Comparisons with absolute epsilons are usually useful when comparing numbers to zero, for non-zero numbers it's advised to switch to relative epsilons instead to obtain meaningful results (check [1] for more details). The new API introduces approxEqAbs and approxEqRel, where the former aliases and deprecated the old `approxEq`, allowing the user to pick the right tool for the job. The documentation is meant to guide the user in the choice of the correct alternative. [1] https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
28 lines
871 B
Zig
28 lines
871 B
Zig
// SPDX-License-Identifier: MIT
|
|
// Copyright (c) 2015-2020 Zig Contributors
|
|
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
|
|
// The MIT license requires this copyright notice to be included in all copies
|
|
// and substantial portions of the software.
|
|
const std = @import("../../std.zig");
|
|
const testing = std.testing;
|
|
const math = std.math;
|
|
const cmath = math.complex;
|
|
const Complex = cmath.Complex;
|
|
|
|
/// Returns the hyperbolic arc-cosine of z.
|
|
pub fn acosh(z: anytype) Complex(@TypeOf(z.re)) {
|
|
const T = @TypeOf(z.re);
|
|
const q = cmath.acos(z);
|
|
return Complex(T).new(-q.im, q.re);
|
|
}
|
|
|
|
const epsilon = 0.0001;
|
|
|
|
test "complex.cacosh" {
|
|
const a = Complex(f32).new(5, 3);
|
|
const c = acosh(a);
|
|
|
|
testing.expect(math.approxEqAbs(f32, c.re, 2.452914, epsilon));
|
|
testing.expect(math.approxEqAbs(f32, c.im, 0.546975, epsilon));
|
|
}
|