breaking API changes to all readInt/writeInt functions & more

* add `@bswap` builtin function. See #767
 * comptime evaluation facilities are improved to be able to
   handle a `@ptrCast` with a backing array.
 * `@truncate` allows "truncating" a u0 value to any integer
   type, and the result is always comptime known to be `0`.
 * when specifying pointer alignment in a type expression,
   the alignment value of pointers which do not have addresses
   at runtime is ignored, and always has the default/ABI alignment
 * threw in a fix to freebsd/x86_64.zig to update syntax from
   language changes
 * some improvements are pending #863

closes #638
closes #1733

std lib API changes
 * io.InStream().readIntNe renamed to readIntNative
 * io.InStream().readIntLe renamed to readIntLittle
 * io.InStream().readIntBe renamed to readIntBig
 * introduced io.InStream().readIntForeign
 * io.InStream().readInt has parameter order changed
 * io.InStream().readVarInt has parameter order changed
 * io.InStream().writeIntNe renamed to writeIntNative
 * introduced io.InStream().writeIntForeign
 * io.InStream().writeIntLe renamed to writeIntLittle
 * io.InStream().writeIntBe renamed to writeIntBig
 * io.InStream().writeInt has parameter order changed
 * mem.readInt has different parameters and semantics
 * introduced mem.readIntNative
 * introduced mem.readIntForeign
 * mem.readIntBE renamed to mem.readIntBig and different API
 * mem.readIntLE renamed to mem.readIntLittle and different API
 * introduced mem.readIntSliceNative
 * introduced mem.readIntSliceForeign
 * introduced mem.readIntSliceLittle
 * introduced mem.readIntSliceBig
 * introduced mem.readIntSlice
 * mem.writeInt has different parameters and semantics
 * introduced mem.writeIntNative
 * introduced mem.writeIntForeign
 * mem.writeIntBE renamed to mem.readIntBig and different semantics
 * mem.writeIntLE renamed to mem.readIntLittle and different semantics
 * introduced mem.writeIntSliceForeign
 * introduced mem.writeIntSliceNative
 * introduced mem.writeIntSliceBig
 * introduced mem.writeIntSliceLittle
 * introduced mem.writeIntSlice
 * removed mem.endianSwapIfLe
 * removed mem.endianSwapIfBe
 * removed mem.endianSwapIf
 * added mem.littleToNative
 * added mem.bigToNative
 * added mem.toNative
 * added mem.nativeTo
 * added mem.nativeToLittle
 * added mem.nativeToBig
This commit is contained in:
Andrew Kelley 2018-12-12 20:19:46 -05:00
parent 634d11ab28
commit b883bc873d
No known key found for this signature in database
GPG Key ID: 7C5F548F728501A9
34 changed files with 818 additions and 419 deletions

View File

@ -5312,6 +5312,15 @@ comptime {
</p>
{#header_close#}
{#header_open|@bswap#}
<pre>{#syntax#}@swap(comptime T: type, value: T) T{#endsyntax#}</pre>
<p>{#syntax#}T{#endsyntax#} must be an integer type with bit count evenly divisible by 8.</p>
<p>
Swaps the byte order of the integer. This converts a big endian integer to a little endian integer,
and converts a little endian integer to a big endian integer.
</p>
{#header_close#}
{#header_open|@bytesToSlice#}
<pre>{#syntax#}@bytesToSlice(comptime Element: type, bytes: []u8) []Element{#endsyntax#}</pre>
<p>

View File

@ -15,7 +15,7 @@ pub fn main() !void {
std.debug.warn("unable to seed random number generator: {}", err);
return err;
};
const seed = std.mem.readInt(seed_bytes, u64, builtin.Endian.Big);
const seed = std.mem.readIntNative(u64, &seed_bytes);
var prng = std.rand.DefaultPrng.init(seed);
const answer = prng.random.range(u8, 0, 100) + 1;

View File

@ -55,7 +55,7 @@ pub const ZigCompiler = struct {
var seed_bytes: [@sizeOf(u64)]u8 = undefined;
try std.os.getRandomBytes(seed_bytes[0..]);
const seed = std.mem.readInt(seed_bytes, u64, builtin.Endian.Big);
const seed = mem.readIntNative(u64, &seed_bytes);
return ZigCompiler{
.loop = loop,

View File

@ -1415,6 +1415,7 @@ enum BuiltinFnId {
BuiltinFnIdErrorReturnTrace,
BuiltinFnIdAtomicRmw,
BuiltinFnIdAtomicLoad,
BuiltinFnIdBswap,
};
struct BuiltinFnEntry {
@ -1487,6 +1488,7 @@ enum ZigLLVMFnId {
ZigLLVMFnIdFloor,
ZigLLVMFnIdCeil,
ZigLLVMFnIdSqrt,
ZigLLVMFnIdBswap,
};
enum AddSubMul {
@ -1516,6 +1518,9 @@ struct ZigLLVMFnKey {
uint32_t bit_count;
bool is_signed;
} overflow_arithmetic;
struct {
uint32_t bit_count;
} bswap;
} data;
};
@ -2158,6 +2163,7 @@ enum IrInstructionId {
IrInstructionIdMergeErrRetTraces,
IrInstructionIdMarkErrRetTracePtr,
IrInstructionIdSqrt,
IrInstructionIdBswap,
IrInstructionIdErrSetCast,
IrInstructionIdToBytes,
IrInstructionIdFromBytes,
@ -3251,6 +3257,13 @@ struct IrInstructionCheckRuntimeScope {
IrInstruction *is_comptime;
};
struct IrInstructionBswap {
IrInstruction base;
IrInstruction *type;
IrInstruction *op;
};
static const size_t slice_ptr_index = 0;
static const size_t slice_len_index = 1;

View File

@ -401,7 +401,8 @@ ZigType *get_promise_type(CodeGen *g, ZigType *result_type) {
}
ZigType *get_pointer_to_type_extra(CodeGen *g, ZigType *child_type, bool is_const,
bool is_volatile, PtrLen ptr_len, uint32_t byte_alignment, uint32_t bit_offset_in_host, uint32_t host_int_bytes)
bool is_volatile, PtrLen ptr_len, uint32_t byte_alignment,
uint32_t bit_offset_in_host, uint32_t host_int_bytes)
{
assert(!type_is_invalid(child_type));
assert(ptr_len == PtrLenSingle || child_type->id != ZigTypeIdOpaque);
@ -6110,6 +6111,8 @@ uint32_t zig_llvm_fn_key_hash(ZigLLVMFnKey x) {
return (uint32_t)(x.data.floating.bit_count) * (uint32_t)1953839089;
case ZigLLVMFnIdSqrt:
return (uint32_t)(x.data.floating.bit_count) * (uint32_t)2225366385;
case ZigLLVMFnIdBswap:
return (uint32_t)(x.data.bswap.bit_count) * (uint32_t)3661994335;
case ZigLLVMFnIdOverflowArithmetic:
return ((uint32_t)(x.data.overflow_arithmetic.bit_count) * 87135777) +
((uint32_t)(x.data.overflow_arithmetic.add_sub_mul) * 31640542) +
@ -6128,6 +6131,8 @@ bool zig_llvm_fn_key_eql(ZigLLVMFnKey a, ZigLLVMFnKey b) {
return a.data.clz.bit_count == b.data.clz.bit_count;
case ZigLLVMFnIdPopCount:
return a.data.pop_count.bit_count == b.data.pop_count.bit_count;
case ZigLLVMFnIdBswap:
return a.data.bswap.bit_count == b.data.bswap.bit_count;
case ZigLLVMFnIdFloor:
case ZigLLVMFnIdCeil:
case ZigLLVMFnIdSqrt:

View File

@ -3814,6 +3814,11 @@ static LLVMValueRef get_int_builtin_fn(CodeGen *g, ZigType *int_type, BuiltinFnI
n_args = 1;
key.id = ZigLLVMFnIdPopCount;
key.data.pop_count.bit_count = (uint32_t)int_type->data.integral.bit_count;
} else if (fn_id == BuiltinFnIdBswap) {
fn_name = "bswap";
n_args = 1;
key.id = ZigLLVMFnIdBswap;
key.data.bswap.bit_count = (uint32_t)int_type->data.integral.bit_count;
} else {
zig_unreachable();
}
@ -5098,6 +5103,29 @@ static LLVMValueRef ir_render_sqrt(CodeGen *g, IrExecutable *executable, IrInstr
return LLVMBuildCall(g->builder, fn_val, &op, 1, "");
}
static LLVMValueRef ir_render_bswap(CodeGen *g, IrExecutable *executable, IrInstructionBswap *instruction) {
LLVMValueRef op = ir_llvm_value(g, instruction->op);
ZigType *int_type = instruction->base.value.type;
assert(int_type->id == ZigTypeIdInt);
if (int_type->data.integral.bit_count % 16 == 0) {
LLVMValueRef fn_val = get_int_builtin_fn(g, instruction->base.value.type, BuiltinFnIdBswap);
return LLVMBuildCall(g->builder, fn_val, &op, 1, "");
}
// Not an even number of bytes, so we zext 1 byte, then bswap, shift right 1 byte, truncate
ZigType *extended_type = get_int_type(g, int_type->data.integral.is_signed,
int_type->data.integral.bit_count + 8);
// aabbcc
LLVMValueRef extended = LLVMBuildZExt(g->builder, op, extended_type->type_ref, "");
// 00aabbcc
LLVMValueRef fn_val = get_int_builtin_fn(g, extended_type, BuiltinFnIdBswap);
LLVMValueRef swapped = LLVMBuildCall(g->builder, fn_val, &extended, 1, "");
// ccbbaa00
LLVMValueRef shifted = ZigLLVMBuildLShrExact(g->builder, swapped,
LLVMConstInt(extended_type->type_ref, 8, false), "");
// 00ccbbaa
return LLVMBuildTrunc(g->builder, shifted, int_type->type_ref, "");
}
static void set_debug_location(CodeGen *g, IrInstruction *instruction) {
AstNode *source_node = instruction->source_node;
Scope *scope = instruction->scope;
@ -5335,6 +5363,8 @@ static LLVMValueRef ir_render_instruction(CodeGen *g, IrExecutable *executable,
return ir_render_mark_err_ret_trace_ptr(g, executable, (IrInstructionMarkErrRetTracePtr *)instruction);
case IrInstructionIdSqrt:
return ir_render_sqrt(g, executable, (IrInstructionSqrt *)instruction);
case IrInstructionIdBswap:
return ir_render_bswap(g, executable, (IrInstructionBswap *)instruction);
}
zig_unreachable();
}
@ -6757,6 +6787,7 @@ static void define_builtin_fns(CodeGen *g) {
create_builtin_fn(g, BuiltinFnIdToBytes, "sliceToBytes", 1);
create_builtin_fn(g, BuiltinFnIdFromBytes, "bytesToSlice", 2);
create_builtin_fn(g, BuiltinFnIdThis, "This", 0);
create_builtin_fn(g, BuiltinFnIdBswap, "bswap", 2);
}
static const char *bool_to_str(bool b) {

View File

@ -856,6 +856,10 @@ static constexpr IrInstructionId ir_instruction_id(IrInstructionSqrt *) {
return IrInstructionIdSqrt;
}
static constexpr IrInstructionId ir_instruction_id(IrInstructionBswap *) {
return IrInstructionIdBswap;
}
static constexpr IrInstructionId ir_instruction_id(IrInstructionCheckRuntimeScope *) {
return IrInstructionIdCheckRuntimeScope;
}
@ -2705,6 +2709,17 @@ static IrInstruction *ir_build_sqrt(IrBuilder *irb, Scope *scope, AstNode *sourc
return &instruction->base;
}
static IrInstruction *ir_build_bswap(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op) {
IrInstructionBswap *instruction = ir_build_instruction<IrInstructionBswap>(irb, scope, source_node);
instruction->type = type;
instruction->op = op;
if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block);
ir_ref_instruction(op, irb->current_basic_block);
return &instruction->base;
}
static IrInstruction *ir_build_check_runtime_scope(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *scope_is_comptime, IrInstruction *is_comptime) {
IrInstructionCheckRuntimeScope *instruction = ir_build_instruction<IrInstructionCheckRuntimeScope>(irb, scope, source_node);
instruction->scope_is_comptime = scope_is_comptime;
@ -4689,6 +4704,21 @@ static IrInstruction *ir_gen_builtin_fn_call(IrBuilder *irb, Scope *scope, AstNo
IrInstruction *result = ir_build_enum_to_int(irb, scope, node, arg0_value);
return ir_lval_wrap(irb, scope, result, lval);
}
case BuiltinFnIdBswap:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope);
if (arg0_value == irb->codegen->invalid_instruction)
return arg0_value;
AstNode *arg1_node = node->data.fn_call_expr.params.at(1);
IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope);
if (arg1_value == irb->codegen->invalid_instruction)
return arg1_value;
IrInstruction *result = ir_build_bswap(irb, scope, node, arg0_value, arg1_value);
return ir_lval_wrap(irb, scope, result, lval);
}
}
zig_unreachable();
}
@ -13674,13 +13704,7 @@ static Error ir_read_const_ptr(IrAnalyze *ira, AstNode *source_node,
return ErrorNone;
}
if (dst_size > src_size) {
ir_add_error_node(ira, source_node,
buf_sprintf("attempt to read %zu bytes from pointer to %s which is %zu bytes",
dst_size, buf_ptr(&pointee->type->name), src_size));
return ErrorSemanticAnalyzeFail;
}
if (dst_size <= src_size) {
Buf buf = BUF_INIT;
buf_resize(&buf, src_size);
buf_write_value_bytes(ira->codegen, (uint8_t*)buf_ptr(&buf), pointee);
@ -13688,6 +13712,49 @@ static Error ir_read_const_ptr(IrAnalyze *ira, AstNode *source_node,
return ErrorNone;
}
switch (ptr_val->data.x_ptr.special) {
case ConstPtrSpecialInvalid:
zig_unreachable();
case ConstPtrSpecialRef: {
ir_add_error_node(ira, source_node,
buf_sprintf("attempt to read %zu bytes from pointer to %s which is %zu bytes",
dst_size, buf_ptr(&pointee->type->name), src_size));
return ErrorSemanticAnalyzeFail;
}
case ConstPtrSpecialBaseArray: {
ConstExprValue *array_val = ptr_val->data.x_ptr.data.base_array.array_val;
assert(array_val->type->id == ZigTypeIdArray);
if (array_val->data.x_array.special != ConstArraySpecialNone)
zig_panic("TODO");
size_t elem_size = src_size;
src_size = elem_size *
(array_val->type->data.array.len - ptr_val->data.x_ptr.data.base_array.elem_index);
if (dst_size > src_size) {
ir_add_error_node(ira, source_node,
buf_sprintf("attempt to read %zu bytes from %s at index %" ZIG_PRI_usize " which is %zu bytes",
dst_size, buf_ptr(&array_val->type->name), ptr_val->data.x_ptr.data.base_array.elem_index,
src_size));
return ErrorSemanticAnalyzeFail;
}
size_t elem_count = (dst_size % elem_size == 0) ? (dst_size / elem_size) : (dst_size / elem_size + 1);
Buf buf = BUF_INIT;
buf_resize(&buf, elem_count * elem_size);
for (size_t i = 0; i < elem_count; i += 1) {
ConstExprValue *elem_val = &array_val->data.x_array.data.s_none.elements[i];
buf_write_value_bytes(ira->codegen, (uint8_t*)buf_ptr(&buf) + (i * elem_size), elem_val);
}
buf_read_value_bytes(ira->codegen, (uint8_t*)buf_ptr(&buf), out_val);
return ErrorNone;
}
case ConstPtrSpecialBaseStruct:
case ConstPtrSpecialDiscard:
case ConstPtrSpecialHardCodedAddr:
case ConstPtrSpecialFunction:
zig_panic("TODO");
}
zig_unreachable();
}
static IrInstruction *ir_analyze_maybe(IrAnalyze *ira, IrInstructionUnOp *un_op_instruction) {
Error err;
IrInstruction *value = un_op_instruction->value->child;
@ -18054,6 +18121,12 @@ static IrInstruction *ir_analyze_instruction_truncate(IrAnalyze *ira, IrInstruct
return ira->codegen->invalid_instruction;
}
if (src_type->data.integral.bit_count == 0) {
IrInstruction *result = ir_const(ira, &instruction->base, dest_type);
bigint_init_unsigned(&result->value.data.x_bigint, 0);
return result;
}
if (src_type->data.integral.is_signed != dest_type->data.integral.is_signed) {
const char *sign_str = dest_type->data.integral.is_signed ? "signed" : "unsigned";
ir_add_error(ira, target, buf_sprintf("expected %s integer type, found '%s'", sign_str, buf_ptr(&src_type->name)));
@ -20299,6 +20372,9 @@ static IrInstruction *ir_analyze_instruction_ptr_type(IrAnalyze *ira, IrInstruct
return ira->codegen->invalid_instruction;
if ((err = type_resolve(ira->codegen, child_type, ResolveStatusAlignmentKnown)))
return ira->codegen->invalid_instruction;
if (!type_has_bits(child_type)) {
align_bytes = 0;
}
} else {
if ((err = type_resolve(ira->codegen, child_type, ResolveStatusZeroBitsKnown)))
return ira->codegen->invalid_instruction;
@ -20898,6 +20974,63 @@ static IrInstruction *ir_analyze_instruction_sqrt(IrAnalyze *ira, IrInstructionS
return result;
}
static IrInstruction *ir_analyze_instruction_bswap(IrAnalyze *ira, IrInstructionBswap *instruction) {
ZigType *int_type = ir_resolve_type(ira, instruction->type->child);
if (type_is_invalid(int_type))
return ira->codegen->invalid_instruction;
IrInstruction *op = instruction->op->child;
if (type_is_invalid(op->value.type))
return ira->codegen->invalid_instruction;
if (int_type->id != ZigTypeIdInt) {
ir_add_error(ira, instruction->type,
buf_sprintf("expected integer type, found '%s'", buf_ptr(&int_type->name)));
return ira->codegen->invalid_instruction;
}
if (int_type->data.integral.bit_count % 8 != 0) {
ir_add_error(ira, instruction->type,
buf_sprintf("@bswap integer type '%s' has %" PRIu32 " bits which is not evenly divisible by 8",
buf_ptr(&int_type->name), int_type->data.integral.bit_count));
return ira->codegen->invalid_instruction;
}
IrInstruction *casted_op = ir_implicit_cast(ira, op, int_type);
if (type_is_invalid(casted_op->value.type))
return ira->codegen->invalid_instruction;
if (int_type->data.integral.bit_count == 0) {
IrInstruction *result = ir_const(ira, &instruction->base, int_type);
bigint_init_unsigned(&result->value.data.x_bigint, 0);
return result;
}
if (int_type->data.integral.bit_count == 8) {
return casted_op;
}
if (instr_is_comptime(casted_op)) {
ConstExprValue *val = ir_resolve_const(ira, casted_op, UndefBad);
if (!val)
return ira->codegen->invalid_instruction;
IrInstruction *result = ir_const(ira, &instruction->base, int_type);
size_t buf_size = int_type->data.integral.bit_count / 8;
uint8_t *buf = allocate_nonzero<uint8_t>(buf_size);
bigint_write_twos_complement(&val->data.x_bigint, buf, int_type->data.integral.bit_count, true);
bigint_read_twos_complement(&result->value.data.x_bigint, buf, int_type->data.integral.bit_count, false,
int_type->data.integral.is_signed);
return result;
}
IrInstruction *result = ir_build_bswap(&ira->new_irb, instruction->base.scope,
instruction->base.source_node, nullptr, casted_op);
result->value.type = int_type;
return result;
}
static IrInstruction *ir_analyze_instruction_enum_to_int(IrAnalyze *ira, IrInstructionEnumToInt *instruction) {
Error err;
IrInstruction *target = instruction->target->child;
@ -21233,6 +21366,8 @@ static IrInstruction *ir_analyze_instruction_nocast(IrAnalyze *ira, IrInstructio
return ir_analyze_instruction_mark_err_ret_trace_ptr(ira, (IrInstructionMarkErrRetTracePtr *)instruction);
case IrInstructionIdSqrt:
return ir_analyze_instruction_sqrt(ira, (IrInstructionSqrt *)instruction);
case IrInstructionIdBswap:
return ir_analyze_instruction_bswap(ira, (IrInstructionBswap *)instruction);
case IrInstructionIdIntToErr:
return ir_analyze_instruction_int_to_err(ira, (IrInstructionIntToErr *)instruction);
case IrInstructionIdErrToInt:
@ -21454,6 +21589,7 @@ bool ir_has_side_effects(IrInstruction *instruction) {
case IrInstructionIdCoroPromise:
case IrInstructionIdPromiseResultType:
case IrInstructionIdSqrt:
case IrInstructionIdBswap:
case IrInstructionIdAtomicLoad:
case IrInstructionIdIntCast:
case IrInstructionIdFloatCast:

View File

@ -1323,6 +1323,18 @@ static void ir_print_sqrt(IrPrint *irp, IrInstructionSqrt *instruction) {
fprintf(irp->f, ")");
}
static void ir_print_bswap(IrPrint *irp, IrInstructionBswap *instruction) {
fprintf(irp->f, "@bswap(");
if (instruction->type != nullptr) {
ir_print_other_instruction(irp, instruction->type);
} else {
fprintf(irp->f, "null");
}
fprintf(irp->f, ",");
ir_print_other_instruction(irp, instruction->op);
fprintf(irp->f, ")");
}
static void ir_print_instruction(IrPrint *irp, IrInstruction *instruction) {
ir_print_prefix(irp, instruction);
switch (instruction->id) {
@ -1736,6 +1748,9 @@ static void ir_print_instruction(IrPrint *irp, IrInstruction *instruction) {
case IrInstructionIdSqrt:
ir_print_sqrt(irp, (IrInstructionSqrt *)instruction);
break;
case IrInstructionIdBswap:
ir_print_bswap(irp, (IrInstructionBswap *)instruction);
break;
case IrInstructionIdAtomicLoad:
ir_print_atomic_load(irp, (IrInstructionAtomicLoad *)instruction);
break;

View File

@ -51,7 +51,7 @@ pub const Coff = struct {
// Seek to PE File Header (coff header)
try self.in_file.seekTo(pe_pointer_offset);
const pe_magic_offset = try in.readIntLe(u32);
const pe_magic_offset = try in.readIntLittle(u32);
try self.in_file.seekTo(pe_magic_offset);
var pe_header_magic: [4]u8 = undefined;
@ -60,13 +60,13 @@ pub const Coff = struct {
return error.InvalidPEHeader;
self.coff_header = CoffHeader{
.machine = try in.readIntLe(u16),
.number_of_sections = try in.readIntLe(u16),
.timedate_stamp = try in.readIntLe(u32),
.pointer_to_symbol_table = try in.readIntLe(u32),
.number_of_symbols = try in.readIntLe(u32),
.size_of_optional_header = try in.readIntLe(u16),
.characteristics = try in.readIntLe(u16),
.machine = try in.readIntLittle(u16),
.number_of_sections = try in.readIntLittle(u16),
.timedate_stamp = try in.readIntLittle(u32),
.pointer_to_symbol_table = try in.readIntLittle(u32),
.number_of_symbols = try in.readIntLittle(u32),
.size_of_optional_header = try in.readIntLittle(u16),
.characteristics = try in.readIntLittle(u16),
};
switch (self.coff_header.machine) {
@ -79,7 +79,7 @@ pub const Coff = struct {
fn loadOptionalHeader(self: *Coff, file_stream: *os.File.InStream) !void {
const in = &file_stream.stream;
self.pe_header.magic = try in.readIntLe(u16);
self.pe_header.magic = try in.readIntLittle(u16);
// For now we're only interested in finding the reference to the .pdb,
// so we'll skip most of this header, which size is different in 32
// 64 bits by the way.
@ -93,14 +93,14 @@ pub const Coff = struct {
try self.in_file.seekForward(skip_size);
const number_of_rva_and_sizes = try in.readIntLe(u32);
const number_of_rva_and_sizes = try in.readIntLittle(u32);
if (number_of_rva_and_sizes != IMAGE_NUMBEROF_DIRECTORY_ENTRIES)
return error.InvalidPEHeader;
for (self.pe_header.data_directory) |*data_dir| {
data_dir.* = OptionalHeader.DataDirectory{
.virtual_address = try in.readIntLe(u32),
.size = try in.readIntLe(u32),
.virtual_address = try in.readIntLittle(u32),
.size = try in.readIntLittle(u32),
};
}
}
@ -124,7 +124,7 @@ pub const Coff = struct {
if (!mem.eql(u8, cv_signature, "RSDS"))
return error.InvalidPEMagic;
try in.readNoEof(self.guid[0..]);
self.age = try in.readIntLe(u32);
self.age = try in.readIntLittle(u32);
// Finally read the null-terminated string.
var byte = try in.readByte();
@ -157,15 +157,15 @@ pub const Coff = struct {
try self.sections.append(Section{
.header = SectionHeader{
.name = name,
.misc = SectionHeader.Misc{ .physical_address = try in.readIntLe(u32) },
.virtual_address = try in.readIntLe(u32),
.size_of_raw_data = try in.readIntLe(u32),
.pointer_to_raw_data = try in.readIntLe(u32),
.pointer_to_relocations = try in.readIntLe(u32),
.pointer_to_line_numbers = try in.readIntLe(u32),
.number_of_relocations = try in.readIntLe(u16),
.number_of_line_numbers = try in.readIntLe(u16),
.characteristics = try in.readIntLe(u32),
.misc = SectionHeader.Misc{ .physical_address = try in.readIntLittle(u32) },
.virtual_address = try in.readIntLittle(u32),
.size_of_raw_data = try in.readIntLittle(u32),
.pointer_to_raw_data = try in.readIntLittle(u32),
.pointer_to_relocations = try in.readIntLittle(u32),
.pointer_to_line_numbers = try in.readIntLittle(u32),
.number_of_relocations = try in.readIntLittle(u16),
.number_of_line_numbers = try in.readIntLittle(u16),
.characteristics = try in.readIntLittle(u32),
},
});
}

View File

@ -123,7 +123,8 @@ fn Blake2s(comptime out_len: usize) type {
const rr = d.h[0 .. out_len / 32];
for (rr) |s, j| {
mem.writeInt(out[4 * j .. 4 * j + 4], s, builtin.Endian.Little);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceLittle(u32, out[4 * j .. 4 * j + 4], s);
}
}
@ -134,7 +135,8 @@ fn Blake2s(comptime out_len: usize) type {
var v: [16]u32 = undefined;
for (m) |*r, i| {
r.* = mem.readIntLE(u32, b[4 * i .. 4 * i + 4]);
// TODO https://github.com/ziglang/zig/issues/863
r.* = mem.readIntSliceLittle(u32, b[4 * i .. 4 * i + 4]);
}
var k: usize = 0;
@ -356,7 +358,8 @@ fn Blake2b(comptime out_len: usize) type {
const rr = d.h[0 .. out_len / 64];
for (rr) |s, j| {
mem.writeInt(out[8 * j .. 8 * j + 8], s, builtin.Endian.Little);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceLittle(u64, out[8 * j .. 8 * j + 8], s);
}
}
@ -367,7 +370,7 @@ fn Blake2b(comptime out_len: usize) type {
var v: [16]u64 = undefined;
for (m) |*r, i| {
r.* = mem.readIntLE(u64, b[8 * i .. 8 * i + 8]);
r.* = mem.readIntSliceLittle(u64, b[8 * i .. 8 * i + 8]);
}
var k: usize = 0;

View File

@ -59,7 +59,8 @@ fn salsa20_wordtobyte(out: []u8, input: [16]u32) void {
}
for (x) |_, i| {
mem.writeInt(out[4 * i .. 4 * i + 4], x[i] +% input[i], builtin.Endian.Little);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceLittle(u32, out[4 * i .. 4 * i + 4], x[i] +% input[i]);
}
}
@ -70,10 +71,10 @@ fn chaCha20_internal(out: []u8, in: []const u8, key: [8]u32, counter: [4]u32) vo
const c = "expand 32-byte k";
const constant_le = []u32{
mem.readIntLE(u32, c[0..4]),
mem.readIntLE(u32, c[4..8]),
mem.readIntLE(u32, c[8..12]),
mem.readIntLE(u32, c[12..16]),
mem.readIntSliceLittle(u32, c[0..4]),
mem.readIntSliceLittle(u32, c[4..8]),
mem.readIntSliceLittle(u32, c[8..12]),
mem.readIntSliceLittle(u32, c[12..16]),
};
mem.copy(u32, ctx[0..], constant_le[0..4]);
@ -117,19 +118,19 @@ pub fn chaCha20IETF(out: []u8, in: []const u8, counter: u32, key: [32]u8, nonce:
var k: [8]u32 = undefined;
var c: [4]u32 = undefined;
k[0] = mem.readIntLE(u32, key[0..4]);
k[1] = mem.readIntLE(u32, key[4..8]);
k[2] = mem.readIntLE(u32, key[8..12]);
k[3] = mem.readIntLE(u32, key[12..16]);
k[4] = mem.readIntLE(u32, key[16..20]);
k[5] = mem.readIntLE(u32, key[20..24]);
k[6] = mem.readIntLE(u32, key[24..28]);
k[7] = mem.readIntLE(u32, key[28..32]);
k[0] = mem.readIntSliceLittle(u32, key[0..4]);
k[1] = mem.readIntSliceLittle(u32, key[4..8]);
k[2] = mem.readIntSliceLittle(u32, key[8..12]);
k[3] = mem.readIntSliceLittle(u32, key[12..16]);
k[4] = mem.readIntSliceLittle(u32, key[16..20]);
k[5] = mem.readIntSliceLittle(u32, key[20..24]);
k[6] = mem.readIntSliceLittle(u32, key[24..28]);
k[7] = mem.readIntSliceLittle(u32, key[28..32]);
c[0] = counter;
c[1] = mem.readIntLE(u32, nonce[0..4]);
c[2] = mem.readIntLE(u32, nonce[4..8]);
c[3] = mem.readIntLE(u32, nonce[8..12]);
c[1] = mem.readIntSliceLittle(u32, nonce[0..4]);
c[2] = mem.readIntSliceLittle(u32, nonce[4..8]);
c[3] = mem.readIntSliceLittle(u32, nonce[8..12]);
chaCha20_internal(out, in, k, c);
}
@ -144,19 +145,19 @@ pub fn chaCha20With64BitNonce(out: []u8, in: []const u8, counter: u64, key: [32]
var k: [8]u32 = undefined;
var c: [4]u32 = undefined;
k[0] = mem.readIntLE(u32, key[0..4]);
k[1] = mem.readIntLE(u32, key[4..8]);
k[2] = mem.readIntLE(u32, key[8..12]);
k[3] = mem.readIntLE(u32, key[12..16]);
k[4] = mem.readIntLE(u32, key[16..20]);
k[5] = mem.readIntLE(u32, key[20..24]);
k[6] = mem.readIntLE(u32, key[24..28]);
k[7] = mem.readIntLE(u32, key[28..32]);
k[0] = mem.readIntSliceLittle(u32, key[0..4]);
k[1] = mem.readIntSliceLittle(u32, key[4..8]);
k[2] = mem.readIntSliceLittle(u32, key[8..12]);
k[3] = mem.readIntSliceLittle(u32, key[12..16]);
k[4] = mem.readIntSliceLittle(u32, key[16..20]);
k[5] = mem.readIntSliceLittle(u32, key[20..24]);
k[6] = mem.readIntSliceLittle(u32, key[24..28]);
k[7] = mem.readIntSliceLittle(u32, key[28..32]);
c[0] = @truncate(u32, counter);
c[1] = @truncate(u32, counter >> 32);
c[2] = mem.readIntLE(u32, nonce[0..4]);
c[3] = mem.readIntLE(u32, nonce[4..8]);
c[2] = mem.readIntSliceLittle(u32, nonce[0..4]);
c[3] = mem.readIntSliceLittle(u32, nonce[4..8]);
const block_size = (1 << 6);
const big_block = (block_size << 32);

View File

@ -112,7 +112,8 @@ pub const Md5 = struct {
d.round(d.buf[0..]);
for (d.s) |s, j| {
mem.writeInt(out[4 * j .. 4 * j + 4], s, builtin.Endian.Little);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceLittle(u32, out[4 * j .. 4 * j + 4], s);
}
}

View File

@ -6,8 +6,8 @@ const std = @import("../index.zig");
const builtin = @import("builtin");
const Endian = builtin.Endian;
const readInt = std.mem.readInt;
const writeInt = std.mem.writeInt;
const readIntSliceLittle = std.mem.readIntSliceLittle;
const writeIntSliceLittle = std.mem.writeIntSliceLittle;
pub const Poly1305 = struct {
const Self = @This();
@ -59,19 +59,19 @@ pub const Poly1305 = struct {
{
var i: usize = 0;
while (i < 1) : (i += 1) {
ctx.r[0] = readInt(key[0..4], u32, Endian.Little) & 0x0fffffff;
ctx.r[0] = readIntSliceLittle(u32, key[0..4]) & 0x0fffffff;
}
}
{
var i: usize = 1;
while (i < 4) : (i += 1) {
ctx.r[i] = readInt(key[i * 4 .. i * 4 + 4], u32, Endian.Little) & 0x0ffffffc;
ctx.r[i] = readIntSliceLittle(u32, key[i * 4 .. i * 4 + 4]) & 0x0ffffffc;
}
}
{
var i: usize = 0;
while (i < 4) : (i += 1) {
ctx.pad[i] = readInt(key[i * 4 + 16 .. i * 4 + 16 + 4], u32, Endian.Little);
ctx.pad[i] = readIntSliceLittle(u32, key[i * 4 + 16 .. i * 4 + 16 + 4]);
}
}
@ -168,10 +168,10 @@ pub const Poly1305 = struct {
const nb_blocks = nmsg.len >> 4;
var i: usize = 0;
while (i < nb_blocks) : (i += 1) {
ctx.c[0] = readInt(nmsg[0..4], u32, Endian.Little);
ctx.c[1] = readInt(nmsg[4..8], u32, Endian.Little);
ctx.c[2] = readInt(nmsg[8..12], u32, Endian.Little);
ctx.c[3] = readInt(nmsg[12..16], u32, Endian.Little);
ctx.c[0] = readIntSliceLittle(u32, nmsg[0..4]);
ctx.c[1] = readIntSliceLittle(u32, nmsg[4..8]);
ctx.c[2] = readIntSliceLittle(u32, nmsg[8..12]);
ctx.c[3] = readIntSliceLittle(u32, nmsg[12..16]);
polyBlock(ctx);
nmsg = nmsg[16..];
}
@ -210,10 +210,11 @@ pub const Poly1305 = struct {
const uu2 = (uu1 >> 32) + ctx.h[2] + ctx.pad[2]; // <= 2_00000000
const uu3 = (uu2 >> 32) + ctx.h[3] + ctx.pad[3]; // <= 2_00000000
writeInt(out[0..], @truncate(u32, uu0), Endian.Little);
writeInt(out[4..], @truncate(u32, uu1), Endian.Little);
writeInt(out[8..], @truncate(u32, uu2), Endian.Little);
writeInt(out[12..], @truncate(u32, uu3), Endian.Little);
// TODO https://github.com/ziglang/zig/issues/863
writeIntSliceLittle(u32, out[0..], @truncate(u32, uu0));
writeIntSliceLittle(u32, out[4..], @truncate(u32, uu1));
writeIntSliceLittle(u32, out[8..], @truncate(u32, uu2));
writeIntSliceLittle(u32, out[12..], @truncate(u32, uu3));
ctx.secureZero();
}

View File

@ -109,7 +109,8 @@ pub const Sha1 = struct {
d.round(d.buf[0..]);
for (d.s) |s, j| {
mem.writeInt(out[4 * j .. 4 * j + 4], s, builtin.Endian.Big);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceBig(u32, out[4 * j .. 4 * j + 4], s);
}
}

View File

@ -167,7 +167,8 @@ fn Sha2_32(comptime params: Sha2Params32) type {
const rr = d.s[0 .. params.out_len / 32];
for (rr) |s, j| {
mem.writeInt(out[4 * j .. 4 * j + 4], s, builtin.Endian.Big);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceBig(u32, out[4 * j .. 4 * j + 4], s);
}
}
@ -508,7 +509,8 @@ fn Sha2_64(comptime params: Sha2Params64) type {
const rr = d.s[0 .. params.out_len / 64];
for (rr) |s, j| {
mem.writeInt(out[8 * j .. 8 * j + 8], s, builtin.Endian.Big);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceBig(u64, out[8 * j .. 8 * j + 8], s);
}
}

View File

@ -120,7 +120,7 @@ fn keccak_f(comptime F: usize, d: []u8) void {
var c = []const u64{0} ** 5;
for (s) |*r, i| {
r.* = mem.readIntLE(u64, d[8 * i .. 8 * i + 8]);
r.* = mem.readIntSliceLittle(u64, d[8 * i .. 8 * i + 8]);
}
comptime var x: usize = 0;
@ -167,7 +167,8 @@ fn keccak_f(comptime F: usize, d: []u8) void {
}
for (s) |r, i| {
mem.writeInt(d[8 * i .. 8 * i + 8], r, builtin.Endian.Little);
// TODO https://github.com/ziglang/zig/issues/863
mem.writeIntSliceLittle(u64, d[8 * i .. 8 * i + 8], r);
}
}

View File

@ -7,8 +7,8 @@ const builtin = @import("builtin");
const fmt = std.fmt;
const Endian = builtin.Endian;
const readInt = std.mem.readInt;
const writeInt = std.mem.writeInt;
const readIntSliceLittle = std.mem.readIntSliceLittle;
const writeIntSliceLittle = std.mem.writeIntSliceLittle;
// Based on Supercop's ref10 implementation.
pub const X25519 = struct {
@ -255,16 +255,16 @@ const Fe = struct {
var t: [10]i64 = undefined;
t[0] = readInt(s[0..4], u32, Endian.Little);
t[1] = readInt(s[4..7], u32, Endian.Little) << 6;
t[2] = readInt(s[7..10], u32, Endian.Little) << 5;
t[3] = readInt(s[10..13], u32, Endian.Little) << 3;
t[4] = readInt(s[13..16], u32, Endian.Little) << 2;
t[5] = readInt(s[16..20], u32, Endian.Little);
t[6] = readInt(s[20..23], u32, Endian.Little) << 7;
t[7] = readInt(s[23..26], u32, Endian.Little) << 5;
t[8] = readInt(s[26..29], u32, Endian.Little) << 4;
t[9] = (readInt(s[29..32], u32, Endian.Little) & 0x7fffff) << 2;
t[0] = readIntSliceLittle(u32, s[0..4]);
t[1] = u32(readIntSliceLittle(u24, s[4..7])) << 6;
t[2] = u32(readIntSliceLittle(u24, s[7..10])) << 5;
t[3] = u32(readIntSliceLittle(u24, s[10..13])) << 3;
t[4] = u32(readIntSliceLittle(u24, s[13..16])) << 2;
t[5] = readIntSliceLittle(u32, s[16..20]);
t[6] = u32(readIntSliceLittle(u24, s[20..23])) << 7;
t[7] = u32(readIntSliceLittle(u24, s[23..26])) << 5;
t[8] = u32(readIntSliceLittle(u24, s[26..29])) << 4;
t[9] = (u32(readIntSliceLittle(u24, s[29..32])) & 0x7fffff) << 2;
carry1(h, t[0..]);
}
@ -544,14 +544,15 @@ const Fe = struct {
ut[i] = @bitCast(u32, @intCast(i32, t[i]));
}
writeInt(s[0..], (ut[0] >> 0) | (ut[1] << 26), Endian.Little);
writeInt(s[4..], (ut[1] >> 6) | (ut[2] << 19), Endian.Little);
writeInt(s[8..], (ut[2] >> 13) | (ut[3] << 13), Endian.Little);
writeInt(s[12..], (ut[3] >> 19) | (ut[4] << 6), Endian.Little);
writeInt(s[16..], (ut[5] >> 0) | (ut[6] << 25), Endian.Little);
writeInt(s[20..], (ut[6] >> 7) | (ut[7] << 19), Endian.Little);
writeInt(s[24..], (ut[7] >> 13) | (ut[8] << 12), Endian.Little);
writeInt(s[28..], (ut[8] >> 20) | (ut[9] << 6), Endian.Little);
// TODO https://github.com/ziglang/zig/issues/863
writeIntSliceLittle(u32, s[0..4], (ut[0] >> 0) | (ut[1] << 26));
writeIntSliceLittle(u32, s[4..8], (ut[1] >> 6) | (ut[2] << 19));
writeIntSliceLittle(u32, s[8..12], (ut[2] >> 13) | (ut[3] << 13));
writeIntSliceLittle(u32, s[12..16], (ut[3] >> 19) | (ut[4] << 6));
writeIntSliceLittle(u32, s[16..20], (ut[5] >> 0) | (ut[6] << 25));
writeIntSliceLittle(u32, s[20..24], (ut[6] >> 7) | (ut[7] << 19));
writeIntSliceLittle(u32, s[24..28], (ut[7] >> 13) | (ut[8] << 12));
writeIntSliceLittle(u32, s[28..], (ut[8] >> 20) | (ut[9] << 6));
std.mem.secureZero(i64, t[0..]);
}

View File

@ -523,7 +523,7 @@ fn populateModule(di: *DebugInfo, mod: *Module) !void {
const modi = di.pdb.getStreamById(mod.mod_info.ModuleSymStream) orelse return error.MissingDebugInfo;
const signature = try modi.stream.readIntLe(u32);
const signature = try modi.stream.readIntLittle(u32);
if (signature != 4)
return error.InvalidDebugInfo;
@ -757,9 +757,9 @@ fn openSelfDebugInfoWindows(allocator: *mem.Allocator) !DebugInfo {
try di.pdb.openFile(di.coff, path);
var pdb_stream = di.pdb.getStream(pdb.StreamType.Pdb) orelse return error.InvalidDebugInfo;
const version = try pdb_stream.stream.readIntLe(u32);
const signature = try pdb_stream.stream.readIntLe(u32);
const age = try pdb_stream.stream.readIntLe(u32);
const version = try pdb_stream.stream.readIntLittle(u32);
const signature = try pdb_stream.stream.readIntLittle(u32);
const age = try pdb_stream.stream.readIntLittle(u32);
var guid: [16]u8 = undefined;
try pdb_stream.stream.readNoEof(guid[0..]);
if (!mem.eql(u8, di.coff.guid, guid) or di.coff.age != age)
@ -767,7 +767,7 @@ fn openSelfDebugInfoWindows(allocator: *mem.Allocator) !DebugInfo {
// We validated the executable and pdb match.
const string_table_index = str_tab_index: {
const name_bytes_len = try pdb_stream.stream.readIntLe(u32);
const name_bytes_len = try pdb_stream.stream.readIntLittle(u32);
const name_bytes = try allocator.alloc(u8, name_bytes_len);
try pdb_stream.stream.readNoEof(name_bytes);
@ -797,8 +797,8 @@ fn openSelfDebugInfoWindows(allocator: *mem.Allocator) !DebugInfo {
};
const bucket_list = try allocator.alloc(Bucket, present.len);
for (present) |_| {
const name_offset = try pdb_stream.stream.readIntLe(u32);
const name_index = try pdb_stream.stream.readIntLe(u32);
const name_offset = try pdb_stream.stream.readIntLittle(u32);
const name_index = try pdb_stream.stream.readIntLittle(u32);
const name = mem.toSlice(u8, name_bytes.ptr + name_offset);
if (mem.eql(u8, name, "/names")) {
break :str_tab_index name_index;
@ -859,7 +859,7 @@ fn openSelfDebugInfoWindows(allocator: *mem.Allocator) !DebugInfo {
var sect_contribs = ArrayList(pdb.SectionContribEntry).init(allocator);
var sect_cont_offset: usize = 0;
if (section_contrib_size != 0) {
const ver = @intToEnum(pdb.SectionContrSubstreamVersion, try dbi.stream.readIntLe(u32));
const ver = @intToEnum(pdb.SectionContrSubstreamVersion, try dbi.stream.readIntLittle(u32));
if (ver != pdb.SectionContrSubstreamVersion.Ver60)
return error.InvalidDebugInfo;
sect_cont_offset += @sizeOf(u32);
@ -879,11 +879,11 @@ fn openSelfDebugInfoWindows(allocator: *mem.Allocator) !DebugInfo {
}
fn readSparseBitVector(stream: var, allocator: *mem.Allocator) ![]usize {
const num_words = try stream.readIntLe(u32);
const num_words = try stream.readIntLittle(u32);
var word_i: usize = 0;
var list = ArrayList(usize).init(allocator);
while (word_i != num_words) : (word_i += 1) {
const word = try stream.readIntLe(u32);
const word = try stream.readIntLittle(u32);
var bit_i: u5 = 0;
while (true) : (bit_i += 1) {
if (word & (u32(1) << bit_i) != 0) {
@ -1200,7 +1200,7 @@ const Constant = struct {
fn asUnsignedLe(self: *const Constant) !u64 {
if (self.payload.len > @sizeOf(u64)) return error.InvalidDebugInfo;
if (self.signed) return error.InvalidDebugInfo;
return mem.readInt(self.payload, u64, builtin.Endian.Little);
return mem.readIntSliceLittle(u64, self.payload);
}
};
@ -1381,7 +1381,7 @@ fn parseFormValueBlockLen(allocator: *mem.Allocator, in_stream: var, size: usize
}
fn parseFormValueBlock(allocator: *mem.Allocator, in_stream: var, size: usize) !FormValue {
const block_len = try in_stream.readVarInt(builtin.Endian.Little, usize, size);
const block_len = try in_stream.readVarInt(usize, builtin.Endian.Little, size);
return parseFormValueBlockLen(allocator, in_stream, block_len);
}
@ -1395,11 +1395,11 @@ fn parseFormValueConstant(allocator: *mem.Allocator, in_stream: var, signed: boo
}
fn parseFormValueDwarfOffsetSize(in_stream: var, is_64: bool) !u64 {
return if (is_64) try in_stream.readIntLe(u64) else u64(try in_stream.readIntLe(u32));
return if (is_64) try in_stream.readIntLittle(u64) else u64(try in_stream.readIntLittle(u32));
}
fn parseFormValueTargetAddrSize(in_stream: var) !u64 {
return if (@sizeOf(usize) == 4) u64(try in_stream.readIntLe(u32)) else if (@sizeOf(usize) == 8) try in_stream.readIntLe(u64) else unreachable;
return if (@sizeOf(usize) == 4) u64(try in_stream.readIntLittle(u32)) else if (@sizeOf(usize) == 8) try in_stream.readIntLittle(u64) else unreachable;
}
fn parseFormValueRefLen(allocator: *mem.Allocator, in_stream: var, size: usize) !FormValue {
@ -1408,7 +1408,7 @@ fn parseFormValueRefLen(allocator: *mem.Allocator, in_stream: var, size: usize)
}
fn parseFormValueRef(allocator: *mem.Allocator, in_stream: var, comptime T: type) !FormValue {
const block_len = try in_stream.readIntLe(T);
const block_len = try in_stream.readIntLittle(T);
return parseFormValueRefLen(allocator, in_stream, block_len);
}
@ -1450,7 +1450,7 @@ fn parseFormValue(allocator: *mem.Allocator, in_stream: var, form_id: u64, is_64
},
DW.FORM_ref_addr => FormValue{ .RefAddr = try parseFormValueDwarfOffsetSize(in_stream, is_64) },
DW.FORM_ref_sig8 => FormValue{ .RefSig8 = try in_stream.readIntLe(u64) },
DW.FORM_ref_sig8 => FormValue{ .RefSig8 = try in_stream.readIntLittle(u64) },
DW.FORM_string => FormValue{ .String = try readStringRaw(allocator, in_stream) },
DW.FORM_strp => FormValue{ .StrPtr = try parseFormValueDwarfOffsetSize(in_stream, is_64) },
@ -1747,11 +1747,11 @@ fn getLineNumberInfoDwarf(di: *DwarfInfo, compile_unit: CompileUnit, target_addr
continue;
}
const version = try di.dwarf_in_stream.readInt(di.endian, u16);
const version = try di.dwarf_in_stream.readInt(u16, di.endian);
// TODO support 3 and 5
if (version != 2 and version != 4) return error.InvalidDebugInfo;
const prologue_length = if (is_64) try di.dwarf_in_stream.readInt(di.endian, u64) else try di.dwarf_in_stream.readInt(di.endian, u32);
const prologue_length = if (is_64) try di.dwarf_in_stream.readInt(u64, di.endian) else try di.dwarf_in_stream.readInt(u32, di.endian);
const prog_start_offset = (try di.dwarf_seekable_stream.getPos()) + prologue_length;
const minimum_instruction_length = try di.dwarf_in_stream.readByte();
@ -1820,7 +1820,7 @@ fn getLineNumberInfoDwarf(di: *DwarfInfo, compile_unit: CompileUnit, target_addr
return error.MissingDebugInfo;
},
DW.LNE_set_address => {
const addr = try di.dwarf_in_stream.readInt(di.endian, usize);
const addr = try di.dwarf_in_stream.readInt(usize, di.endian);
prog.address = addr;
},
DW.LNE_define_file => {
@ -1882,7 +1882,7 @@ fn getLineNumberInfoDwarf(di: *DwarfInfo, compile_unit: CompileUnit, target_addr
prog.address += inc_addr;
},
DW.LNS_fixed_advance_pc => {
const arg = try di.dwarf_in_stream.readInt(di.endian, u16);
const arg = try di.dwarf_in_stream.readInt(u16, di.endian);
prog.address += arg;
},
DW.LNS_set_prologue_end => {},
@ -1914,10 +1914,10 @@ fn scanAllCompileUnits(di: *DwarfInfo) !void {
if (unit_length == 0) return;
const next_offset = unit_length + (if (is_64) usize(12) else usize(4));
const version = try di.dwarf_in_stream.readInt(di.endian, u16);
const version = try di.dwarf_in_stream.readInt(u16, di.endian);
if (version < 2 or version > 5) return error.InvalidDebugInfo;
const debug_abbrev_offset = if (is_64) try di.dwarf_in_stream.readInt(di.endian, u64) else try di.dwarf_in_stream.readInt(di.endian, u32);
const debug_abbrev_offset = if (is_64) try di.dwarf_in_stream.readInt(u64, di.endian) else try di.dwarf_in_stream.readInt(u32, di.endian);
const address_size = try di.dwarf_in_stream.readByte();
if (address_size != @sizeOf(usize)) return error.InvalidDebugInfo;
@ -1978,8 +1978,8 @@ fn findCompileUnit(di: *DwarfInfo, target_address: u64) !*const CompileUnit {
if (di.debug_ranges) |debug_ranges| {
try di.dwarf_seekable_stream.seekTo(debug_ranges.offset + ranges_offset);
while (true) {
const begin_addr = try di.dwarf_in_stream.readIntLe(usize);
const end_addr = try di.dwarf_in_stream.readIntLe(usize);
const begin_addr = try di.dwarf_in_stream.readIntLittle(usize);
const end_addr = try di.dwarf_in_stream.readIntLittle(usize);
if (begin_addr == 0 and end_addr == 0) {
break;
}
@ -2001,7 +2001,8 @@ fn findCompileUnit(di: *DwarfInfo, target_address: u64) !*const CompileUnit {
}
fn readIntMem(ptr: *[*]const u8, comptime T: type, endian: builtin.Endian) T {
const result = mem.readInt(ptr.*[0..@sizeOf(T)], T, endian);
// TODO https://github.com/ziglang/zig/issues/863
const result = mem.readIntSlice(T, ptr.*[0..@sizeOf(T)], endian);
ptr.* += @sizeOf(T);
return result;
}
@ -2017,11 +2018,12 @@ fn readByteSignedMem(ptr: *[*]const u8) i8 {
}
fn readInitialLengthMem(ptr: *[*]const u8, is_64: *bool) !u64 {
const first_32_bits = mem.readIntLE(u32, ptr.*[0..4]);
// TODO this code can be improved with https://github.com/ziglang/zig/issues/863
const first_32_bits = mem.readIntSliceLittle(u32, ptr.*[0..4]);
is_64.* = (first_32_bits == 0xffffffff);
if (is_64.*) {
ptr.* += 4;
const result = mem.readIntLE(u64, ptr.*[0..8]);
const result = mem.readIntSliceLittle(u64, ptr.*[0..8]);
ptr.* += 8;
return result;
} else {
@ -2084,10 +2086,10 @@ fn readILeb128Mem(ptr: *[*]const u8) !i64 {
}
fn readInitialLength(comptime E: type, in_stream: *io.InStream(E), is_64: *bool) !u64 {
const first_32_bits = try in_stream.readIntLe(u32);
const first_32_bits = try in_stream.readIntLittle(u32);
is_64.* = (first_32_bits == 0xffffffff);
if (is_64.*) {
return in_stream.readIntLe(u64);
return in_stream.readIntLittle(u64);
} else {
if (first_32_bits >= 0xfffffff0) return error.InvalidDebugInfo;
return u64(first_32_bits);

View File

@ -412,7 +412,7 @@ pub const Elf = struct {
// skip over padding
try seekable_stream.seekForward(9);
elf.file_type = switch (try in.readInt(elf.endian, u16)) {
elf.file_type = switch (try in.readInt(u16, elf.endian)) {
1 => FileType.Relocatable,
2 => FileType.Executable,
3 => FileType.Shared,
@ -420,7 +420,7 @@ pub const Elf = struct {
else => return error.InvalidFormat,
};
elf.arch = switch (try in.readInt(elf.endian, u16)) {
elf.arch = switch (try in.readInt(u16, elf.endian)) {
0x02 => Arch.Sparc,
0x03 => Arch.x86,
0x08 => Arch.Mips,
@ -433,32 +433,32 @@ pub const Elf = struct {
else => return error.InvalidFormat,
};
const elf_version = try in.readInt(elf.endian, u32);
const elf_version = try in.readInt(u32, elf.endian);
if (elf_version != 1) return error.InvalidFormat;
if (elf.is_64) {
elf.entry_addr = try in.readInt(elf.endian, u64);
elf.program_header_offset = try in.readInt(elf.endian, u64);
elf.section_header_offset = try in.readInt(elf.endian, u64);
elf.entry_addr = try in.readInt(u64, elf.endian);
elf.program_header_offset = try in.readInt(u64, elf.endian);
elf.section_header_offset = try in.readInt(u64, elf.endian);
} else {
elf.entry_addr = u64(try in.readInt(elf.endian, u32));
elf.program_header_offset = u64(try in.readInt(elf.endian, u32));
elf.section_header_offset = u64(try in.readInt(elf.endian, u32));
elf.entry_addr = u64(try in.readInt(u32, elf.endian));
elf.program_header_offset = u64(try in.readInt(u32, elf.endian));
elf.section_header_offset = u64(try in.readInt(u32, elf.endian));
}
// skip over flags
try seekable_stream.seekForward(4);
const header_size = try in.readInt(elf.endian, u16);
const header_size = try in.readInt(u16, elf.endian);
if ((elf.is_64 and header_size != 64) or (!elf.is_64 and header_size != 52)) {
return error.InvalidFormat;
}
const ph_entry_size = try in.readInt(elf.endian, u16);
const ph_entry_count = try in.readInt(elf.endian, u16);
const sh_entry_size = try in.readInt(elf.endian, u16);
const sh_entry_count = try in.readInt(elf.endian, u16);
elf.string_section_index = u64(try in.readInt(elf.endian, u16));
const ph_entry_size = try in.readInt(u16, elf.endian);
const ph_entry_count = try in.readInt(u16, elf.endian);
const sh_entry_size = try in.readInt(u16, elf.endian);
const sh_entry_count = try in.readInt(u16, elf.endian);
elf.string_section_index = u64(try in.readInt(u16, elf.endian));
if (elf.string_section_index >= sh_entry_count) return error.InvalidFormat;
@ -481,32 +481,32 @@ pub const Elf = struct {
if (sh_entry_size != 64) return error.InvalidFormat;
for (elf.section_headers) |*elf_section| {
elf_section.name = try in.readInt(elf.endian, u32);
elf_section.sh_type = try in.readInt(elf.endian, u32);
elf_section.flags = try in.readInt(elf.endian, u64);
elf_section.addr = try in.readInt(elf.endian, u64);
elf_section.offset = try in.readInt(elf.endian, u64);
elf_section.size = try in.readInt(elf.endian, u64);
elf_section.link = try in.readInt(elf.endian, u32);
elf_section.info = try in.readInt(elf.endian, u32);
elf_section.addr_align = try in.readInt(elf.endian, u64);
elf_section.ent_size = try in.readInt(elf.endian, u64);
elf_section.name = try in.readInt(u32, elf.endian);
elf_section.sh_type = try in.readInt(u32, elf.endian);
elf_section.flags = try in.readInt(u64, elf.endian);
elf_section.addr = try in.readInt(u64, elf.endian);
elf_section.offset = try in.readInt(u64, elf.endian);
elf_section.size = try in.readInt(u64, elf.endian);
elf_section.link = try in.readInt(u32, elf.endian);
elf_section.info = try in.readInt(u32, elf.endian);
elf_section.addr_align = try in.readInt(u64, elf.endian);
elf_section.ent_size = try in.readInt(u64, elf.endian);
}
} else {
if (sh_entry_size != 40) return error.InvalidFormat;
for (elf.section_headers) |*elf_section| {
// TODO (multiple occurrences) allow implicit cast from %u32 -> %u64 ?
elf_section.name = try in.readInt(elf.endian, u32);
elf_section.sh_type = try in.readInt(elf.endian, u32);
elf_section.flags = u64(try in.readInt(elf.endian, u32));
elf_section.addr = u64(try in.readInt(elf.endian, u32));
elf_section.offset = u64(try in.readInt(elf.endian, u32));
elf_section.size = u64(try in.readInt(elf.endian, u32));
elf_section.link = try in.readInt(elf.endian, u32);
elf_section.info = try in.readInt(elf.endian, u32);
elf_section.addr_align = u64(try in.readInt(elf.endian, u32));
elf_section.ent_size = u64(try in.readInt(elf.endian, u32));
elf_section.name = try in.readInt(u32, elf.endian);
elf_section.sh_type = try in.readInt(u32, elf.endian);
elf_section.flags = u64(try in.readInt(u32, elf.endian));
elf_section.addr = u64(try in.readInt(u32, elf.endian));
elf_section.offset = u64(try in.readInt(u32, elf.endian));
elf_section.size = u64(try in.readInt(u32, elf.endian));
elf_section.link = try in.readInt(u32, elf.endian);
elf_section.info = try in.readInt(u32, elf.endian);
elf_section.addr_align = u64(try in.readInt(u32, elf.endian));
elf_section.ent_size = u64(try in.readInt(u32, elf.endian));
}
}

View File

@ -39,18 +39,22 @@ pub fn InStream(comptime ReadError: type) type {
if (amt_read < buf.len) return error.EndOfStream;
}
pub async fn readIntLe(self: *Self, comptime T: type) !T {
return await (async self.readInt(builtin.Endian.Little, T) catch unreachable);
pub async fn readIntLittle(self: *Self, comptime T: type) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try await (async self.readNoEof(bytes[0..]) catch unreachable);
return mem.readIntLittle(T, &bytes);
}
pub async fn readIntBe(self: *Self, comptime T: type) !T {
return await (async self.readInt(builtin.Endian.Big, T) catch unreachable);
}
pub async fn readInt(self: *Self, endian: builtin.Endian, comptime T: type) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try await (async self.readNoEof(bytes[0..]) catch unreachable);
return mem.readInt(bytes, T, endian);
return mem.readIntBig(T, &bytes);
}
pub async fn readInt(self: *Self, comptime T: type, endian: builtin.Endian) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try await (async self.readNoEof(bytes[0..]) catch unreachable);
return mem.readInt(T, &bytes, endian);
}
pub async fn readStruct(self: *Self, comptime T: type) !T {

View File

@ -42,8 +42,8 @@ fn SipHash(comptime T: type, comptime c_rounds: usize, comptime d_rounds: usize)
pub fn init(key: []const u8) Self {
debug.assert(key.len >= 16);
const k0 = mem.readInt(key[0..8], u64, Endian.Little);
const k1 = mem.readInt(key[8..16], u64, Endian.Little);
const k0 = mem.readIntSliceLittle(u64, key[0..8]);
const k1 = mem.readIntSliceLittle(u64, key[8..16]);
var d = Self{
.v0 = k0 ^ 0x736f6d6570736575,
@ -121,7 +121,7 @@ fn SipHash(comptime T: type, comptime c_rounds: usize, comptime d_rounds: usize)
fn round(d: *Self, b: []const u8) void {
debug.assert(b.len == 8);
const m = mem.readInt(b[0..], u64, Endian.Little);
const m = mem.readIntSliceLittle(u64, b[0..]);
d.v3 ^= m;
comptime var i: usize = 0;
@ -162,7 +162,7 @@ fn SipHash(comptime T: type, comptime c_rounds: usize, comptime d_rounds: usize)
const test_key = "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f";
test "siphash64-2-4 sanity" {
const vectors = [][]const u8{
const vectors = [][8]u8{
"\x31\x0e\x0e\xdd\x47\xdb\x6f\x72", // ""
"\xfd\x67\xdc\x93\xc5\x39\xf8\x74", // "\x00"
"\x5a\x4f\xa9\xd9\x09\x80\x6c\x0d", // "\x00\x01" ... etc
@ -235,13 +235,13 @@ test "siphash64-2-4 sanity" {
for (vectors) |vector, i| {
buffer[i] = @intCast(u8, i);
const expected = mem.readInt(vector, u64, Endian.Little);
const expected = mem.readIntLittle(u64, &vector);
debug.assert(siphash.hash(test_key, buffer[0..i]) == expected);
}
}
test "siphash128-2-4 sanity" {
const vectors = [][]const u8{
const vectors = [][16]u8{
"\xa3\x81\x7f\x04\xba\x25\xa8\xe6\x6d\xf6\x72\x14\xc7\x55\x02\x93",
"\xda\x87\xc1\xd8\x6b\x99\xaf\x44\x34\x76\x59\x11\x9b\x22\xfc\x45",
"\x81\x77\x22\x8d\xa4\xa4\x5d\xc7\xfc\xa3\x8b\xde\xf6\x0a\xff\xe4",
@ -314,7 +314,7 @@ test "siphash128-2-4 sanity" {
for (vectors) |vector, i| {
buffer[i] = @intCast(u8, i);
const expected = mem.readInt(vector, u128, Endian.Little);
const expected = mem.readIntLittle(u128, &vector);
debug.assert(siphash.hash(test_key, buffer[0..i]) == expected);
}
}

View File

@ -66,7 +66,7 @@ pub const DirectAllocator = struct {
}
}
fn alloc(allocator: *Allocator, n: usize, alignment: u29) ![]u8 {
fn alloc(allocator: *Allocator, n: usize, alignment: u29) error{OutOfMemory}![]u8 {
const self = @fieldParentPtr(DirectAllocator, "allocator", allocator);
switch (builtin.os) {

View File

@ -152,35 +152,42 @@ pub fn InStream(comptime ReadError: type) type {
}
/// Reads a native-endian integer
pub fn readIntNe(self: *Self, comptime T: type) !T {
return self.readInt(builtin.endian, T);
}
pub fn readIntLe(self: *Self, comptime T: type) !T {
pub fn readIntNative(self: *Self, comptime T: type) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try self.readNoEof(bytes[0..]);
return mem.readIntLE(T, bytes);
return mem.readIntSliceNative(T, bytes);
}
pub fn readIntBe(self: *Self, comptime T: type) !T {
/// Reads a foreign-endian integer
pub fn readIntForeign(self: *Self, comptime T: type) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try self.readNoEof(bytes[0..]);
return mem.readIntBE(T, bytes);
return mem.readIntSliceForeign(T, bytes);
}
pub fn readInt(self: *Self, endian: builtin.Endian, comptime T: type) !T {
pub fn readIntLittle(self: *Self, comptime T: type) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try self.readNoEof(bytes[0..]);
return mem.readInt(bytes, T, endian);
return mem.readIntSliceLittle(T, bytes);
}
pub fn readVarInt(self: *Self, endian: builtin.Endian, comptime T: type, size: usize) !T {
pub fn readIntBig(self: *Self, comptime T: type) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try self.readNoEof(bytes[0..]);
return mem.readIntSliceBig(T, bytes);
}
pub fn readInt(self: *Self, comptime T: type, endian: builtin.Endian) !T {
var bytes: [@sizeOf(T)]u8 = undefined;
try self.readNoEof(bytes[0..]);
return mem.readIntSlice(T, bytes, endian);
}
pub fn readVarInt(self: *Self, comptime T: type, endian: builtin.Endian, size: usize) !T {
assert(size <= @sizeOf(T));
assert(size <= 8);
var input_buf: [8]u8 = undefined;
const input_slice = input_buf[0..size];
try self.readNoEof(input_slice);
return mem.readInt(input_slice, T, endian);
var bytes: [@sizeOf(T)]u8 = undefined;
try self.readNoEof(bytes[0..]);
return mem.readIntSlice(T, bytes, endian);
}
pub fn skipBytes(self: *Self, num_bytes: usize) !void {
@ -229,25 +236,34 @@ pub fn OutStream(comptime WriteError: type) type {
}
/// Write a native-endian integer.
pub fn writeIntNe(self: *Self, comptime T: type, value: T) Error!void {
return self.writeInt(builtin.endian, T, value);
}
pub fn writeIntLe(self: *Self, comptime T: type, value: T) Error!void {
pub fn writeIntNative(self: *Self, comptime T: type, value: T) Error!void {
var bytes: [@sizeOf(T)]u8 = undefined;
mem.writeIntLE(T, &bytes, value);
mem.writeIntNative(T, &bytes, value);
return self.writeFn(self, bytes);
}
pub fn writeIntBe(self: *Self, comptime T: type, value: T) Error!void {
/// Write a foreign-endian integer.
pub fn writeIntForeign(self: *Self, comptime T: type, value: T) Error!void {
var bytes: [@sizeOf(T)]u8 = undefined;
mem.writeIntBE(T, &bytes, value);
mem.writeIntForeign(T, &bytes, value);
return self.writeFn(self, bytes);
}
pub fn writeInt(self: *Self, endian: builtin.Endian, comptime T: type, value: T) Error!void {
pub fn writeIntLittle(self: *Self, comptime T: type, value: T) Error!void {
var bytes: [@sizeOf(T)]u8 = undefined;
mem.writeInt(bytes[0..], value, endian);
mem.writeIntLittle(T, &bytes, value);
return self.writeFn(self, bytes);
}
pub fn writeIntBig(self: *Self, comptime T: type, value: T) Error!void {
var bytes: [@sizeOf(T)]u8 = undefined;
mem.writeIntBig(T, &bytes, value);
return self.writeFn(self, bytes);
}
pub fn writeInt(self: *Self, comptime T: type, value: T, endian: builtin.Endian) Error!void {
var bytes: [@sizeOf(T)]u8 = undefined;
mem.writeInt(T, &bytes, value, endian);
return self.writeFn(self, bytes);
}
};

View File

@ -407,186 +407,250 @@ test "mem.indexOf" {
assert(lastIndexOfScalar(u8, "boo", 'o').? == 2);
}
/// Reads an integer from memory with size equal to bytes.len.
/// T specifies the return type, which must be large enough to store
/// the result.
/// See also ::readIntBE or ::readIntLE.
pub fn readInt(bytes: []const u8, comptime T: type, endian: builtin.Endian) T {
if (T.bit_count == 8) {
return bytes[0];
}
var result: T = 0;
switch (endian) {
builtin.Endian.Big => {
for (bytes) |b| {
result = (result << 8) | b;
}
},
builtin.Endian.Little => {
const ShiftType = math.Log2Int(T);
for (bytes) |b, index| {
result = result | (T(b) << @intCast(ShiftType, index * 8));
}
},
}
return result;
/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory.
pub fn readIntNative(comptime T: type, bytes: *const [@sizeOf(T)]u8) T {
comptime assert(T.bit_count % 8 == 0);
return @ptrCast(*align(1) const T, bytes).*;
}
/// Reads a big-endian int of type T from bytes.
/// bytes.len must be exactly @sizeOf(T).
pub fn readIntBE(comptime T: type, bytes: []const u8) T {
if (T.is_signed) {
return @bitCast(T, readIntBE(@IntType(false, T.bit_count), bytes));
}
assert(bytes.len == @sizeOf(T));
if (T == u8) return bytes[0];
var result: T = 0;
{
comptime var i = 0;
inline while (i < @sizeOf(T)) : (i += 1) {
result = (result << 8) | T(bytes[i]);
}
}
return result;
/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is foreign, so it must byte-swap.
pub fn readIntForeign(comptime T: type, bytes: *const [@sizeOf(T)]u8) T {
comptime assert(T.bit_count % 8 == 0);
return @bswap(T, @ptrCast(*align(1) const T, bytes).*);
}
/// Reads a little-endian int of type T from bytes.
/// bytes.len must be exactly @sizeOf(T).
pub fn readIntLE(comptime T: type, bytes: []const u8) T {
if (T.is_signed) {
return @bitCast(T, readIntLE(@IntType(false, T.bit_count), bytes));
}
assert(bytes.len == @sizeOf(T));
if (T == u8) return bytes[0];
var result: T = 0;
{
comptime var i = 0;
inline while (i < @sizeOf(T)) : (i += 1) {
result |= T(bytes[i]) << i * 8;
}
}
return result;
pub const readIntLittle = switch (builtin.endian) {
builtin.Endian.Little => readIntNative,
builtin.Endian.Big => readIntForeign,
};
pub const readIntBig = switch (builtin.endian) {
builtin.Endian.Little => readIntForeign,
builtin.Endian.Big => readIntNative,
};
/// Asserts that bytes.len >= @sizeOf(T). Reads the integer starting from index 0
/// and ignores extra bytes.
/// Note that @sizeOf(u24) is 3.
/// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory.
pub fn readIntSliceNative(comptime T: type, bytes: []const u8) T {
assert(@sizeOf(u24) == 3);
assert(bytes.len >= @sizeOf(T));
// TODO https://github.com/ziglang/zig/issues/863
return readIntNative(T, @ptrCast(*const [@sizeOf(T)]u8, bytes.ptr));
}
test "readIntBE/LE" {
assert(readIntBE(u0, []u8{}) == 0x0);
assert(readIntLE(u0, []u8{}) == 0x0);
assert(readIntBE(u8, []u8{0x32}) == 0x32);
assert(readIntLE(u8, []u8{0x12}) == 0x12);
assert(readIntBE(u16, []u8{ 0x12, 0x34 }) == 0x1234);
assert(readIntLE(u16, []u8{ 0x12, 0x34 }) == 0x3412);
assert(readIntBE(u72, []u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }) == 0x123456789abcdef024);
assert(readIntLE(u72, []u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }) == 0xfedcba9876543210ec);
assert(readIntBE(i8, []u8{0xff}) == -1);
assert(readIntLE(i8, []u8{0xfe}) == -2);
assert(readIntBE(i16, []u8{ 0xff, 0xfd }) == -3);
assert(readIntLE(i16, []u8{ 0xfc, 0xff }) == -4);
/// Asserts that bytes.len >= @sizeOf(T). Reads the integer starting from index 0
/// and ignores extra bytes.
/// Note that @sizeOf(u24) is 3.
/// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is foreign, so it must byte-swap.
pub fn readIntSliceForeign(comptime T: type, bytes: []const u8) T {
assert(@sizeOf(u24) == 3);
assert(bytes.len >= @sizeOf(T));
// TODO https://github.com/ziglang/zig/issues/863
return readIntForeign(T, @ptrCast(*const [@sizeOf(T)]u8, bytes.ptr));
}
/// Writes an integer to memory with size equal to bytes.len. Pads with zeroes
/// to fill the entire buffer provided.
/// value must be an integer.
pub fn writeInt(buf: []u8, value: var, endian: builtin.Endian) void {
const uint = @IntType(false, @typeOf(value).bit_count);
pub const readIntSliceLittle = switch (builtin.endian) {
builtin.Endian.Little => readIntSliceNative,
builtin.Endian.Big => readIntSliceForeign,
};
pub const readIntSliceBig = switch (builtin.endian) {
builtin.Endian.Little => readIntSliceForeign,
builtin.Endian.Big => readIntSliceNative,
};
/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
pub fn readInt(comptime T: type, bytes: *const [@sizeOf(T)]u8, endian: builtin.Endian) T {
if (endian == builtin.endian) {
return readIntNative(T, bytes);
} else {
return readIntForeign(T, bytes);
}
}
/// Asserts that bytes.len >= @sizeOf(T). Reads the integer starting from index 0
/// and ignores extra bytes.
/// Note that @sizeOf(u24) is 3.
/// The bit count of T must be evenly divisible by 8.
pub fn readIntSlice(comptime T: type, bytes: []const u8, endian: builtin.Endian) T {
assert(@sizeOf(u24) == 3);
assert(bytes.len >= @sizeOf(T));
// TODO https://github.com/ziglang/zig/issues/863
return readInt(T, @ptrCast(*const [@sizeOf(T)]u8, bytes.ptr), endian);
}
test "readIntBig and readIntLittle" {
assert(readIntSliceBig(u0, []u8{}) == 0x0);
assert(readIntSliceLittle(u0, []u8{}) == 0x0);
assert(readIntSliceBig(u8, []u8{0x32}) == 0x32);
assert(readIntSliceLittle(u8, []u8{0x12}) == 0x12);
assert(readIntSliceBig(u16, []u8{ 0x12, 0x34 }) == 0x1234);
assert(readIntSliceLittle(u16, []u8{ 0x12, 0x34 }) == 0x3412);
assert(readIntSliceBig(u72, []u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }) == 0x123456789abcdef024);
assert(readIntSliceLittle(u72, []u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }) == 0xfedcba9876543210ec);
assert(readIntSliceBig(i8, []u8{0xff}) == -1);
assert(readIntSliceLittle(i8, []u8{0xfe}) == -2);
assert(readIntSliceBig(i16, []u8{ 0xff, 0xfd }) == -3);
assert(readIntSliceLittle(i16, []u8{ 0xfc, 0xff }) == -4);
}
/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, and
/// accepts any integer bit width.
/// This function stores in native endian, which means it is implemented as a simple
/// memory store.
pub fn writeIntNative(comptime T: type, buf: *[@sizeOf(T)]u8, value: T) void {
@ptrCast(*align(1) T, buf).* = value;
}
/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8.
/// This function stores in foreign endian, which means it does a @bswap first.
pub fn writeIntForeign(comptime T: type, buf: *[@sizeOf(T)]u8, value: T) void {
@ptrCast(*align(1) T, buf).* = @bswap(T, value);
}
pub const writeIntLittle = switch (builtin.endian) {
builtin.Endian.Little => writeIntNative,
builtin.Endian.Big => writeIntForeign,
};
pub const writeIntBig = switch (builtin.endian) {
builtin.Endian.Little => writeIntForeign,
builtin.Endian.Big => writeIntNative,
};
/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8.
pub fn writeInt(comptime T: type, buffer: *[@sizeOf(T)]u8, value: T, endian: builtin.Endian) void {
comptime assert(T.bit_count % 8 == 0);
if (endian == builtin.endian) {
return writeIntNative(T, buffer, value);
} else {
return writeIntForeign(T, buffer, value);
}
}
/// Writes a twos-complement little-endian integer to memory.
/// Asserts that buf.len >= @sizeOf(T). Note that @sizeOf(u24) is 3.
/// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer after writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntLittle
/// instead.
pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void {
comptime assert(@sizeOf(u24) == 3);
comptime assert(T.bit_count % 8 == 0);
assert(buffer.len >= @sizeOf(T));
// TODO I want to call writeIntLittle here but comptime eval facilities aren't good enough
const uint = @IntType(false, T.bit_count);
var bits = @truncate(uint, value);
for (buffer) |*b| {
b.* = @truncate(u8, bits);
bits >>= 8;
}
}
/// Writes a twos-complement big-endian integer to memory.
/// Asserts that buffer.len >= @sizeOf(T). Note that @sizeOf(u24) is 3.
/// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer before writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntBig instead.
pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void {
comptime assert(@sizeOf(u24) == 3);
comptime assert(T.bit_count % 8 == 0);
assert(buffer.len >= @sizeOf(T));
// TODO I want to call writeIntBig here but comptime eval facilities aren't good enough
const uint = @IntType(false, T.bit_count);
var bits = @truncate(uint, value);
var index: usize = buffer.len;
while (index != 0) {
index -= 1;
buffer[index] = @truncate(u8, bits);
bits >>= 8;
}
}
pub const writeIntSliceNative = switch (builtin.endian) {
builtin.Endian.Little => writeIntSliceLittle,
builtin.Endian.Big => writeIntSliceBig,
};
pub const writeIntSliceForeign = switch (builtin.endian) {
builtin.Endian.Little => writeIntSliceBig,
builtin.Endian.Big => writeIntSliceLittle,
};
/// Writes a twos-complement integer to memory, with the specified endianness.
/// Asserts that buf.len >= @sizeOf(T). Note that @sizeOf(u24) is 3.
/// The bit count of T must be evenly divisible by 8.
/// Any extra bytes in buffer not part of the integer are set to zero, with
/// respect to endianness. To avoid the branch to check for extra buffer bytes,
/// use writeInt instead.
pub fn writeIntSlice(comptime T: type, buffer: []u8, value: T, endian: builtin.Endian) void {
comptime assert(T.bit_count % 8 == 0);
switch (endian) {
builtin.Endian.Big => {
var index: usize = buf.len;
while (index != 0) {
index -= 1;
buf[index] = @truncate(u8, bits);
bits >>= 8;
builtin.Endian.Little => return writeIntSliceLittle(T, buffer, value),
builtin.Endian.Big => return writeIntSliceBig(T, buffer, value),
}
},
builtin.Endian.Little => {
for (buf) |*b| {
b.* = @truncate(u8, bits);
bits >>= 8;
}
},
}
assert(bits == 0);
}
pub fn writeIntBE(comptime T: type, buf: *[@sizeOf(T)]u8, value: T) void {
assert(T.bit_count % 8 == 0);
const uint = @IntType(false, T.bit_count);
if (uint == u0) {
return;
}
var bits = @bitCast(uint, value);
if (uint == u8) {
buf[0] = bits;
return;
}
var index: usize = buf.len;
while (index != 0) {
index -= 1;
buf[index] = @truncate(u8, bits);
bits >>= 8;
}
assert(bits == 0);
}
pub fn writeIntLE(comptime T: type, buf: *[@sizeOf(T)]u8, value: T) void {
assert(T.bit_count % 8 == 0);
const uint = @IntType(false, T.bit_count);
if (uint == u0) {
return;
}
var bits = @bitCast(uint, value);
if (uint == u8) {
buf[0] = bits;
return;
}
for (buf) |*b| {
b.* = @truncate(u8, bits);
bits >>= 8;
}
assert(bits == 0);
}
test "writeIntBE/LE" {
test "writeIntBig and writeIntLittle" {
var buf0: [0]u8 = undefined;
var buf1: [1]u8 = undefined;
var buf2: [2]u8 = undefined;
var buf9: [9]u8 = undefined;
writeIntBE(u0, &buf0, 0x0);
writeIntBig(u0, &buf0, 0x0);
assert(eql_slice_u8(buf0[0..], []u8{}));
writeIntLE(u0, &buf0, 0x0);
writeIntLittle(u0, &buf0, 0x0);
assert(eql_slice_u8(buf0[0..], []u8{}));
writeIntBE(u8, &buf1, 0x12);
writeIntBig(u8, &buf1, 0x12);
assert(eql_slice_u8(buf1[0..], []u8{0x12}));
writeIntLE(u8, &buf1, 0x34);
writeIntLittle(u8, &buf1, 0x34);
assert(eql_slice_u8(buf1[0..], []u8{0x34}));
writeIntBE(u16, &buf2, 0x1234);
writeIntBig(u16, &buf2, 0x1234);
assert(eql_slice_u8(buf2[0..], []u8{ 0x12, 0x34 }));
writeIntLE(u16, &buf2, 0x5678);
writeIntLittle(u16, &buf2, 0x5678);
assert(eql_slice_u8(buf2[0..], []u8{ 0x78, 0x56 }));
writeIntBE(u72, &buf9, 0x123456789abcdef024);
writeIntBig(u72, &buf9, 0x123456789abcdef024);
assert(eql_slice_u8(buf9[0..], []u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }));
writeIntLE(u72, &buf9, 0xfedcba9876543210ec);
writeIntLittle(u72, &buf9, 0xfedcba9876543210ec);
assert(eql_slice_u8(buf9[0..], []u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }));
writeIntBE(i8, &buf1, -1);
writeIntBig(i8, &buf1, -1);
assert(eql_slice_u8(buf1[0..], []u8{0xff}));
writeIntLE(i8, &buf1, -2);
writeIntLittle(i8, &buf1, -2);
assert(eql_slice_u8(buf1[0..], []u8{0xfe}));
writeIntBE(i16, &buf2, -3);
writeIntBig(i16, &buf2, -3);
assert(eql_slice_u8(buf2[0..], []u8{ 0xff, 0xfd }));
writeIntLE(i16, &buf2, -4);
writeIntLittle(i16, &buf2, -4);
assert(eql_slice_u8(buf2[0..], []u8{ 0xfc, 0xff }));
}
@ -735,12 +799,12 @@ fn testReadIntImpl() void {
0x56,
0x78,
};
assert(readInt(bytes, u32, builtin.Endian.Big) == 0x12345678);
assert(readIntBE(u32, bytes) == 0x12345678);
assert(readIntBE(i32, bytes) == 0x12345678);
assert(readInt(bytes, u32, builtin.Endian.Little) == 0x78563412);
assert(readIntLE(u32, bytes) == 0x78563412);
assert(readIntLE(i32, bytes) == 0x78563412);
assert(readInt(u32, &bytes, builtin.Endian.Big) == 0x12345678);
assert(readIntBig(u32, &bytes) == 0x12345678);
assert(readIntBig(i32, &bytes) == 0x12345678);
assert(readInt(u32, &bytes, builtin.Endian.Little) == 0x78563412);
assert(readIntLittle(u32, &bytes) == 0x78563412);
assert(readIntLittle(i32, &bytes) == 0x78563412);
}
{
const buf = []u8{
@ -749,7 +813,7 @@ fn testReadIntImpl() void {
0x12,
0x34,
};
const answer = readInt(buf, u64, builtin.Endian.Big);
const answer = readInt(u32, &buf, builtin.Endian.Big);
assert(answer == 0x00001234);
}
{
@ -759,7 +823,7 @@ fn testReadIntImpl() void {
0x00,
0x00,
};
const answer = readInt(buf, u64, builtin.Endian.Little);
const answer = readInt(u32, &buf, builtin.Endian.Little);
assert(answer == 0x00003412);
}
{
@ -767,21 +831,33 @@ fn testReadIntImpl() void {
0xff,
0xfe,
};
assert(readIntBE(u16, bytes) == 0xfffe);
assert(readIntBE(i16, bytes) == -0x0002);
assert(readIntLE(u16, bytes) == 0xfeff);
assert(readIntLE(i16, bytes) == -0x0101);
assert(readIntBig(u16, &bytes) == 0xfffe);
assert(readIntBig(i16, &bytes) == -0x0002);
assert(readIntLittle(u16, &bytes) == 0xfeff);
assert(readIntLittle(i16, &bytes) == -0x0101);
}
}
test "testWriteInt" {
test "std.mem.writeIntSlice" {
testWriteIntImpl();
comptime testWriteIntImpl();
}
fn testWriteIntImpl() void {
var bytes: [8]u8 = undefined;
writeInt(bytes[0..], u64(0x12345678CAFEBABE), builtin.Endian.Big);
writeIntSlice(u0, bytes[0..], 0, builtin.Endian.Big);
assert(eql(u8, bytes, []u8{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
}));
writeIntSlice(u0, bytes[0..], 0, builtin.Endian.Little);
assert(eql(u8, bytes, []u8{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
}));
writeIntSlice(u64, bytes[0..], 0x12345678CAFEBABE, builtin.Endian.Big);
assert(eql(u8, bytes, []u8{
0x12,
0x34,
@ -793,7 +869,7 @@ fn testWriteIntImpl() void {
0xBE,
}));
writeInt(bytes[0..], u64(0xBEBAFECA78563412), builtin.Endian.Little);
writeIntSlice(u64, bytes[0..], 0xBEBAFECA78563412, builtin.Endian.Little);
assert(eql(u8, bytes, []u8{
0x12,
0x34,
@ -805,7 +881,7 @@ fn testWriteIntImpl() void {
0xBE,
}));
writeInt(bytes[0..], u32(0x12345678), builtin.Endian.Big);
writeIntSlice(u32, bytes[0..], 0x12345678, builtin.Endian.Big);
assert(eql(u8, bytes, []u8{
0x00,
0x00,
@ -817,7 +893,7 @@ fn testWriteIntImpl() void {
0x78,
}));
writeInt(bytes[0..], u32(0x78563412), builtin.Endian.Little);
writeIntSlice(u32, bytes[0..], 0x78563412, builtin.Endian.Little);
assert(eql(u8, bytes, []u8{
0x12,
0x34,
@ -829,7 +905,7 @@ fn testWriteIntImpl() void {
0x00,
}));
writeInt(bytes[0..], u16(0x1234), builtin.Endian.Big);
writeIntSlice(u16, bytes[0..], 0x1234, builtin.Endian.Big);
assert(eql(u8, bytes, []u8{
0x00,
0x00,
@ -841,7 +917,7 @@ fn testWriteIntImpl() void {
0x34,
}));
writeInt(bytes[0..], u16(0x1234), builtin.Endian.Little);
writeIntSlice(u16, bytes[0..], 0x1234, builtin.Endian.Little);
assert(eql(u8, bytes, []u8{
0x34,
0x12,
@ -939,29 +1015,52 @@ test "std.mem.rotate" {
}));
}
// TODO: When https://github.com/ziglang/zig/issues/649 is solved these can be done by
// endian-casting the pointer and then dereferencing
pub fn endianSwapIfLe(comptime T: type, x: T) T {
return endianSwapIf(builtin.Endian.Little, T, x);
/// Converts a little-endian integer to host endianness.
pub fn littleToNative(comptime T: type, x: T) T {
return switch (builtin.endian) {
builtin.Endian.Little => x,
builtin.Endian.Big => @bswap(T, x),
};
}
pub fn endianSwapIfBe(comptime T: type, x: T) T {
return endianSwapIf(builtin.Endian.Big, T, x);
/// Converts a big-endian integer to host endianness.
pub fn bigToNative(comptime T: type, x: T) T {
return switch (builtin.endian) {
builtin.Endian.Little => @bswap(T, x),
builtin.Endian.Big => x,
};
}
pub fn endianSwapIf(endian: builtin.Endian, comptime T: type, x: T) T {
return if (builtin.endian == endian) endianSwap(T, x) else x;
/// Converts an integer from specified endianness to host endianness.
pub fn toNative(comptime T: type, x: T, endianness_of_x: builtin.Endian) T {
return switch (endianness_of_x) {
builtin.Endian.Little => littleToNative(T, x),
builtin.Endian.Big => bigToNative(T, x),
};
}
pub fn endianSwap(comptime T: type, x: T) T {
var buf: [@sizeOf(T)]u8 = undefined;
mem.writeInt(buf[0..], x, builtin.Endian.Little);
return mem.readInt(buf, T, builtin.Endian.Big);
/// Converts an integer which has host endianness to the desired endianness.
pub fn nativeTo(comptime T: type, x: T, desired_endianness: builtin.Endian) T {
return switch (desired_endianness) {
builtin.Endian.Little => nativeToLittle(T, x),
builtin.Endian.Big => nativeToBig(T, x),
};
}
test "std.mem.endianSwap" {
assert(endianSwap(u32, 0xDEADBEEF) == 0xEFBEADDE);
/// Converts an integer which has host endianness to little endian.
pub fn nativeToLittle(comptime T: type, x: T) T {
return switch (builtin.endian) {
builtin.Endian.Little => x,
builtin.Endian.Big => @bswap(T, x),
};
}
/// Converts an integer which has host endianness to big endian.
pub fn nativeToBig(comptime T: type, x: T) T {
return switch (builtin.endian) {
builtin.Endian.Little => @bswap(T, x),
builtin.Endian.Big => x,
};
}
fn AsBytesReturnType(comptime P: type) type {

View File

@ -23,7 +23,7 @@ pub const Address = struct {
.os_addr = posix.sockaddr{
.in = posix.sockaddr_in{
.family = posix.AF_INET,
.port = std.mem.endianSwapIfLe(u16, _port),
.port = mem.nativeToBig(u16, _port),
.addr = ip4,
.zero = []u8{0} ** 8,
},
@ -37,7 +37,7 @@ pub const Address = struct {
.os_addr = posix.sockaddr{
.in6 = posix.sockaddr_in6{
.family = posix.AF_INET6,
.port = std.mem.endianSwapIfLe(u16, _port),
.port = mem.nativeToBig(u16, _port),
.flowinfo = 0,
.addr = ip6.addr,
.scope_id = ip6.scope_id,
@ -47,7 +47,7 @@ pub const Address = struct {
}
pub fn port(self: Address) u16 {
return std.mem.endianSwapIfLe(u16, self.os_addr.in.port);
return mem.bigToNative(u16, self.os_addr.in.port);
}
pub fn initPosix(addr: posix.sockaddr) Address {
@ -57,12 +57,12 @@ pub const Address = struct {
pub fn format(self: *const Address, out_stream: var) !void {
switch (self.os_addr.in.family) {
posix.AF_INET => {
const native_endian_port = std.mem.endianSwapIfLe(u16, self.os_addr.in.port);
const native_endian_port = mem.bigToNative(u16, self.os_addr.in.port);
const bytes = ([]const u8)((*self.os_addr.in.addr)[0..1]);
try out_stream.print("{}.{}.{}.{}:{}", bytes[0], bytes[1], bytes[2], bytes[3], native_endian_port);
},
posix.AF_INET6 => {
const native_endian_port = std.mem.endianSwapIfLe(u16, self.os_addr.in6.port);
const native_endian_port = mem.bigToNative(u16, self.os_addr.in6.port);
try out_stream.print("[TODO render ip6 address]:{}", native_endian_port);
},
else => try out_stream.write("(unrecognized address family)"),
@ -193,7 +193,7 @@ pub fn parseIp6(buf: []const u8) !Ip6Addr {
}
test "std.net.parseIp4" {
assert((try parseIp4("127.0.0.1")) == std.mem.endianSwapIfLe(u32, 0x7f000001));
assert((try parseIp4("127.0.0.1")) == mem.bigToNative(u32, 0x7f000001));
testParseIp4Fail("256.0.0.1", error.Overflow);
testParseIp4Fail("x.0.0.1", error.InvalidCharacter);

View File

@ -807,10 +807,10 @@ const ErrInt = @IntType(false, @sizeOf(anyerror) * 8);
fn writeIntFd(fd: i32, value: ErrInt) !void {
const stream = &os.File.openHandle(fd).outStream().stream;
stream.writeIntNe(ErrInt, value) catch return error.SystemResources;
stream.writeIntNative(ErrInt, value) catch return error.SystemResources;
}
fn readIntFd(fd: i32) !ErrInt {
const stream = &os.File.openHandle(fd).inStream().stream;
return stream.readIntNe(ErrInt) catch return error.SystemResources;
return stream.readIntNative(ErrInt) catch return error.SystemResources;
}

View File

@ -98,12 +98,12 @@ pub nakedcc fn restore_rt() void {
}
pub const msghdr = extern struct {
msg_name: &u8,
msg_name: *u8,
msg_namelen: socklen_t,
msg_iov: &iovec,
msg_iov: *iovec,
msg_iovlen: i32,
__pad1: i32,
msg_control: &u8,
msg_control: *u8,
msg_controllen: socklen_t,
__pad2: socklen_t,
msg_flags: i32,

View File

@ -508,11 +508,11 @@ const Msf = struct {
allocator,
);
const stream_count = try self.directory.stream.readIntLe(u32);
const stream_count = try self.directory.stream.readIntLittle(u32);
const stream_sizes = try allocator.alloc(u32, stream_count);
for (stream_sizes) |*s| {
const size = try self.directory.stream.readIntLe(u32);
const size = try self.directory.stream.readIntLittle(u32);
s.* = blockCountFromSize(size, superblock.BlockSize);
}
@ -603,7 +603,7 @@ const MsfStream = struct {
var i: u32 = 0;
while (i < block_count) : (i += 1) {
stream.blocks[i] = try in.readIntLe(u32);
stream.blocks[i] = try in.readIntLittle(u32);
}
return stream;

View File

@ -5,7 +5,7 @@
// ```
// var buf: [8]u8 = undefined;
// try std.os.getRandomBytes(buf[0..]);
// const seed = mem.readIntLE(u64, buf[0..8]);
// const seed = mem.readIntSliceLittle(u64, buf[0..8]);
//
// var r = DefaultPrng.init(seed);
//
@ -52,7 +52,7 @@ pub const Random = struct {
// use LE instead of native endian for better portability maybe?
// TODO: endian portability is pointless if the underlying prng isn't endian portable.
// TODO: document the endian portability of this library.
const byte_aligned_result = mem.readIntLE(ByteAlignedT, rand_bytes);
const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, rand_bytes);
const unsigned_result = @truncate(UnsignedT, byte_aligned_result);
return @bitCast(T, unsigned_result);
}
@ -69,6 +69,7 @@ pub const Random = struct {
return @intCast(T, limitRangeBiased(u64, r.int(u64), less_than));
}
}
/// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
/// This function assumes that the underlying ::fillFn produces evenly distributed values.
/// Within this assumption, the runtime of this function is exponentially distributed.
@ -123,6 +124,7 @@ pub const Random = struct {
}
return r.uintLessThanBiased(T, at_most + 1);
}
/// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
/// See ::uintLessThan, which this function uses in most cases,
/// for commentary on the runtime of this function.
@ -151,6 +153,7 @@ pub const Random = struct {
return at_least + r.uintLessThanBiased(T, less_than - at_least);
}
}
/// Returns an evenly distributed random integer `at_least <= i < less_than`.
/// See ::uintLessThan, which this function uses in most cases,
/// for commentary on the runtime of this function.
@ -185,6 +188,7 @@ pub const Random = struct {
return at_least + r.uintAtMostBiased(T, at_most - at_least);
}
}
/// Returns an evenly distributed random integer `at_least <= i <= at_most`.
/// See ::uintLessThan, which this function uses in most cases,
/// for commentary on the runtime of this function.

View File

@ -249,12 +249,12 @@ pub const Utf16LeIterator = struct {
pub fn nextCodepoint(it: *Utf16LeIterator) !?u32 {
assert(it.i <= it.bytes.len);
if (it.i == it.bytes.len) return null;
const c0: u32 = mem.readIntLE(u16, it.bytes[it.i .. it.i + 2]);
const c0: u32 = mem.readIntSliceLittle(u16, it.bytes[it.i .. it.i + 2]);
if (c0 & ~u32(0x03ff) == 0xd800) {
// surrogate pair
it.i += 2;
if (it.i >= it.bytes.len) return error.DanglingSurrogateHalf;
const c1: u32 = mem.readIntLE(u16, it.bytes[it.i .. it.i + 2]);
const c1: u32 = mem.readIntSliceLittle(u16, it.bytes[it.i .. it.i + 2]);
if (c1 & ~u32(0x03ff) != 0xdc00) return error.ExpectedSecondSurrogateHalf;
it.i += 2;
return 0x10000 + (((c0 & 0x03ff) << 10) | (c1 & 0x03ff));
@ -510,46 +510,46 @@ test "utf16leToUtf8" {
const utf16le_as_bytes = @sliceToBytes(utf16le[0..]);
{
mem.writeInt(utf16le_as_bytes[0..], u16('A'), builtin.Endian.Little);
mem.writeInt(utf16le_as_bytes[2..], u16('a'), builtin.Endian.Little);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 'A');
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 'a');
const utf8 = try utf16leToUtf8Alloc(std.debug.global_allocator, utf16le);
assert(mem.eql(u8, utf8, "Aa"));
}
{
mem.writeInt(utf16le_as_bytes[0..], u16(0x80), builtin.Endian.Little);
mem.writeInt(utf16le_as_bytes[2..], u16(0xffff), builtin.Endian.Little);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0x80);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xffff);
const utf8 = try utf16leToUtf8Alloc(std.debug.global_allocator, utf16le);
assert(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf"));
}
{
// the values just outside the surrogate half range
mem.writeInt(utf16le_as_bytes[0..], u16(0xd7ff), builtin.Endian.Little);
mem.writeInt(utf16le_as_bytes[2..], u16(0xe000), builtin.Endian.Little);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xd7ff);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xe000);
const utf8 = try utf16leToUtf8Alloc(std.debug.global_allocator, utf16le);
assert(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80"));
}
{
// smallest surrogate pair
mem.writeInt(utf16le_as_bytes[0..], u16(0xd800), builtin.Endian.Little);
mem.writeInt(utf16le_as_bytes[2..], u16(0xdc00), builtin.Endian.Little);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xd800);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdc00);
const utf8 = try utf16leToUtf8Alloc(std.debug.global_allocator, utf16le);
assert(mem.eql(u8, utf8, "\xf0\x90\x80\x80"));
}
{
// largest surrogate pair
mem.writeInt(utf16le_as_bytes[0..], u16(0xdbff), builtin.Endian.Little);
mem.writeInt(utf16le_as_bytes[2..], u16(0xdfff), builtin.Endian.Little);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xdbff);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdfff);
const utf8 = try utf16leToUtf8Alloc(std.debug.global_allocator, utf16le);
assert(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf"));
}
{
mem.writeInt(utf16le_as_bytes[0..], u16(0xdbff), builtin.Endian.Little);
mem.writeInt(utf16le_as_bytes[2..], u16(0xdc00), builtin.Endian.Little);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[0..], 0xdbff);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[2..], 0xdc00);
const utf8 = try utf16leToUtf8Alloc(std.debug.global_allocator, utf16le);
assert(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80"));
}
@ -583,7 +583,7 @@ pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize {
while (it.nextCodepoint()) |codepoint| {
if (end_index == utf16le_as_bytes.len) return (end_index / 2) + 1;
// TODO surrogate pairs
mem.writeInt(utf16le_as_bytes[end_index..], @intCast(u16, codepoint), builtin.Endian.Little);
mem.writeIntSliceLittle(u16, utf16le_as_bytes[end_index..], @intCast(u16, codepoint));
end_index += 2;
}
return end_index / 2;

View File

@ -8,6 +8,7 @@ comptime {
_ = @import("cases/atomics.zig");
_ = @import("cases/bitcast.zig");
_ = @import("cases/bool.zig");
_ = @import("cases/bswap.zig");
_ = @import("cases/bugs/1076.zig");
_ = @import("cases/bugs/1111.zig");
_ = @import("cases/bugs/1277.zig");
@ -64,6 +65,7 @@ comptime {
_ = @import("cases/switch_prong_implicit_cast.zig");
_ = @import("cases/syntax.zig");
_ = @import("cases/this.zig");
_ = @import("cases/truncate.zig");
_ = @import("cases/try.zig");
_ = @import("cases/type_info.zig");
_ = @import("cases/undefined.zig");

32
test/cases/bswap.zig Normal file
View File

@ -0,0 +1,32 @@
const std = @import("std");
const assert = std.debug.assert;
test "@bswap" {
comptime testByteSwap();
testByteSwap();
}
fn testByteSwap() void {
assert(@bswap(u0, 0) == 0);
assert(@bswap(u8, 0x12) == 0x12);
assert(@bswap(u16, 0x1234) == 0x3412);
assert(@bswap(u24, 0x123456) == 0x563412);
assert(@bswap(u32, 0x12345678) == 0x78563412);
assert(@bswap(u40, 0x123456789a) == 0x9a78563412);
assert(@bswap(u48, 0x123456789abc) == 0xbc9a78563412);
assert(@bswap(u56, 0x123456789abcde) == 0xdebc9a78563412);
assert(@bswap(u64, 0x123456789abcdef1) == 0xf1debc9a78563412);
assert(@bswap(u128, 0x123456789abcdef11121314151617181) == 0x8171615141312111f1debc9a78563412);
assert(@bswap(i0, 0) == 0);
assert(@bswap(i8, -50) == -50);
assert(@bswap(i16, @bitCast(i16, u16(0x1234))) == @bitCast(i16, u16(0x3412)));
assert(@bswap(i24, @bitCast(i24, u24(0x123456))) == @bitCast(i24, u24(0x563412)));
assert(@bswap(i32, @bitCast(i32, u32(0x12345678))) == @bitCast(i32, u32(0x78563412)));
assert(@bswap(i40, @bitCast(i40, u40(0x123456789a))) == @bitCast(i40, u40(0x9a78563412)));
assert(@bswap(i48, @bitCast(i48, u48(0x123456789abc))) == @bitCast(i48, u48(0xbc9a78563412)));
assert(@bswap(i56, @bitCast(i56, u56(0x123456789abcde))) == @bitCast(i56, u56(0xdebc9a78563412)));
assert(@bswap(i64, @bitCast(i64, u64(0x123456789abcdef1))) == @bitCast(i64, u64(0xf1debc9a78563412)));
assert(@bswap(i128, @bitCast(i128, u128(0x123456789abcdef11121314151617181))) ==
@bitCast(i128, u128(0x8171615141312111f1debc9a78563412)));
}

8
test/cases/truncate.zig Normal file
View File

@ -0,0 +1,8 @@
const std = @import("std");
const assert = std.debug.assert;
test "truncate u0 to larger integer allowed and has comptime known result" {
var x: u0 = 0;
const y = @truncate(u8, x);
comptime assert(y == 0);
}

View File

@ -1,6 +1,18 @@
const tests = @import("tests.zig");
pub fn addCases(cases: *tests.CompileErrorContext) void {
cases.add(
"reading past end of pointer casted array",
\\comptime {
\\ const array = "aoeu";
\\ const slice = array[2..];
\\ const int_ptr = @ptrCast(*const u24, slice.ptr);
\\ const deref = int_ptr.*;
\\}
,
".tmp_source.zig:5:26: error: attempt to read 3 bytes from [4]u8 at index 2 which is 2 bytes",
);
cases.add(
"error note for function parameter incompatibility",
\\fn do_the_thing(func: fn (arg: i32) void) void {}