This change was mostly made with `zig fmt` and this also modified some whitespace. Note that in some files, `zig fmt` produced incorrect code, so the change was made manually.
this also deletes C string literals from the language, and then makes
the std lib changes and compiler changes necessary to get the behavior
tests and std lib tests passing again.
Before, allocator implementations had to provide `allocFn`,
`reallocFn`, and `freeFn`.
Now, they must provide only `reallocFn` and `shrinkFn`.
Reallocating from a zero length slice is allocation, and
shrinking to a zero length slice is freeing.
When the new memory size is less than or equal to the
previous allocation size, `reallocFn` now has the option
to return `error.OutOfMemory` to indicate that the allocator
would not be able to take advantage of the new size.
For more details see #1306. This commit closes#1306.
This commit paves the way to solving #2009.
This commit also introduces a memory leak to all coroutines.
There is an issue where a coroutine calls the function and it
frees its own stack frame, but then the return value of `shrinkFn`
is a slice, which is implemented as an sret struct. Writing to
the return pointer causes invalid memory write. We could work
around it by having a global helper function which has a void
return type and calling that instead. But instead this hack will
suffice until I rework coroutines to be non-allocating. Basically
coroutines are not supported right now until they are reworked as
in #1194.
`std.mem.Allocator.createOne` is renamed to `std.mem.Allocator.create`.
The problem with the previous API is that even after copy elision,
the initalization value passed as a parameter would always be a copy.
With the new API, once copy elision is done, initialization
functions can directly initialize allocated memory in place.
Related:
* #1872
* #1873
See #770
To help automatically translate code, see the
zig-fmt-pointer-reform-2 branch.
This will convert all & into *. Due to the syntax
ambiguity (which is why we are making this change),
even address-of & will turn into *, so you'll have
to manually fix thes instances. You will be guaranteed
to get compile errors for them - expected 'type', found 'foo'