compiler-rt: Add the __atomic family of builtins

The implementation was checked against a few files using std::atomic and
compiled using zig c++.

Closes #4887
master
LemonBoy 2020-04-03 19:13:21 +02:00 committed by Andrew Kelley
parent cf52f3f99a
commit ed69821f5b
No known key found for this signature in database
GPG Key ID: 7C5F548F728501A9
2 changed files with 255 additions and 0 deletions

View File

@ -317,6 +317,8 @@ comptime {
@export(@import("compiler_rt/mulodi4.zig").__mulodi4, .{ .name = "__mulodi4", .linkage = linkage });
}
pub usingnamespace @import("compiler_rt/atomics.zig");
// Avoid dragging in the runtime safety mechanisms into this .o file,
// unless we're trying to test this file.
pub fn panic(msg: []const u8, error_return_trace: ?*builtin.StackTrace) noreturn {

View File

@ -0,0 +1,253 @@
const std = @import("std");
const builtin = std.builtin;
const linkage: builtin.GlobalLinkage = if (builtin.is_test) .Internal else .Weak;
const cache_line_size = 64;
const SpinlockTable = struct {
// Allocate ~4096 bytes of memory for the spinlock table
const max_spinlocks = 64;
const Spinlock = struct {
// Prevent false sharing by providing enough padding between two
// consecutive spinlock elements
v: enum(usize) { Unlocked = 0, Locked } align(cache_line_size) = .Unlocked,
fn acquire(self: *@This()) void {
while (true) {
switch (@atomicRmw(@TypeOf(self.v), &self.v, .Xchg, .Locked, .Acquire)) {
.Unlocked => break,
.Locked => {},
}
}
}
fn release(self: *@This()) void {
@atomicStore(@TypeOf(self.v), &self.v, .Unlocked, .Release);
}
};
list: [max_spinlocks]Spinlock = [_]Spinlock{.{}} ** max_spinlocks,
// The spinlock table behaves as a really simple hash table, mapping
// addresses to spinlocks. The mapping is not unique but that's only a
// performance problem as the lock will be contended by more than a pair of
// threads.
fn get(self: *@This(), address: usize) *Spinlock {
var sl = &self.list[(address >> 3) % max_spinlocks];
sl.acquire();
return sl;
}
};
var spinlocks: SpinlockTable = SpinlockTable{};
// The following builtins do not respect the specified memory model and instead
// uses seq_cst, the strongest one, for simplicity sake.
// Generic version of GCC atomic builtin functions.
// Those work on any object no matter the pointer alignment nor its size.
fn __atomic_load(size: u32, src: [*]u8, dest: [*]u8, model: i32) callconv(.C) void {
var sl = spinlocks.get(@ptrToInt(src));
defer sl.release();
@memcpy(dest, src, size);
}
fn __atomic_store(size: u32, dest: [*]u8, src: [*]u8, model: i32) callconv(.C) void {
var sl = spinlocks.get(@ptrToInt(dest));
defer sl.release();
@memcpy(dest, src, size);
}
fn __atomic_exchange(size: u32, ptr: [*]u8, val: [*]u8, old: [*]u8, model: i32) callconv(.C) void {
var sl = spinlocks.get(@ptrToInt(ptr));
defer sl.release();
@memcpy(old, ptr, size);
@memcpy(ptr, val, size);
}
fn __atomic_compare_exchange(
size: u32,
ptr: [*]u8,
expected: [*]u8,
desired: [*]u8,
success: i32,
failure: i32,
) callconv(.C) i32 {
var sl = spinlocks.get(@ptrToInt(ptr));
defer sl.release();
for (ptr[0..size]) |b, i| {
if (expected[i] != b) break;
} else {
// The two objects, ptr and expected, are equal
@memcpy(ptr, desired, size);
return 1;
}
@memcpy(expected, ptr, size);
return 0;
}
// Specialized versions of the GCC atomic builtin functions.
// LLVM emits those iff the object size is known and the pointers are correctly
// aligned.
// The size (in bytes) of the biggest object that the architecture can access
// atomically. Objects bigger than this threshold require the use of a lock.
const largest_atomic_size = switch (builtin.arch) {
.x86_64 => 16,
else => @sizeOf(usize),
};
fn makeAtomicLoadFn(comptime T: type) type {
return struct {
fn atomic_load_N(src: *T, model: i32) callconv(.C) T {
if (@sizeOf(T) > largest_atomic_size) {
var sl = spinlocks.get(@ptrToInt(src));
defer sl.release();
return src.*;
} else {
return @atomicLoad(T, src, .SeqCst);
}
}
};
}
comptime {
@export(makeAtomicLoadFn(u8).atomic_load_N, .{ .name = "__atomic_load_1", .linkage = linkage });
@export(makeAtomicLoadFn(u16).atomic_load_N, .{ .name = "__atomic_load_2", .linkage = linkage });
@export(makeAtomicLoadFn(u32).atomic_load_N, .{ .name = "__atomic_load_4", .linkage = linkage });
@export(makeAtomicLoadFn(u64).atomic_load_N, .{ .name = "__atomic_load_8", .linkage = linkage });
}
fn makeAtomicStoreFn(comptime T: type) type {
return struct {
fn atomic_store_N(dst: *T, value: T, model: i32) callconv(.C) void {
if (@sizeOf(T) > largest_atomic_size) {
var sl = spinlocks.get(@ptrToInt(dst));
defer sl.release();
dst.* = value;
} else {
@atomicStore(T, dst, value, .SeqCst);
}
}
};
}
comptime {
@export(makeAtomicStoreFn(u8).atomic_store_N, .{ .name = "__atomic_store_1", .linkage = linkage });
@export(makeAtomicStoreFn(u16).atomic_store_N, .{ .name = "__atomic_store_2", .linkage = linkage });
@export(makeAtomicStoreFn(u32).atomic_store_N, .{ .name = "__atomic_store_4", .linkage = linkage });
@export(makeAtomicStoreFn(u64).atomic_store_N, .{ .name = "__atomic_store_8", .linkage = linkage });
}
fn makeAtomicExchangeFn(comptime T: type) type {
return struct {
fn atomic_exchange_N(ptr: *T, val: T, model: i32) callconv(.C) T {
if (@sizeOf(T) > largest_atomic_size) {
var sl = spinlocks.get(@ptrToInt(ptr));
defer sl.release();
var value = ptr.*;
ptr.* = val;
return value;
} else {
return @atomicRmw(T, ptr, .Xchg, val, .SeqCst);
}
}
};
}
comptime {
@export(makeAtomicExchangeFn(u8).atomic_exchange_N, .{ .name = "__atomic_exchange_1", .linkage = linkage });
@export(makeAtomicExchangeFn(u16).atomic_exchange_N, .{ .name = "__atomic_exchange_2", .linkage = linkage });
@export(makeAtomicExchangeFn(u32).atomic_exchange_N, .{ .name = "__atomic_exchange_4", .linkage = linkage });
@export(makeAtomicExchangeFn(u64).atomic_exchange_N, .{ .name = "__atomic_exchange_8", .linkage = linkage });
}
fn makeAtomicCompareExchangeFn(comptime T: type) type {
return struct {
fn atomic_compare_exchange_N(ptr: *T, expected: *T, desired: T, success: i32, failure: i32) callconv(.C) i32 {
if (@sizeOf(T) > largest_atomic_size) {
var sl = spinlocks.get(@ptrToInt(ptr));
defer sl.release();
if (ptr.* == expected.*) {
ptr.* = desired;
return 1;
}
expected.* = ptr.*;
return 0;
} else {
if (@cmpxchgStrong(T, ptr, expected.*, desired, .SeqCst, .SeqCst)) |old_value| {
expected.* = old_value;
return 0;
}
return 1;
}
}
};
}
comptime {
@export(makeAtomicCompareExchangeFn(u8).atomic_compare_exchange_N, .{ .name = "__atomic_compare_exchange_1", .linkage = linkage });
@export(makeAtomicCompareExchangeFn(u16).atomic_compare_exchange_N, .{ .name = "__atomic_compare_exchange_2", .linkage = linkage });
@export(makeAtomicCompareExchangeFn(u32).atomic_compare_exchange_N, .{ .name = "__atomic_compare_exchange_4", .linkage = linkage });
@export(makeAtomicCompareExchangeFn(u64).atomic_compare_exchange_N, .{ .name = "__atomic_compare_exchange_8", .linkage = linkage });
}
fn makeFetchFn(comptime T: type, comptime op: builtin.AtomicRmwOp) type {
return struct {
pub fn fetch_op_N(ptr: *T, val: T, model: i32) callconv(.C) T {
if (@sizeOf(T) > largest_atomic_size) {
var sl = spinlocks.get(@ptrToInt(ptr));
defer sl.release();
var value = ptr.*;
ptr.* = switch (op) {
.Add => ptr.* +% val,
.Sub => ptr.* -% val,
.And => ptr.* & val,
.Nand => ~(ptr.* & val),
.Or => ptr.* | val,
.Xor => ptr.* ^ val,
else => @compileError("unsupported atomic op"),
};
return value;
}
return @atomicRmw(T, ptr, op, val, .SeqCst);
}
};
}
comptime {
@export(makeFetchFn(u8, .Add).fetch_op_N, .{ .name = "__atomic_fetch_add_1", .linkage = linkage });
@export(makeFetchFn(u16, .Add).fetch_op_N, .{ .name = "__atomic_fetch_add_2", .linkage = linkage });
@export(makeFetchFn(u32, .Add).fetch_op_N, .{ .name = "__atomic_fetch_add_4", .linkage = linkage });
@export(makeFetchFn(u64, .Add).fetch_op_N, .{ .name = "__atomic_fetch_add_8", .linkage = linkage });
@export(makeFetchFn(u8, .Sub).fetch_op_N, .{ .name = "__atomic_fetch_sub_1", .linkage = linkage });
@export(makeFetchFn(u16, .Sub).fetch_op_N, .{ .name = "__atomic_fetch_sub_2", .linkage = linkage });
@export(makeFetchFn(u32, .Sub).fetch_op_N, .{ .name = "__atomic_fetch_sub_4", .linkage = linkage });
@export(makeFetchFn(u64, .Sub).fetch_op_N, .{ .name = "__atomic_fetch_sub_8", .linkage = linkage });
@export(makeFetchFn(u8, .And).fetch_op_N, .{ .name = "__atomic_fetch_and_1", .linkage = linkage });
@export(makeFetchFn(u16, .And).fetch_op_N, .{ .name = "__atomic_fetch_and_2", .linkage = linkage });
@export(makeFetchFn(u32, .And).fetch_op_N, .{ .name = "__atomic_fetch_and_4", .linkage = linkage });
@export(makeFetchFn(u64, .And).fetch_op_N, .{ .name = "__atomic_fetch_and_8", .linkage = linkage });
@export(makeFetchFn(u8, .Or).fetch_op_N, .{ .name = "__atomic_fetch_or_1", .linkage = linkage });
@export(makeFetchFn(u16, .Or).fetch_op_N, .{ .name = "__atomic_fetch_or_2", .linkage = linkage });
@export(makeFetchFn(u32, .Or).fetch_op_N, .{ .name = "__atomic_fetch_or_4", .linkage = linkage });
@export(makeFetchFn(u64, .Or).fetch_op_N, .{ .name = "__atomic_fetch_or_8", .linkage = linkage });
@export(makeFetchFn(u8, .Xor).fetch_op_N, .{ .name = "__atomic_fetch_xor_1", .linkage = linkage });
@export(makeFetchFn(u16, .Xor).fetch_op_N, .{ .name = "__atomic_fetch_xor_2", .linkage = linkage });
@export(makeFetchFn(u32, .Xor).fetch_op_N, .{ .name = "__atomic_fetch_xor_4", .linkage = linkage });
@export(makeFetchFn(u64, .Xor).fetch_op_N, .{ .name = "__atomic_fetch_xor_8", .linkage = linkage });
@export(makeFetchFn(u8, .Nand).fetch_op_N, .{ .name = "__atomic_fetch_nand_1", .linkage = linkage });
@export(makeFetchFn(u16, .Nand).fetch_op_N, .{ .name = "__atomic_fetch_nand_2", .linkage = linkage });
@export(makeFetchFn(u32, .Nand).fetch_op_N, .{ .name = "__atomic_fetch_nand_4", .linkage = linkage });
@export(makeFetchFn(u64, .Nand).fetch_op_N, .{ .name = "__atomic_fetch_nand_8", .linkage = linkage });
}