Comparisons with absolute epsilons are usually useful when comparing numbers to zero, for non-zero numbers it's advised to switch to relative epsilons instead to obtain meaningful results (check [1] for more details). The new API introduces approxEqAbs and approxEqRel, where the former aliases and deprecated the old `approxEq`, allowing the user to pick the right tool for the job. The documentation is meant to guide the user in the choice of the correct alternative. [1] https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
25 lines
755 B
Zig
25 lines
755 B
Zig
// SPDX-License-Identifier: MIT
|
|
// Copyright (c) 2015-2020 Zig Contributors
|
|
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
|
|
// The MIT license requires this copyright notice to be included in all copies
|
|
// and substantial portions of the software.
|
|
const std = @import("../../std.zig");
|
|
const testing = std.testing;
|
|
const math = std.math;
|
|
const cmath = math.complex;
|
|
const Complex = cmath.Complex;
|
|
|
|
/// Returns the absolute value (modulus) of z.
|
|
pub fn abs(z: anytype) @TypeOf(z.re) {
|
|
const T = @TypeOf(z.re);
|
|
return math.hypot(T, z.re, z.im);
|
|
}
|
|
|
|
const epsilon = 0.0001;
|
|
|
|
test "complex.cabs" {
|
|
const a = Complex(f32).new(5, 3);
|
|
const c = abs(a);
|
|
testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
|
|
}
|