zig/lib/std/math/complex/atan.zig
LemonBoy ff14451b4a std: Implement more useful approxEq semantics
Comparisons with absolute epsilons are usually useful when comparing
numbers to zero, for non-zero numbers it's advised to switch to relative
epsilons instead to obtain meaningful results (check [1] for more
details).

The new API introduces approxEqAbs and approxEqRel, where the former
aliases and deprecated the old `approxEq`, allowing the user to pick the
right tool for the job.

The documentation is meant to guide the user in the choice of the
correct alternative.

[1] https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
2020-11-05 16:08:49 +01:00

144 lines
3.4 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/catanf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/catan.c
const std = @import("../../std.zig");
const builtin = @import("builtin");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns the arc-tangent of z.
pub fn atan(z: anytype) @TypeOf(z) {
const T = @TypeOf(z.re);
return switch (T) {
f32 => atan32(z),
f64 => atan64(z),
else => @compileError("atan not implemented for " ++ @typeName(z)),
};
}
fn redupif32(x: f32) f32 {
const DP1 = 3.140625;
const DP2 = 9.67502593994140625e-4;
const DP3 = 1.509957990978376432e-7;
var t = x / math.pi;
if (t >= 0.0) {
t += 0.5;
} else {
t -= 0.5;
}
const u = @intToFloat(f32, @floatToInt(i32, t));
return ((x - u * DP1) - u * DP2) - t * DP3;
}
fn atan32(z: Complex(f32)) Complex(f32) {
const maxnum = 1.0e38;
const x = z.re;
const y = z.im;
if ((x == 0.0) and (y > 1.0)) {
// overflow
return Complex(f32).new(maxnum, maxnum);
}
const x2 = x * x;
var a = 1.0 - x2 - (y * y);
if (a == 0.0) {
// overflow
return Complex(f32).new(maxnum, maxnum);
}
var t = 0.5 * math.atan2(f32, 2.0 * x, a);
var w = redupif32(t);
t = y - 1.0;
a = x2 + t * t;
if (a == 0.0) {
// overflow
return Complex(f32).new(maxnum, maxnum);
}
t = y + 1.0;
a = (x2 + (t * t)) / a;
return Complex(f32).new(w, 0.25 * math.ln(a));
}
fn redupif64(x: f64) f64 {
const DP1 = 3.14159265160560607910;
const DP2 = 1.98418714791870343106e-9;
const DP3 = 1.14423774522196636802e-17;
var t = x / math.pi;
if (t >= 0.0) {
t += 0.5;
} else {
t -= 0.5;
}
const u = @intToFloat(f64, @floatToInt(i64, t));
return ((x - u * DP1) - u * DP2) - t * DP3;
}
fn atan64(z: Complex(f64)) Complex(f64) {
const maxnum = 1.0e308;
const x = z.re;
const y = z.im;
if ((x == 0.0) and (y > 1.0)) {
// overflow
return Complex(f64).new(maxnum, maxnum);
}
const x2 = x * x;
var a = 1.0 - x2 - (y * y);
if (a == 0.0) {
// overflow
return Complex(f64).new(maxnum, maxnum);
}
var t = 0.5 * math.atan2(f64, 2.0 * x, a);
var w = redupif64(t);
t = y - 1.0;
a = x2 + t * t;
if (a == 0.0) {
// overflow
return Complex(f64).new(maxnum, maxnum);
}
t = y + 1.0;
a = (x2 + (t * t)) / a;
return Complex(f64).new(w, 0.25 * math.ln(a));
}
const epsilon = 0.0001;
test "complex.catan32" {
const a = Complex(f32).new(5, 3);
const c = atan(a);
testing.expect(math.approxEqAbs(f32, c.re, 1.423679, epsilon));
testing.expect(math.approxEqAbs(f32, c.im, 0.086569, epsilon));
}
test "complex.catan64" {
const a = Complex(f64).new(5, 3);
const c = atan(a);
testing.expect(math.approxEqAbs(f64, c.re, 1.423679, epsilon));
testing.expect(math.approxEqAbs(f64, c.im, 0.086569, epsilon));
}