* introduce std.ArrayListUnmanaged for when you have the allocator
stored elsewhere
* move std.heap.ArenaAllocator implementation to its own file. extract
the main state into std.heap.ArenaAllocator.State, which can be
stored as an alternative to storing the entire ArenaAllocator, saving
24 bytes per ArenaAllocator on 64 bit targets.
* std.LinkedList.Node pointer field now defaults to being null
initialized.
* Rework self-hosted compiler Package API
* Delete almost all the bitrotted self-hosted compiler code. The only bit
rotted code left is in main.zig and compilation.zig
* Add call instruction to ZIR
* self-hosted compiler ir API and link API are reworked to support
a long-running compiler that incrementally updates declarations
* Introduce the concept of scopes to ZIR semantic analysis
* ZIR text format supports referencing named decls that are declared
later in the file
* Figure out how memory management works for the long-running compiler
and incremental compilation. The main roots are top level
declarations. There is a table of decls. The key is a cryptographic
hash of the fully qualified decl name. Each decl has an arena
allocator where all of the memory related to that decl is stored.
Each code block has its own arena allocator for the lifetime of
the block. Values that want to survive when going out of scope in
a block must get copied into the outer block. Finally, values must
get copied into the Decl arena to be long-lived.
* Delete the unused MemoryCell struct. Instead, comptime pointers are
based on references to Decl structs.
* Figure out how caching works. Each Decl will store a set of other
Decls which must be recompiled when it changes.
This branch is still work-in-progress; this commit breaks the build.
Whether the C ABI is mingw-w64 or msvc, detection of native libc paths
should be the same. In the future we may want to allow passing a C ABI
parameter to detectNativeCPaths() but for now we have the same behavior
regardless.
* remove deprecated `std.fs.Dir` APIs
* `std.fs.Dir.openDir` now takes a options struct with bool fields for
`access_sub_paths` and `iterate`. It's now much more clear how
opening directories works.
* fixed the std lib and various zig code calling the wrong openDir
function.
* the runtime safety check for dir flags is removed in favor of the
cheaper option of putting a comment on the same line as handling
EBADF / ACCESS_DENIED, since that will show up in stack traces.
The main goal here is to make the function pointers comptime, so that we
don't have to do the crazy stuff with async function frames.
Since InStream, OutStream, and SeekableStream are already generic
across error sets, it's not really worse to make them generic across the
vtable as well.
See #764 for the open issue acknowledging that using generics for these
abstractions is a design flaw.
See #130 for the efforts to make these abstractions non-generic.
This commit also changes the OutStream API so that `write` returns
number of bytes written, and `writeAll` is the one that loops until the
whole buffer is written.
* re-introduce `std.build.Target` which is distinct from `std.Target`.
`std.build.Target` wraps `std.Target` so that it can be annotated as
"the native target" or an explicitly specified target.
* `std.Target.Os` is moved to `std.Target.Os.Tag`. The former is now a
struct which has the tag as well as version range information.
* `std.elf` gains some more ELF header constants.
* `std.Target.parse` gains the ability to parse operating system
version ranges as well as glibc version.
* Added `std.Target.isGnuLibC()`.
* self-hosted dynamic linker detection and glibc version detection.
This also adds the improved logic using `/usr/bin/env` rather than
invoking the system C compiler to find the dynamic linker when zig
is statically linked. Related: #2084
Note: this `/usr/bin/env` code is work-in-progress.
* `-target-glibc` CLI option is removed in favor of the new `-target`
syntax. Example: `-target x86_64-linux-gnu.2.27`
closes#1907
This function expands argv[0] into the absolute path resolved with PATH
environment variable before making the execve syscall. However, in case
the execve fails, e.g. with ENOENT, it did not restore argv to how it
was before it was passed in. This resulted in the caller performing an
invalid free.
This commit also adds verbose debug info when native system C compiler
detection fails. See #4521.
in favor of CPU features. Also rearrange the `std.Target`
data structure.
* note: `@import("builtin")` was already deprecated in favor of
`@import("std").builtin`.
* `std.builtin.arch` is now deprecated in favor of
`std.builtin.cpu.arch`.
* `std.Target.CpuFeatures.Cpu` is now `std.Target.Cpu.Model`.
* `std.Target.CpuFeatures` is now `std.Target.Cpu`.
* `std.Target` no longer has an `arch` field. Instead it has a
`cpu` field, which has `arch`, `model`, and `features`.
* `std.Target` no longer has a `cpu_features` field.
* `std.Target.Arch` is moved to `std.Target.Cpu.Arch` and
it is an enum instead of a tagged union.
* `std.Target.parseOs` is moved to `std.Target.Os.parse`.
* `std.Target.parseAbi` is moved to `std.Target.Abi.parse`.
* `std.Target.parseArchSub` is only for arch now and moved
to `std.Target.Cpu.Arch.parse`.
* `std.Target.parse` is improved to accept CPU name and features.
* `std.Target.Arch.getBaselineCpuFeatures` is moved to
`std.Target.Cpu.baseline`.
* `std.Target.allCpus` is renamed to `std.Target.allCpuModels`.
* `std.Target.defaultAbi` is moved to `std.Target.Abi.default`.
* Significant cleanup of aarch64 and arm CPU features, resulting in
the needed bit count for cpu feature set going from 174 to 138.
* Add `std.Target.Cpu.Feature.Set.addFeatureSet` for merging
feature sets together.
`-target-feature` and `-target-cpu` are removed in favor of
`-mcpu`, to conform to established conventions, and it gains
additional power to support cpu features. The syntax is:
-mcpu=name+on1+on2-off1-off2
closes#4261
The current target's ABI cannot be relied on for this.
For example, we may build the zig compiler for target
riscv64-linux-musl and provide a tarball for users to
download. A user could then run that zig compiler on
riscv64-linux-gnu. This use case is well-defined and
supported by Zig. But that means that we must detect
the system ABI here rather than
relying on `std.Target.current`.
Some C compilers, such as Clang, are known to rely on
argv[0] to find the path to their own executable,
without even bothering to resolve PATH. This results
in the message:
error: unable to execute command: Executable "" doesn't exist!
So we tell ChildProcess to expand argv[0] to the absolute path
to give them a helping hand.
Rather than `zig0 build ...` the build now does
`zig0 build-lib ...`, avoiding the requirement of linking the build
script, and thus avoiding the requirement of finding native libc,
for systems where libc is the system ABI.
* libc_installation.cpp is deleted.
src-self-hosted/libc_installation.zig is now used for both stage1 and
stage2 compilers.
* (breaking) move `std.fs.File.access` to `std.fs.Dir.access`. The API
now encourages use with an open directory handle.
* Add `std.os.faccessat` and related functions.
* Deprecate the "C" suffix naming convention for null-terminated
parameters. "C" should be used when it is related to libc. However
null-terminated parameters often have to do with the native system
ABI rather than libc. "Z" suffix is the new convention. For example,
`std.os.openC` is deprecated in favor of `std.os.openZ`.
* Add `std.mem.dupeZ` for using an allocator to copy memory and add a
null terminator.
* Remove dead struct field `std.ChildProcess.llnode`.
* Introduce `std.event.Batch`. This API allows expressing concurrency
without forcing code to be async. It requires no Allocator and does
not introduce any failure conditions. However it is not thread-safe.
* There is now an ongoing experiment to transition away from
`std.event.Group` in favor of `std.event.Batch`.
* `std.os.execvpeC` calls `getenvZ` rather than `getenv`. This is
slightly more efficient on most systems, and works around a
limitation of `getenv` lack of integration with libc.
* (breaking) `std.os.AccessError` gains `FileBusy`, `SymLinkLoop`, and
`ReadOnlyFileSystem`. Previously these error codes were all reported
as `PermissionDenied`.
* Add `std.Target.isDragonFlyBSD`.
* stage2: access to the windows_sdk functions is done with a manually
maintained .zig binding file instead of `@cImport`.
* Update src-self-hosted/libc_installation.zig with all the
improvements that stage1 has seen to src/libc_installation.cpp until
now. In addition, it now takes advantage of Batch so that evented I/O
mode takes advantage of concurrency, but it still works in blocking
I/O mode, which is how it is used in stage1.
This change was mostly made with `zig fmt` and this also modified some whitespace. Note that in some files, `zig fmt` produced incorrect code, so the change was made manually.
Mostly picking the same paths as FreeBSD.
We need a little special handling for crt files, as netbsd uses its
own (and not GCC's) for those, with slightly different names.
* zig fmt
* std.mem.join takes a slice of slices instead of var args
* std.mem.join takes a separator slice rather than byte,
and always inserts it. Previously it would not insert the separator
if there already was one, violating the documented behavior.
* std.mem.join calculates exactly the correct amount to allocate
and has no call to allocator.shrink()
* bring back joinWindows and joinPosix and the corresponding tests.
it is intended to be able to call these functions from any OS.
* rename std.os.path.resolveSlice to resolve (now resolve takes
a slice of slices instead of var args)