LemonBoy ff14451b4a std: Implement more useful approxEq semantics
Comparisons with absolute epsilons are usually useful when comparing
numbers to zero, for non-zero numbers it's advised to switch to relative
epsilons instead to obtain meaningful results (check [1] for more
details).

The new API introduces approxEqAbs and approxEqRel, where the former
aliases and deprecated the old `approxEq`, allowing the user to pick the
right tool for the job.

The documentation is meant to guide the user in the choice of the
correct alternative.

[1] https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
2020-11-05 16:08:49 +01:00

145 lines
4.4 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexpf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/cexp.c
const builtin = @import("builtin");
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
const ldexp_cexp = @import("ldexp.zig").ldexp_cexp;
/// Returns e raised to the power of z (e^z).
pub fn exp(z: anytype) @TypeOf(z) {
const T = @TypeOf(z.re);
return switch (T) {
f32 => exp32(z),
f64 => exp64(z),
else => @compileError("exp not implemented for " ++ @typeName(z)),
};
}
fn exp32(z: Complex(f32)) Complex(f32) {
const exp_overflow = 0x42b17218; // max_exp * ln2 ~= 88.72283955
const cexp_overflow = 0x43400074; // (max_exp - min_denom_exp) * ln2
const x = z.re;
const y = z.im;
const hy = @bitCast(u32, y) & 0x7fffffff;
// cexp(x + i0) = exp(x) + i0
if (hy == 0) {
return Complex(f32).new(math.exp(x), y);
}
const hx = @bitCast(u32, x);
// cexp(0 + iy) = cos(y) + isin(y)
if ((hx & 0x7fffffff) == 0) {
return Complex(f32).new(math.cos(y), math.sin(y));
}
if (hy >= 0x7f800000) {
// cexp(finite|nan +- i inf|nan) = nan + i nan
if ((hx & 0x7fffffff) != 0x7f800000) {
return Complex(f32).new(y - y, y - y);
} // cexp(-inf +- i inf|nan) = 0 + i0
else if (hx & 0x80000000 != 0) {
return Complex(f32).new(0, 0);
} // cexp(+inf +- i inf|nan) = inf + i nan
else {
return Complex(f32).new(x, y - y);
}
}
// 88.7 <= x <= 192 so must scale
if (hx >= exp_overflow and hx <= cexp_overflow) {
return ldexp_cexp(z, 0);
} // - x < exp_overflow => exp(x) won't overflow (common)
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
// - x = +-inf
// - x = nan
else {
const exp_x = math.exp(x);
return Complex(f32).new(exp_x * math.cos(y), exp_x * math.sin(y));
}
}
fn exp64(z: Complex(f64)) Complex(f64) {
const exp_overflow = 0x40862e42; // high bits of max_exp * ln2 ~= 710
const cexp_overflow = 0x4096b8e4; // (max_exp - min_denorm_exp) * ln2
const x = z.re;
const y = z.im;
const fy = @bitCast(u64, y);
const hy = @intCast(u32, (fy >> 32) & 0x7fffffff);
const ly = @truncate(u32, fy);
// cexp(x + i0) = exp(x) + i0
if (hy | ly == 0) {
return Complex(f64).new(math.exp(x), y);
}
const fx = @bitCast(u64, x);
const hx = @intCast(u32, fx >> 32);
const lx = @truncate(u32, fx);
// cexp(0 + iy) = cos(y) + isin(y)
if ((hx & 0x7fffffff) | lx == 0) {
return Complex(f64).new(math.cos(y), math.sin(y));
}
if (hy >= 0x7ff00000) {
// cexp(finite|nan +- i inf|nan) = nan + i nan
if (lx != 0 or (hx & 0x7fffffff) != 0x7ff00000) {
return Complex(f64).new(y - y, y - y);
} // cexp(-inf +- i inf|nan) = 0 + i0
else if (hx & 0x80000000 != 0) {
return Complex(f64).new(0, 0);
} // cexp(+inf +- i inf|nan) = inf + i nan
else {
return Complex(f64).new(x, y - y);
}
}
// 709.7 <= x <= 1454.3 so must scale
if (hx >= exp_overflow and hx <= cexp_overflow) {
return ldexp_cexp(z, 0);
} // - x < exp_overflow => exp(x) won't overflow (common)
// - x > cexp_overflow, so exp(x) * s overflows for s > 0
// - x = +-inf
// - x = nan
else {
const exp_x = math.exp(x);
return Complex(f64).new(exp_x * math.cos(y), exp_x * math.sin(y));
}
}
const epsilon = 0.0001;
test "complex.cexp32" {
const a = Complex(f32).new(5, 3);
const c = exp(a);
testing.expect(math.approxEqAbs(f32, c.re, -146.927917, epsilon));
testing.expect(math.approxEqAbs(f32, c.im, 20.944065, epsilon));
}
test "complex.cexp64" {
const a = Complex(f64).new(5, 3);
const c = exp(a);
testing.expect(math.approxEqAbs(f64, c.re, -146.927917, epsilon));
testing.expect(math.approxEqAbs(f64, c.im, 20.944065, epsilon));
}