* rework os.sendfile and add macosx support, and a fallback
implementation for any OS.
* fix sendto compile error
* std.os write functions support partial writes. closes#3443.
* std.os pread / pwrite functions can now return `error.Unseekable`.
* std.fs.File read/write functions now have readAll/writeAll variants
which loop to complete operations even when partial reads/writes
happen.
* Audit std.os read/write functions with respect to Linux returning
EINVAL for lengths greater than 0x7fff0000.
* std.os read/write shim functions do not unnecessarily loop. Since
partial reads/writes are part of the API, the caller will be forced
to loop anyway, and so that would just be code bloat.
* Improve doc comments
* Add a non-trivial test for std.os.sendfile
* Fix std.os.pread on 32 bit Linux
* Add missing SYS_sendfile bit on aarch64
This changset adds a `sendfile(2)` syscall bindings to the linux bits
component. Where available, the `sendfile64(2)` syscall will be
transparently called.
A wrapping function has also been added to the std.os to transform
errno returns to Zig errors.
Change-Id: I86769fc4382c0771e3656e7b21137bafd99a4411
* `std.Target.getStandardDynamicLinkerPath` =>
`std.Target.standardDynamicLinkerPath`
* it now takes a pointer to fixed size array rather than an allocator
* `std.zig.system.NativeTargetInfo.detect` now supports reading
PT_INTERP from /usr/bin/env
Zig now supports a more fine-grained sense of what is native and what is
not. Some examples:
This is now allowed:
-target native
Different OS but native CPU, default Windows C ABI:
-target native-windows
This could be useful for example when running in Wine.
Different CPU but native OS, native C ABI.
-target x86_64-native -mcpu=skylake
Different C ABI but otherwise native target:
-target native-native-musl
-target native-native-gnu
Lots of breaking changes to related std lib APIs.
Calls to getOs() will need to be changed to getOsTag().
Calls to getArch() will need to be changed to getCpuArch().
Usage of Target.Cross and Target.Native need to be updated to use
CrossTarget API.
`std.build.Builder.standardTargetOptions` is changed to accept its
parameters as a struct with default values. It now has the ability to
specify a whitelist of targets allowed, as well as the default target.
Rather than two different ways of collecting the target, it's now always
a string that is validated, and prints helpful diagnostics for invalid
targets. This feature should now be actually useful, and contributions
welcome to further improve the user experience.
`std.build.LibExeObjStep.setTheTarget` is removed.
`std.build.LibExeObjStep.setTarget` is updated to take a CrossTarget
parameter.
`std.build.LibExeObjStep.setTargetGLibC` is removed. glibc versions are
handled in the CrossTarget API and can be specified with the `-target`
triple.
`std.builtin.Version` gains a `format` method.
* re-introduce `std.build.Target` which is distinct from `std.Target`.
`std.build.Target` wraps `std.Target` so that it can be annotated as
"the native target" or an explicitly specified target.
* `std.Target.Os` is moved to `std.Target.Os.Tag`. The former is now a
struct which has the tag as well as version range information.
* `std.elf` gains some more ELF header constants.
* `std.Target.parse` gains the ability to parse operating system
version ranges as well as glibc version.
* Added `std.Target.isGnuLibC()`.
* self-hosted dynamic linker detection and glibc version detection.
This also adds the improved logic using `/usr/bin/env` rather than
invoking the system C compiler to find the dynamic linker when zig
is statically linked. Related: #2084
Note: this `/usr/bin/env` code is work-in-progress.
* `-target-glibc` CLI option is removed in favor of the new `-target`
syntax. Example: `-target x86_64-linux-gnu.2.27`
closes#1907
Calling Timer.lap queried the system time twice; once to compute the lap
time and once to reset the timer. This can lead to time discrepancies
between actual and computed durations when summing the result of
Timer.lap in a loop. This commit fixes that.
also fix Timer.read to not require a pointer
std.os.getenv and std.os.getenvZ have nice compile errors when not linking
libc and using Windows.
std.os.getenvW is provided as a Windows-only API that does not require
an allocator. It uses the Process Environment Block.
std.process.getEnvVarOwned is improved to be a simple wrapper on top of
std.os.getenvW.
std.process.getEnvMap is improved to use the Process Environment Block
rather than calling GetEnvironmentVariableW.
std.zig.system.NativePaths uses process.getEnvVarOwned instead of
std.os.getenvZ, which works on Windows as well as POSIX.
This function expands argv[0] into the absolute path resolved with PATH
environment variable before making the execve syscall. However, in case
the execve fails, e.g. with ENOENT, it did not restore argv to how it
was before it was passed in. This resulted in the caller performing an
invalid free.
This commit also adds verbose debug info when native system C compiler
detection fails. See #4521.
This was deceptive. It was always meant to be sort of a "GNU readline"
sort of thing where it provides a Command Line Interface to input text.
However that functionality did not exist and it was basically a red
herring for people trying to read line-delimited input from a stream.
In this commit the API is deleted, so that people can find the proper
API more easily.
A CLI text input abstraction would be useful but may not even need to be
in the standard library. As you can see in this commit, the guess_number
CLI game gets by just fine by using `std.fs.File.read`.
I think this is working correctly. Without also removing sse2 from the
feature set, sse gets added back into the set because sse2 is part of
the x86_64 baseline (which is the cpu provided) and sse2 depends on sse.
in favor of CPU features. Also rearrange the `std.Target`
data structure.
* note: `@import("builtin")` was already deprecated in favor of
`@import("std").builtin`.
* `std.builtin.arch` is now deprecated in favor of
`std.builtin.cpu.arch`.
* `std.Target.CpuFeatures.Cpu` is now `std.Target.Cpu.Model`.
* `std.Target.CpuFeatures` is now `std.Target.Cpu`.
* `std.Target` no longer has an `arch` field. Instead it has a
`cpu` field, which has `arch`, `model`, and `features`.
* `std.Target` no longer has a `cpu_features` field.
* `std.Target.Arch` is moved to `std.Target.Cpu.Arch` and
it is an enum instead of a tagged union.
* `std.Target.parseOs` is moved to `std.Target.Os.parse`.
* `std.Target.parseAbi` is moved to `std.Target.Abi.parse`.
* `std.Target.parseArchSub` is only for arch now and moved
to `std.Target.Cpu.Arch.parse`.
* `std.Target.parse` is improved to accept CPU name and features.
* `std.Target.Arch.getBaselineCpuFeatures` is moved to
`std.Target.Cpu.baseline`.
* `std.Target.allCpus` is renamed to `std.Target.allCpuModels`.
* `std.Target.defaultAbi` is moved to `std.Target.Abi.default`.
* Significant cleanup of aarch64 and arm CPU features, resulting in
the needed bit count for cpu feature set going from 174 to 138.
* Add `std.Target.Cpu.Feature.Set.addFeatureSet` for merging
feature sets together.
`-target-feature` and `-target-cpu` are removed in favor of
`-mcpu`, to conform to established conventions, and it gains
additional power to support cpu features. The syntax is:
-mcpu=name+on1+on2-off1-off2
closes#4261
* remove "cpu features" that are actually just processors
* rename `v8` to `v8a`. this matches the corresponding
change to target/aarch64.zig
* rename types in preparation for removing sub-architecture
from `std.Target`.
I have other files changed in my dirty working tree, but about to make
some changes to arm.zig that I don't want batched with this commit.
Some C compilers, such as Clang, are known to rely on
argv[0] to find the path to their own executable,
without even bothering to resolve PATH. This results
in the message:
error: unable to execute command: Executable "" doesn't exist!
So we tell ChildProcess to expand argv[0] to the absolute path
to give them a helping hand.
* libc_installation.cpp is deleted.
src-self-hosted/libc_installation.zig is now used for both stage1 and
stage2 compilers.
* (breaking) move `std.fs.File.access` to `std.fs.Dir.access`. The API
now encourages use with an open directory handle.
* Add `std.os.faccessat` and related functions.
* Deprecate the "C" suffix naming convention for null-terminated
parameters. "C" should be used when it is related to libc. However
null-terminated parameters often have to do with the native system
ABI rather than libc. "Z" suffix is the new convention. For example,
`std.os.openC` is deprecated in favor of `std.os.openZ`.
* Add `std.mem.dupeZ` for using an allocator to copy memory and add a
null terminator.
* Remove dead struct field `std.ChildProcess.llnode`.
* Introduce `std.event.Batch`. This API allows expressing concurrency
without forcing code to be async. It requires no Allocator and does
not introduce any failure conditions. However it is not thread-safe.
* There is now an ongoing experiment to transition away from
`std.event.Group` in favor of `std.event.Batch`.
* `std.os.execvpeC` calls `getenvZ` rather than `getenv`. This is
slightly more efficient on most systems, and works around a
limitation of `getenv` lack of integration with libc.
* (breaking) `std.os.AccessError` gains `FileBusy`, `SymLinkLoop`, and
`ReadOnlyFileSystem`. Previously these error codes were all reported
as `PermissionDenied`.
* Add `std.Target.isDragonFlyBSD`.
* stage2: access to the windows_sdk functions is done with a manually
maintained .zig binding file instead of `@cImport`.
* Update src-self-hosted/libc_installation.zig with all the
improvements that stage1 has seen to src/libc_installation.cpp until
now. In addition, it now takes advantage of Batch so that evented I/O
mode takes advantage of concurrency, but it still works in blocking
I/O mode, which is how it is used in stage1.
and fix larger-than-one-byte sentinels when being freed
Thank you to João Pedro for identifying both problems and
providing example code to solve them.
closes#4413
1. behavior tests with --test-evented-io
2. std lib tests with --test-evented-io
3. fuzz test evented I/O a bit, make it robust
4. make sure it works on all platforms (kqueue, Windows IOCP,
epoll/other)
5. restart efforts on self-hosted
* `zig test` gainst `--test-evented-io` parameter and gains the ability
to seamlessly run async tests.
* `std.ChildProcess` opens its child process pipe with O_NONBLOCK when
using evented I/O
* `std.io.getStdErr()` gives a File that is blocking even in evented
I/O mode.
* Delete `std.event.fs`. The functionality is now merged into `std.fs`
and async file system access (using a dedicated thread) is
automatically handled.
* `std.fs.File` can be configured to specify whether its handle is
expected to block, and whether that is OK to block even when in
async I/O mode. This makes async I/O work correctly for e.g. the
file system as well as network.
* `std.fs.File` has some deprecated functions removed.
* Missing readv,writev,pread,pwrite,preadv,pwritev functions are added
to `std.os` and `std.fs.File`. They are all integrated with async
I/O.
* `std.fs.Watch` is still bit rotted and needs to be audited in light
of the new async/await syntax.
* `std.io.OutStream` integrates with async I/O
* linked list nodes in the std lib have default `null` values for
`prev` and `next`.
* Windows async I/O integration is enabled for reading/writing file
handles.
* Added `std.os.mode_t`. Integer sizes need to be audited.
* Fixed#4403 which was causing compiler to crash.
This is working towards:
./zig test ../test/stage1/behavior.zig --test-evented-io
Which does not successfully build yet. I'd like to enable behavioral
tests and std lib tests with --test-evented-io in the test matrix in the
future, to prevent regressions.
Clean up the code a bit and introduce a few checks meant to avoid
overshooting the end of the frame chain.
The code is now stable enough not to cause panics during the call frame
walking.