* libc_installation.cpp is deleted.
src-self-hosted/libc_installation.zig is now used for both stage1 and
stage2 compilers.
* (breaking) move `std.fs.File.access` to `std.fs.Dir.access`. The API
now encourages use with an open directory handle.
* Add `std.os.faccessat` and related functions.
* Deprecate the "C" suffix naming convention for null-terminated
parameters. "C" should be used when it is related to libc. However
null-terminated parameters often have to do with the native system
ABI rather than libc. "Z" suffix is the new convention. For example,
`std.os.openC` is deprecated in favor of `std.os.openZ`.
* Add `std.mem.dupeZ` for using an allocator to copy memory and add a
null terminator.
* Remove dead struct field `std.ChildProcess.llnode`.
* Introduce `std.event.Batch`. This API allows expressing concurrency
without forcing code to be async. It requires no Allocator and does
not introduce any failure conditions. However it is not thread-safe.
* There is now an ongoing experiment to transition away from
`std.event.Group` in favor of `std.event.Batch`.
* `std.os.execvpeC` calls `getenvZ` rather than `getenv`. This is
slightly more efficient on most systems, and works around a
limitation of `getenv` lack of integration with libc.
* (breaking) `std.os.AccessError` gains `FileBusy`, `SymLinkLoop`, and
`ReadOnlyFileSystem`. Previously these error codes were all reported
as `PermissionDenied`.
* Add `std.Target.isDragonFlyBSD`.
* stage2: access to the windows_sdk functions is done with a manually
maintained .zig binding file instead of `@cImport`.
* Update src-self-hosted/libc_installation.zig with all the
improvements that stage1 has seen to src/libc_installation.cpp until
now. In addition, it now takes advantage of Batch so that evented I/O
mode takes advantage of concurrency, but it still works in blocking
I/O mode, which is how it is used in stage1.
- split util_base.hpp from util.hpp
- new namespaces: `mem` and `heap`
- new `mem::Allocator` interface
- new `heap::CAllocator` impl with global `heap::c_allocator`
- new `heap::ArenaAllocator` impl
- new `mem::TypeInfo` extracts names without RTTI
- name extraction is enabled w/ ZIG_ENABLE_MEM_PROFILE=1
- new `mem::List` takes explicit `Allocator&` parameter
- new `mem::HashMap` takes explicit `Allocator&` parameter
- add Codegen.pass1_arena and use for all `ZigValue` allocs
- deinit Codegen.pass1_arena early in `zig_llvm_emit_output()`
* `zig test` gainst `--test-evented-io` parameter and gains the ability
to seamlessly run async tests.
* `std.ChildProcess` opens its child process pipe with O_NONBLOCK when
using evented I/O
* `std.io.getStdErr()` gives a File that is blocking even in evented
I/O mode.
* Delete `std.event.fs`. The functionality is now merged into `std.fs`
and async file system access (using a dedicated thread) is
automatically handled.
* `std.fs.File` can be configured to specify whether its handle is
expected to block, and whether that is OK to block even when in
async I/O mode. This makes async I/O work correctly for e.g. the
file system as well as network.
* `std.fs.File` has some deprecated functions removed.
* Missing readv,writev,pread,pwrite,preadv,pwritev functions are added
to `std.os` and `std.fs.File`. They are all integrated with async
I/O.
* `std.fs.Watch` is still bit rotted and needs to be audited in light
of the new async/await syntax.
* `std.io.OutStream` integrates with async I/O
* linked list nodes in the std lib have default `null` values for
`prev` and `next`.
* Windows async I/O integration is enabled for reading/writing file
handles.
* Added `std.os.mode_t`. Integer sizes need to be audited.
* Fixed#4403 which was causing compiler to crash.
This is working towards:
./zig test ../test/stage1/behavior.zig --test-evented-io
Which does not successfully build yet. I'd like to enable behavioral
tests and std lib tests with --test-evented-io in the test matrix in the
future, to prevent regressions.
This makes it so that less memory is used for IR instructions, as well
as catching bugs when one expected one kind of instruction and received
the other.
Previously it was a tagged union which was one of:
* baseline
* a specific CPU
* a set of features
Now, it's possible to have a CPU but also modify the CPU's feature set
on top of that. This is closer to what LLVM does.
This is more correct because Zig's notion of CPUs (and LLVM's) is not
exact CPU models. For example "skylake" is not one very specific model;
there are several different pieces of hardware that match "skylake" that
have different feature sets enabled.
Previously, there was hacky code to deal with result locations and how
they work with regards to comptime values and runtime values. In
addition, there was a hacky "mem_slot" mechanism that managed the memory
for local variables, and acted differently depending on comptime vs
runtime situations. All that is deleted in this commit, and as a result,
result locations code has one less complication.
Importantly, this means that a comptime result location is now passed to
a function when it is evaluated at comptime.
This test causes many regressions, and some of the behavior tests are
disabled (commented out) in this commit. Future commits will re-enable
the tests before merging the branch.