zig/lib/std/math/complex/tanh.zig
LemonBoy ff14451b4a std: Implement more useful approxEq semantics
Comparisons with absolute epsilons are usually useful when comparing
numbers to zero, for non-zero numbers it's advised to switch to relative
epsilons instead to obtain meaningful results (check [1] for more
details).

The new API introduces approxEqAbs and approxEqRel, where the former
aliases and deprecated the old `approxEq`, allowing the user to pick the
right tool for the job.

The documentation is meant to guide the user in the choice of the
correct alternative.

[1] https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
2020-11-05 16:08:49 +01:00

127 lines
3.8 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanhf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanh.c
const builtin = @import("builtin");
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns the hyperbolic tangent of z.
pub fn tanh(z: anytype) @TypeOf(z) {
const T = @TypeOf(z.re);
return switch (T) {
f32 => tanh32(z),
f64 => tanh64(z),
else => @compileError("tan not implemented for " ++ @typeName(z)),
};
}
fn tanh32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx = @bitCast(u32, x);
const ix = hx & 0x7fffffff;
if (ix >= 0x7f800000) {
if (ix & 0x7fffff != 0) {
const r = if (y == 0) y else x * y;
return Complex(f32).new(x, r);
}
const xx = @bitCast(f32, hx - 0x40000000);
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
return Complex(f32).new(xx, math.copysign(f32, 0, r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f32).new(r, y - y);
}
// x >= 11
if (ix >= 0x41300000) {
const exp_mx = math.exp(-math.fabs(x));
return Complex(f32).new(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f32).new((beta * rho * s) / den, t / den);
}
fn tanh64(z: Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx = @bitCast(u64, x);
// TODO: zig should allow this conversion implicitly because it can notice that the value necessarily
// fits in range.
const hx = @intCast(u32, fx >> 32);
const lx = @truncate(u32, fx);
const ix = hx & 0x7fffffff;
if (ix >= 0x7ff00000) {
if ((ix & 0x7fffff) | lx != 0) {
const r = if (y == 0) y else x * y;
return Complex(f64).new(x, r);
}
const xx = @bitCast(f64, (@as(u64, hx - 0x40000000) << 32) | lx);
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
return Complex(f64).new(xx, math.copysign(f64, 0, r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f64).new(r, y - y);
}
// x >= 22
if (ix >= 0x40360000) {
const exp_mx = math.exp(-math.fabs(x));
return Complex(f64).new(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f64).new((beta * rho * s) / den, t / den);
}
const epsilon = 0.0001;
test "complex.ctanh32" {
const a = Complex(f32).new(5, 3);
const c = tanh(a);
testing.expect(math.approxEqAbs(f32, c.re, 0.999913, epsilon));
testing.expect(math.approxEqAbs(f32, c.im, -0.000025, epsilon));
}
test "complex.ctanh64" {
const a = Complex(f64).new(5, 3);
const c = tanh(a);
testing.expect(math.approxEqAbs(f64, c.re, 0.999913, epsilon));
testing.expect(math.approxEqAbs(f64, c.im, -0.000025, epsilon));
}