// The registers are defined such that IDs go in descending order of 64-bit,
/// 32-bit, 16-bit, and then 8-bit, and each set contains exactly sixteen
/// registers. This results in some useful properties:
///
/// Any 64-bit register can be turned into its 32-bit form by adding 16, and
/// vice versa. This also works between 32-bit and 16-bit forms. With 8-bit, it
/// works for all except for sp, bp, si, and di, which do *not* have an 8-bit
/// form.
///
/// If (register & 8) is set, the register is extended.
///
/// The ID can be easily determined by figuring out what range the register is
/// in, and then subtracting the base.
pub const Register = enum(u8) {
// 0 through 15, 64-bit registers. 8-15 are extended.
// id is just the int value.
rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi,
r8, r9, r10, r11, r12, r13, r14, r15,
// 16 through 31, 32-bit registers. 24-31 are extended.
// id is int value - 16.
eax, ecx, edx, ebx, esp, ebp, esi, edi,
r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d,
// 32-47, 16-bit registers. 40-47 are extended.
// id is int value - 32.
ax, cx, dx, bx, sp, bp, si, di,
r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w,
// 48-63, 8-bit registers. 56-63 are extended.
// id is int value - 48.
al, cl, dl, bl, ah, ch, dh, bh,
r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b,
/// Returns the bit-width of the register.
pub fn size(self: Register) u7 {
return switch (@enumToInt(self)) {
0...15 => 64,
16...31 => 32,
32...47 => 16,
48...64 => 8,
else => unreachable,
};
}
/// Returns whether the register is *extended*. Extended registers are the
/// new registers added with amd64, r8 through r15. This also includes any
/// other variant of access to those registers, such as r8b, r15d, and so
/// on. This is needed because access to these registers requires special
/// handling via the REX prefix, via the B or R bits, depending on context.
pub fn isExtended(self: Register) bool {
return @enumToInt(self) & 0x08 != 0;
}
/// This returns the 4-bit register ID, which is used in practically every
/// opcode. Note that bit 3 (the highest bit) is *never* used directly in
/// an instruction (@see isExtended), and requires special handling. The
/// lower three bits are often embedded directly in instructions (such as
/// the B8 variant of moves), or used in R/M bytes.
pub fn id(self: Register) u4 {
return @truncate(u4, @enumToInt(self));
}
/// Returns the index into `callee_preserved_regs`.
pub fn allocIndex(self: Register) ?u4 {
return switch (self) {
.rax, .eax, .ax, .al => 0,
.rcx, .ecx, .cx, .cl => 1,
.rdx, .edx, .dx, .dl => 2,
.rsi, .esi, .si => 3,
.rdi, .edi, .di => 4,
.r8, .r8d, .r8w, .r8b => 5,
.r9, .r9d, .r9w, .r9b => 6,
.r10, .r10d, .r10w, .r10b => 7,
.r11, .r11d, .r11w, .r11b => 8,
else => null,
};
}
/// Convert from any register to its 64 bit alias.
pub fn to64(self: Register) Register {
return @intToEnum(Register, self.id());
}
/// Convert from any register to its 32 bit alias.
pub fn to32(self: Register) Register {
return @intToEnum(Register, @as(u8, self.id()) + 16);
}
/// Convert from any register to its 16 bit alias.
pub fn to16(self: Register) Register {
return @intToEnum(Register, @as(u8, self.id()) + 32);
}
/// Convert from any register to its 8 bit alias.
pub fn to8(self: Register) Register {
return @intToEnum(Register, @as(u8, self.id()) + 48);
}
pub fn dwarfLocOp(self: Register) u8 {
return switch (self.to64()) {
.rax => DW.OP_reg0,
.rdx => DW.OP_reg1,
.rcx => DW.OP_reg2,
.rbx => DW.OP_reg3,
.rsi => DW.OP_reg4,
.rdi => DW.OP_reg5,
.rbp => DW.OP_reg6,
.rsp => DW.OP_reg7,
.r8 => DW.OP_reg8,
.r9 => DW.OP_reg9,
.r10 => DW.OP_reg10,
.r11 => DW.OP_reg11,
.r12 => DW.OP_reg12,
.r13 => DW.OP_reg13,
.r14 => DW.OP_reg14,
.r15 => DW.OP_reg15,
else => unreachable,
};
}
};
// zig fmt: on
/// These registers belong to the called function.
pub const callee_preserved_regs = [_]Register{ .rax, .rcx, .rdx, .rsi, .rdi, .r8, .r9, .r10, .r11 };
pub const c_abi_int_param_regs = [_]Register{ .rdi, .rsi, .rdx, .rcx, .r8, .r9 };
pub const c_abi_int_return_regs = [_]Register{ .rax, .rdx };
// TODO add these registers to the enum and populate dwarfLocOp
// // Return Address register. This is stored in `0(%rsp, "")` and is not a physical register.
// RA = (16, "RA"),
//
// XMM0 = (17, "xmm0"),
// XMM1 = (18, "xmm1"),
// XMM2 = (19, "xmm2"),
// XMM3 = (20, "xmm3"),
// XMM4 = (21, "xmm4"),
// XMM5 = (22, "xmm5"),
// XMM6 = (23, "xmm6"),
// XMM7 = (24, "xmm7"),
//
// XMM8 = (25, "xmm8"),
// XMM9 = (26, "xmm9"),
// XMM10 = (27, "xmm10"),
// XMM11 = (28, "xmm11"),
// XMM12 = (29, "xmm12"),
// XMM13 = (30, "xmm13"),
// XMM14 = (31, "xmm14"),
// XMM15 = (32, "xmm15"),
//
// ST0 = (33, "st0"),
// ST1 = (34, "st1"),
// ST2 = (35, "st2"),
// ST3 = (36, "st3"),
// ST4 = (37, "st4"),
// ST5 = (38, "st5"),
// ST6 = (39, "st6"),
// ST7 = (40, "st7"),
//
// MM0 = (41, "mm0"),
// MM1 = (42, "mm1"),
// MM2 = (43, "mm2"),
// MM3 = (44, "mm3"),
// MM4 = (45, "mm4"),
// MM5 = (46, "mm5"),
// MM6 = (47, "mm6"),
// MM7 = (48, "mm7"),
//
// RFLAGS = (49, "rFLAGS"),
// ES = (50, "es"),
// CS = (51, "cs"),
// SS = (52, "ss"),
// DS = (53, "ds"),
// FS = (54, "fs"),
// GS = (55, "gs"),
//
// FS_BASE = (58, "fs.base"),
// GS_BASE = (59, "gs.base"),
//
// TR = (62, "tr"),
// LDTR = (63, "ldtr"),
// MXCSR = (64, "mxcsr"),
// FCW = (65, "fcw"),
// FSW = (66, "fsw"),
//
// XMM16 = (67, "xmm16"),
// XMM17 = (68, "xmm17"),
// XMM18 = (69, "xmm18"),
// XMM19 = (70, "xmm19"),
// XMM20 = (71, "xmm20"),
// XMM21 = (72, "xmm21"),
// XMM22 = (73, "xmm22"),
// XMM23 = (74, "xmm23"),
// XMM24 = (75, "xmm24"),
// XMM25 = (76, "xmm25"),
// XMM26 = (77, "xmm26"),
// XMM27 = (78, "xmm27"),
// XMM28 = (79, "xmm28"),
// XMM29 = (80, "xmm29"),
// XMM30 = (81, "xmm30"),
// XMM31 = (82, "xmm31"),
//
// K0 = (118, "k0"),
// K1 = (119, "k1"),
// K2 = (120, "k2"),
// K3 = (121, "k3"),
// K4 = (122, "k4"),
// K5 = (123, "k5"),
// K6 = (124, "k6"),
// K7 = (125, "k7"),