- wip for #2046
- clang .d output must be created with `clang -MV` switch
- implemented in Zig
- hybridized for zig stage0 and stage1
- zig test src-self-hosted/dep_tokenizer.zig
stage1 translate-c actually has this wrong. When exporting a function,
it's ok to use empty parameters. But for prototypes, "no prototype"
means that it has to be emitted as a function that accepts anything,
e.g. extern fn foo(...) void;
See #1964
and use it when building libuserland.a
The self-hosted part of stage1 relies on zig's compiler-rt, and so we
include it in libuserland.a.
This should potentially be the default, but for now it's behind a linker
option.
self-hosted translate-c: small progress on translating functions.
Previously, `zig fmt` on the stage1 compiler (which is what we currently
ship) would perform what equates to `zig run std/special/fmt_runner.zig`
Now, `zig fmt` is implemented with the hybrid zig/C++ strategy outlined
by #1964.
This means Zig no longer has to ship some of the stage2 .zig files, and
there is no longer a delay when running `zig fmt` for the first time.
This modifies the build process of Zig to put all of the source files
into libcompiler.a, except main.cpp and userland.cpp.
Next, the build process links main.cpp, userland.cpp, and libcompiler.a
into zig1. userland.cpp is a shim for functions that will later be
replaced with self-hosted implementations.
Next, the build process uses zig1 to build src-self-hosted/stage1.zig
into libuserland.a, which does not depend on any of the things that
are shimmed in userland.cpp, such as translate-c.
Finally, the build process re-links main.cpp and libcompiler.a, except
with libuserland.a instead of userland.cpp. Now the shims are replaced
with .zig code. This provides all of the Zig standard library to the
stage1 C++ compiler, and enables us to move certain things to userland,
such as translate-c.
As a proof of concept I have made the `zig zen` command use text defined
in userland. I added `zig translate-c-2` which is a work-in-progress
reimplementation of translate-c in userland, which currently calls
`std.debug.panic("unimplemented")` and you can see the stack trace makes
it all the way back into the C++ main() function (Thanks LemonBoy for
improving that!).
This could potentially let us move other things into userland, such as
hashing algorithms, the entire cache system, .d file parsing, pretty
much anything that libuserland.a itself doesn't need to depend on.
This can also let us have `zig fmt` in stage1 without the overhead
of child process execution, and without the initial compilation delay
before it gets cached.
See #1964
This effectively takes one-bit from the length field and uses it as the
sign bit. It reduces the size of an Int from 40 bits to 32 bits on a
64-bit arch.
This also reduces std.Rational from 80 bits to 64 bits.