fix stack traces on linux

master
Andrew Kelley 2018-08-25 03:07:37 -04:00
parent 32901926f0
commit ac36f98e72
12 changed files with 727 additions and 592 deletions

View File

@ -485,6 +485,7 @@ set(ZIG_STD_FILES
"json.zig"
"lazy_init.zig"
"linked_list.zig"
"macho.zig"
"math/acos.zig"
"math/acosh.zig"
"math/asin.zig"

View File

@ -19,12 +19,12 @@
static const size_t default_backward_branch_quota = 1000;
static void resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type);
static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type);
static Error resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type);
static Error resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type);
static void resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type);
static void resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type);
static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type);
static Error ATTRIBUTE_MUST_USE resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type);
static Error ATTRIBUTE_MUST_USE resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type);
static Error ATTRIBUTE_MUST_USE resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type);
static void analyze_fn_body(CodeGen *g, FnTableEntry *fn_table_entry);
ErrorMsg *add_node_error(CodeGen *g, AstNode *node, Buf *msg) {
@ -370,15 +370,20 @@ uint64_t type_size_bits(CodeGen *g, TypeTableEntry *type_entry) {
return LLVMSizeOfTypeInBits(g->target_data_ref, type_entry->type_ref);
}
bool type_is_copyable(CodeGen *g, TypeTableEntry *type_entry) {
type_ensure_zero_bits_known(g, type_entry);
Result<bool> type_is_copyable(CodeGen *g, TypeTableEntry *type_entry) {
Error err;
if ((err = type_ensure_zero_bits_known(g, type_entry)))
return err;
if (!type_has_bits(type_entry))
return true;
if (!handle_is_ptr(type_entry))
return true;
ensure_complete_type(g, type_entry);
if ((err = ensure_complete_type(g, type_entry)))
return err;
return type_entry->is_copyable;
}
@ -447,7 +452,7 @@ TypeTableEntry *get_pointer_to_type_extra(CodeGen *g, TypeTableEntry *child_type
}
}
type_ensure_zero_bits_known(g, child_type);
assertNoError(type_ensure_zero_bits_known(g, child_type));
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdPointer);
entry->is_copyable = true;
@ -554,11 +559,11 @@ TypeTableEntry *get_optional_type(CodeGen *g, TypeTableEntry *child_type) {
TypeTableEntry *entry = child_type->optional_parent;
return entry;
} else {
ensure_complete_type(g, child_type);
assertNoError(ensure_complete_type(g, child_type));
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdOptional);
assert(child_type->type_ref || child_type->zero_bits);
entry->is_copyable = type_is_copyable(g, child_type);
entry->is_copyable = type_is_copyable(g, child_type).unwrap();
buf_resize(&entry->name, 0);
buf_appendf(&entry->name, "?%s", buf_ptr(&child_type->name));
@ -650,7 +655,7 @@ TypeTableEntry *get_error_union_type(CodeGen *g, TypeTableEntry *err_set_type, T
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdErrorUnion);
entry->is_copyable = true;
assert(payload_type->di_type);
ensure_complete_type(g, payload_type);
assertNoError(ensure_complete_type(g, payload_type));
buf_resize(&entry->name, 0);
buf_appendf(&entry->name, "%s!%s", buf_ptr(&err_set_type->name), buf_ptr(&payload_type->name));
@ -739,7 +744,7 @@ TypeTableEntry *get_array_type(CodeGen *g, TypeTableEntry *child_type, uint64_t
return entry;
}
ensure_complete_type(g, child_type);
assertNoError(ensure_complete_type(g, child_type));
TypeTableEntry *entry = new_type_table_entry(TypeTableEntryIdArray);
entry->zero_bits = (array_size == 0) || child_type->zero_bits;
@ -1050,13 +1055,13 @@ TypeTableEntry *get_ptr_to_stack_trace_type(CodeGen *g) {
}
TypeTableEntry *get_fn_type(CodeGen *g, FnTypeId *fn_type_id) {
Error err;
auto table_entry = g->fn_type_table.maybe_get(fn_type_id);
if (table_entry) {
return table_entry->value;
}
if (fn_type_id->return_type != nullptr) {
ensure_complete_type(g, fn_type_id->return_type);
if (type_is_invalid(fn_type_id->return_type))
if ((err = ensure_complete_type(g, fn_type_id->return_type)))
return g->builtin_types.entry_invalid;
assert(fn_type_id->return_type->id != TypeTableEntryIdOpaque);
} else {
@ -1172,8 +1177,7 @@ TypeTableEntry *get_fn_type(CodeGen *g, FnTypeId *fn_type_id) {
gen_param_info->src_index = i;
gen_param_info->gen_index = SIZE_MAX;
ensure_complete_type(g, type_entry);
if (type_is_invalid(type_entry))
if ((err = ensure_complete_type(g, type_entry)))
return g->builtin_types.entry_invalid;
if (type_has_bits(type_entry)) {
@ -1493,6 +1497,7 @@ TypeTableEntry *get_auto_err_set_type(CodeGen *g, FnTableEntry *fn_entry) {
static TypeTableEntry *analyze_fn_type(CodeGen *g, AstNode *proto_node, Scope *child_scope, FnTableEntry *fn_entry) {
assert(proto_node->type == NodeTypeFnProto);
AstNodeFnProto *fn_proto = &proto_node->data.fn_proto;
Error err;
FnTypeId fn_type_id = {0};
init_fn_type_id(&fn_type_id, proto_node, proto_node->data.fn_proto.params.length);
@ -1550,7 +1555,8 @@ static TypeTableEntry *analyze_fn_type(CodeGen *g, AstNode *proto_node, Scope *c
return g->builtin_types.entry_invalid;
}
if (!calling_convention_allows_zig_types(fn_type_id.cc)) {
type_ensure_zero_bits_known(g, type_entry);
if ((err = type_ensure_zero_bits_known(g, type_entry)))
return g->builtin_types.entry_invalid;
if (!type_has_bits(type_entry)) {
add_node_error(g, param_node->data.param_decl.type,
buf_sprintf("parameter of type '%s' has 0 bits; not allowed in function with calling convention '%s'",
@ -1598,7 +1604,8 @@ static TypeTableEntry *analyze_fn_type(CodeGen *g, AstNode *proto_node, Scope *c
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdPromise:
type_ensure_zero_bits_known(g, type_entry);
if ((err = type_ensure_zero_bits_known(g, type_entry)))
return g->builtin_types.entry_invalid;
if (type_requires_comptime(type_entry)) {
add_node_error(g, param_node->data.param_decl.type,
buf_sprintf("parameter of type '%s' must be declared comptime",
@ -1729,24 +1736,25 @@ bool type_is_invalid(TypeTableEntry *type_entry) {
}
static void resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type) {
static Error resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type) {
assert(enum_type->id == TypeTableEntryIdEnum);
if (enum_type->data.enumeration.complete)
return;
return ErrorNone;
resolve_enum_zero_bits(g, enum_type);
if (type_is_invalid(enum_type))
return;
Error err;
if ((err = resolve_enum_zero_bits(g, enum_type)))
return err;
AstNode *decl_node = enum_type->data.enumeration.decl_node;
if (enum_type->data.enumeration.embedded_in_current) {
if (!enum_type->data.enumeration.reported_infinite_err) {
enum_type->data.enumeration.is_invalid = true;
enum_type->data.enumeration.reported_infinite_err = true;
add_node_error(g, decl_node, buf_sprintf("enum '%s' contains itself", buf_ptr(&enum_type->name)));
}
return;
return ErrorSemanticAnalyzeFail;
}
assert(!enum_type->data.enumeration.zero_bits_loop_flag);
@ -1778,7 +1786,7 @@ static void resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type) {
enum_type->data.enumeration.complete = true;
if (enum_type->data.enumeration.is_invalid)
return;
return ErrorSemanticAnalyzeFail;
if (enum_type->zero_bits) {
enum_type->type_ref = LLVMVoidType();
@ -1797,7 +1805,7 @@ static void resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type) {
ZigLLVMReplaceTemporary(g->dbuilder, enum_type->di_type, replacement_di_type);
enum_type->di_type = replacement_di_type;
return;
return ErrorNone;
}
TypeTableEntry *tag_int_type = enum_type->data.enumeration.tag_int_type;
@ -1815,6 +1823,7 @@ static void resolve_enum_type(CodeGen *g, TypeTableEntry *enum_type) {
ZigLLVMReplaceTemporary(g->dbuilder, enum_type->di_type, tag_di_type);
enum_type->di_type = tag_di_type;
return ErrorNone;
}
@ -1897,15 +1906,15 @@ TypeTableEntry *get_struct_type(CodeGen *g, const char *type_name, const char *f
return struct_type;
}
static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
static Error resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
assert(struct_type->id == TypeTableEntryIdStruct);
if (struct_type->data.structure.complete)
return;
return ErrorNone;
resolve_struct_zero_bits(g, struct_type);
if (struct_type->data.structure.is_invalid)
return;
Error err;
if ((err = resolve_struct_zero_bits(g, struct_type)))
return err;
AstNode *decl_node = struct_type->data.structure.decl_node;
@ -1916,7 +1925,7 @@ static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
add_node_error(g, decl_node,
buf_sprintf("struct '%s' contains itself", buf_ptr(&struct_type->name)));
}
return;
return ErrorSemanticAnalyzeFail;
}
assert(!struct_type->data.structure.zero_bits_loop_flag);
@ -1943,8 +1952,7 @@ static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
TypeStructField *type_struct_field = &struct_type->data.structure.fields[i];
TypeTableEntry *field_type = type_struct_field->type_entry;
ensure_complete_type(g, field_type);
if (type_is_invalid(field_type)) {
if ((err = ensure_complete_type(g, field_type))) {
struct_type->data.structure.is_invalid = true;
break;
}
@ -2026,7 +2034,7 @@ static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
struct_type->data.structure.complete = true;
if (struct_type->data.structure.is_invalid)
return;
return ErrorSemanticAnalyzeFail;
if (struct_type->zero_bits) {
struct_type->type_ref = LLVMVoidType();
@ -2045,7 +2053,7 @@ static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
0, nullptr, di_element_types, (int)debug_field_count, 0, nullptr, "");
ZigLLVMReplaceTemporary(g->dbuilder, struct_type->di_type, replacement_di_type);
struct_type->di_type = replacement_di_type;
return;
return ErrorNone;
}
assert(struct_type->di_type);
@ -2128,17 +2136,19 @@ static void resolve_struct_type(CodeGen *g, TypeTableEntry *struct_type) {
ZigLLVMReplaceTemporary(g->dbuilder, struct_type->di_type, replacement_di_type);
struct_type->di_type = replacement_di_type;
return ErrorNone;
}
static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
static Error resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
assert(union_type->id == TypeTableEntryIdUnion);
if (union_type->data.unionation.complete)
return;
return ErrorNone;
resolve_union_zero_bits(g, union_type);
if (type_is_invalid(union_type))
return;
Error err;
if ((err = resolve_union_zero_bits(g, union_type)))
return err;
AstNode *decl_node = union_type->data.unionation.decl_node;
@ -2148,7 +2158,7 @@ static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
union_type->data.unionation.is_invalid = true;
add_node_error(g, decl_node, buf_sprintf("union '%s' contains itself", buf_ptr(&union_type->name)));
}
return;
return ErrorSemanticAnalyzeFail;
}
assert(!union_type->data.unionation.zero_bits_loop_flag);
@ -2179,8 +2189,7 @@ static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
TypeUnionField *union_field = &union_type->data.unionation.fields[i];
TypeTableEntry *field_type = union_field->type_entry;
ensure_complete_type(g, field_type);
if (type_is_invalid(field_type)) {
if ((err = ensure_complete_type(g, field_type))) {
union_type->data.unionation.is_invalid = true;
continue;
}
@ -2219,7 +2228,7 @@ static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
union_type->data.unionation.most_aligned_union_member = most_aligned_union_member;
if (union_type->data.unionation.is_invalid)
return;
return ErrorSemanticAnalyzeFail;
if (union_type->zero_bits) {
union_type->type_ref = LLVMVoidType();
@ -2238,7 +2247,7 @@ static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, replacement_di_type);
union_type->di_type = replacement_di_type;
return;
return ErrorNone;
}
uint64_t padding_in_bits = biggest_size_in_bits - size_of_most_aligned_member_in_bits;
@ -2274,7 +2283,7 @@ static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, replacement_di_type);
union_type->di_type = replacement_di_type;
return;
return ErrorNone;
}
LLVMTypeRef union_type_ref;
@ -2293,7 +2302,7 @@ static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, tag_type->di_type);
union_type->di_type = tag_type->di_type;
return;
return ErrorNone;
} else {
union_type_ref = most_aligned_union_member->type_ref;
}
@ -2367,19 +2376,21 @@ static void resolve_union_type(CodeGen *g, TypeTableEntry *union_type) {
ZigLLVMReplaceTemporary(g->dbuilder, union_type->di_type, replacement_di_type);
union_type->di_type = replacement_di_type;
return ErrorNone;
}
static void resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type) {
static Error resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type) {
assert(enum_type->id == TypeTableEntryIdEnum);
if (enum_type->data.enumeration.zero_bits_known)
return;
return ErrorNone;
if (enum_type->data.enumeration.zero_bits_loop_flag) {
add_node_error(g, enum_type->data.enumeration.decl_node,
buf_sprintf("'%s' depends on itself", buf_ptr(&enum_type->name)));
enum_type->data.enumeration.is_invalid = true;
return;
return ErrorSemanticAnalyzeFail;
}
enum_type->data.enumeration.zero_bits_loop_flag = true;
@ -2398,7 +2409,7 @@ static void resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type) {
enum_type->data.enumeration.is_invalid = true;
enum_type->data.enumeration.zero_bits_loop_flag = false;
enum_type->data.enumeration.zero_bits_known = true;
return;
return ErrorSemanticAnalyzeFail;
}
enum_type->data.enumeration.src_field_count = field_count;
@ -2525,13 +2536,18 @@ static void resolve_enum_zero_bits(CodeGen *g, TypeTableEntry *enum_type) {
enum_type->data.enumeration.zero_bits_loop_flag = false;
enum_type->zero_bits = !type_has_bits(tag_int_type);
enum_type->data.enumeration.zero_bits_known = true;
assert(!enum_type->data.enumeration.is_invalid);
return ErrorNone;
}
static void resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type) {
static Error resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type) {
assert(struct_type->id == TypeTableEntryIdStruct);
Error err;
if (struct_type->data.structure.zero_bits_known)
return;
return ErrorNone;
if (struct_type->data.structure.zero_bits_loop_flag) {
// If we get here it's due to recursion. This is a design flaw in the compiler,
@ -2547,7 +2563,7 @@ static void resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type) {
struct_type->data.structure.abi_alignment = LLVMABIAlignmentOfType(g->target_data_ref, LLVMPointerType(LLVMInt8Type(), 0));
}
}
return;
return ErrorNone;
}
struct_type->data.structure.zero_bits_loop_flag = true;
@ -2596,8 +2612,7 @@ static void resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type) {
buf_sprintf("enums, not structs, support field assignment"));
}
type_ensure_zero_bits_known(g, field_type);
if (type_is_invalid(field_type)) {
if ((err = type_ensure_zero_bits_known(g, field_type))) {
struct_type->data.structure.is_invalid = true;
continue;
}
@ -2634,16 +2649,24 @@ static void resolve_struct_zero_bits(CodeGen *g, TypeTableEntry *struct_type) {
struct_type->data.structure.gen_field_count = (uint32_t)gen_field_index;
struct_type->zero_bits = (gen_field_index == 0);
struct_type->data.structure.zero_bits_known = true;
if (struct_type->data.structure.is_invalid) {
return ErrorSemanticAnalyzeFail;
}
return ErrorNone;
}
static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
static Error resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
assert(union_type->id == TypeTableEntryIdUnion);
Error err;
if (union_type->data.unionation.zero_bits_known)
return;
return ErrorNone;
if (type_is_invalid(union_type))
return;
return ErrorSemanticAnalyzeFail;
if (union_type->data.unionation.zero_bits_loop_flag) {
// If we get here it's due to recursion. From this we conclude that the struct is
@ -2660,7 +2683,7 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
LLVMPointerType(LLVMInt8Type(), 0));
}
}
return;
return ErrorNone;
}
union_type->data.unionation.zero_bits_loop_flag = true;
@ -2679,7 +2702,7 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
union_type->data.unionation.is_invalid = true;
union_type->data.unionation.zero_bits_loop_flag = false;
union_type->data.unionation.zero_bits_known = true;
return;
return ErrorSemanticAnalyzeFail;
}
union_type->data.unionation.src_field_count = field_count;
union_type->data.unionation.fields = allocate<TypeUnionField>(field_count);
@ -2711,13 +2734,13 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
tag_int_type = analyze_type_expr(g, scope, enum_type_node);
if (type_is_invalid(tag_int_type)) {
union_type->data.unionation.is_invalid = true;
return;
return ErrorSemanticAnalyzeFail;
}
if (tag_int_type->id != TypeTableEntryIdInt) {
add_node_error(g, enum_type_node,
buf_sprintf("expected integer tag type, found '%s'", buf_ptr(&tag_int_type->name)));
union_type->data.unionation.is_invalid = true;
return;
return ErrorSemanticAnalyzeFail;
}
} else {
tag_int_type = get_smallest_unsigned_int_type(g, field_count - 1);
@ -2744,13 +2767,13 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
TypeTableEntry *enum_type = analyze_type_expr(g, scope, enum_type_node);
if (type_is_invalid(enum_type)) {
union_type->data.unionation.is_invalid = true;
return;
return ErrorSemanticAnalyzeFail;
}
if (enum_type->id != TypeTableEntryIdEnum) {
union_type->data.unionation.is_invalid = true;
add_node_error(g, enum_type_node,
buf_sprintf("expected enum tag type, found '%s'", buf_ptr(&enum_type->name)));
return;
return ErrorSemanticAnalyzeFail;
}
tag_type = enum_type;
abi_alignment_so_far = get_abi_alignment(g, enum_type); // this populates src_field_count
@ -2789,8 +2812,7 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
}
} else {
field_type = analyze_type_expr(g, scope, field_node->data.struct_field.type);
type_ensure_zero_bits_known(g, field_type);
if (type_is_invalid(field_type)) {
if ((err = type_ensure_zero_bits_known(g, field_type))) {
union_type->data.unionation.is_invalid = true;
continue;
}
@ -2883,7 +2905,7 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
union_type->data.unionation.abi_alignment = abi_alignment_so_far;
if (union_type->data.unionation.is_invalid)
return;
return ErrorSemanticAnalyzeFail;
bool src_have_tag = decl_node->data.container_decl.auto_enum ||
decl_node->data.container_decl.init_arg_expr != nullptr;
@ -2905,7 +2927,7 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
add_node_error(g, source_node,
buf_sprintf("%s union does not support enum tag type", qual_str));
union_type->data.unionation.is_invalid = true;
return;
return ErrorSemanticAnalyzeFail;
}
if (create_enum_type) {
@ -2970,6 +2992,8 @@ static void resolve_union_zero_bits(CodeGen *g, TypeTableEntry *union_type) {
union_type->data.unionation.gen_field_count = gen_field_index;
union_type->zero_bits = (gen_field_index == 0 && (field_count < 2 || !src_have_tag));
union_type->data.unionation.zero_bits_known = true;
assert(!union_type->data.unionation.is_invalid);
return ErrorNone;
}
static void get_fully_qualified_decl_name_internal(Buf *buf, Scope *scope, uint8_t sep) {
@ -3463,13 +3487,13 @@ VariableTableEntry *add_variable(CodeGen *g, AstNode *source_node, Scope *parent
variable_entry->shadowable = false;
variable_entry->mem_slot_index = SIZE_MAX;
variable_entry->src_arg_index = SIZE_MAX;
variable_entry->align_bytes = get_abi_alignment(g, value->type);
assert(name);
buf_init_from_buf(&variable_entry->name, name);
if (value->type->id != TypeTableEntryIdInvalid) {
if (!type_is_invalid(value->type)) {
variable_entry->align_bytes = get_abi_alignment(g, value->type);
VariableTableEntry *existing_var = find_variable(g, parent_scope, name);
if (existing_var && !existing_var->shadowable) {
ErrorMsg *msg = add_node_error(g, source_node,
@ -5311,13 +5335,13 @@ ConstExprValue *create_const_arg_tuple(CodeGen *g, size_t arg_index_start, size_
void init_const_undefined(CodeGen *g, ConstExprValue *const_val) {
Error err;
TypeTableEntry *wanted_type = const_val->type;
if (wanted_type->id == TypeTableEntryIdArray) {
const_val->special = ConstValSpecialStatic;
const_val->data.x_array.special = ConstArraySpecialUndef;
} else if (wanted_type->id == TypeTableEntryIdStruct) {
ensure_complete_type(g, wanted_type);
if (type_is_invalid(wanted_type)) {
if ((err = ensure_complete_type(g, wanted_type))) {
return;
}
@ -5350,27 +5374,33 @@ ConstExprValue *create_const_vals(size_t count) {
return vals;
}
void ensure_complete_type(CodeGen *g, TypeTableEntry *type_entry) {
Error ensure_complete_type(CodeGen *g, TypeTableEntry *type_entry) {
if (type_is_invalid(type_entry))
return ErrorSemanticAnalyzeFail;
if (type_entry->id == TypeTableEntryIdStruct) {
if (!type_entry->data.structure.complete)
resolve_struct_type(g, type_entry);
return resolve_struct_type(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdEnum) {
if (!type_entry->data.enumeration.complete)
resolve_enum_type(g, type_entry);
return resolve_enum_type(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdUnion) {
if (!type_entry->data.unionation.complete)
resolve_union_type(g, type_entry);
return resolve_union_type(g, type_entry);
}
return ErrorNone;
}
void type_ensure_zero_bits_known(CodeGen *g, TypeTableEntry *type_entry) {
Error type_ensure_zero_bits_known(CodeGen *g, TypeTableEntry *type_entry) {
if (type_is_invalid(type_entry))
return ErrorSemanticAnalyzeFail;
if (type_entry->id == TypeTableEntryIdStruct) {
resolve_struct_zero_bits(g, type_entry);
return resolve_struct_zero_bits(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdEnum) {
resolve_enum_zero_bits(g, type_entry);
return resolve_enum_zero_bits(g, type_entry);
} else if (type_entry->id == TypeTableEntryIdUnion) {
resolve_union_zero_bits(g, type_entry);
return resolve_union_zero_bits(g, type_entry);
}
return ErrorNone;
}
bool ir_get_var_is_comptime(VariableTableEntry *var) {
@ -6213,7 +6243,7 @@ LinkLib *add_link_lib(CodeGen *g, Buf *name) {
}
uint32_t get_abi_alignment(CodeGen *g, TypeTableEntry *type_entry) {
type_ensure_zero_bits_known(g, type_entry);
assertNoError(type_ensure_zero_bits_known(g, type_entry));
if (type_entry->zero_bits) return 0;
// We need to make this function work without requiring ensure_complete_type

View File

@ -9,6 +9,7 @@
#define ZIG_ANALYZE_HPP
#include "all_types.hpp"
#include "result.hpp"
void semantic_analyze(CodeGen *g);
ErrorMsg *add_node_error(CodeGen *g, AstNode *node, Buf *msg);
@ -88,8 +89,8 @@ void init_fn_type_id(FnTypeId *fn_type_id, AstNode *proto_node, size_t param_cou
AstNode *get_param_decl_node(FnTableEntry *fn_entry, size_t index);
FnTableEntry *scope_get_fn_if_root(Scope *scope);
bool type_requires_comptime(TypeTableEntry *type_entry);
void ensure_complete_type(CodeGen *g, TypeTableEntry *type_entry);
void type_ensure_zero_bits_known(CodeGen *g, TypeTableEntry *type_entry);
Error ATTRIBUTE_MUST_USE ensure_complete_type(CodeGen *g, TypeTableEntry *type_entry);
Error ATTRIBUTE_MUST_USE type_ensure_zero_bits_known(CodeGen *g, TypeTableEntry *type_entry);
void complete_enum(CodeGen *g, TypeTableEntry *enum_type);
bool ir_get_var_is_comptime(VariableTableEntry *var);
bool const_values_equal(ConstExprValue *a, ConstExprValue *b);
@ -178,7 +179,7 @@ TypeTableEntryId type_id_at_index(size_t index);
size_t type_id_len();
size_t type_id_index(TypeTableEntry *entry);
TypeTableEntry *get_generic_fn_type(CodeGen *g, FnTypeId *fn_type_id);
bool type_is_copyable(CodeGen *g, TypeTableEntry *type_entry);
Result<bool> type_is_copyable(CodeGen *g, TypeTableEntry *type_entry);
LinkLib *create_link_lib(Buf *name);
bool calling_convention_does_first_arg_return(CallingConvention cc);
LinkLib *add_link_lib(CodeGen *codegen, Buf *lib);

View File

@ -8711,6 +8711,7 @@ static void update_errors_helper(CodeGen *g, ErrorTableEntry ***errors, size_t *
}
static TypeTableEntry *ir_resolve_peer_types(IrAnalyze *ira, AstNode *source_node, TypeTableEntry *expected_type, IrInstruction **instructions, size_t instruction_count) {
Error err;
assert(instruction_count >= 1);
IrInstruction *prev_inst = instructions[0];
if (type_is_invalid(prev_inst->value.type)) {
@ -9172,8 +9173,7 @@ static TypeTableEntry *ir_resolve_peer_types(IrAnalyze *ira, AstNode *source_nod
if (prev_type->id == TypeTableEntryIdEnum && cur_type->id == TypeTableEntryIdUnion &&
(cur_type->data.unionation.decl_node->data.container_decl.auto_enum || cur_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr))
{
type_ensure_zero_bits_known(ira->codegen, cur_type);
if (type_is_invalid(cur_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, cur_type)))
return ira->codegen->builtin_types.entry_invalid;
if (cur_type->data.unionation.tag_type == prev_type) {
continue;
@ -9183,8 +9183,7 @@ static TypeTableEntry *ir_resolve_peer_types(IrAnalyze *ira, AstNode *source_nod
if (cur_type->id == TypeTableEntryIdEnum && prev_type->id == TypeTableEntryIdUnion &&
(prev_type->data.unionation.decl_node->data.container_decl.auto_enum || prev_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr))
{
type_ensure_zero_bits_known(ira->codegen, prev_type);
if (type_is_invalid(prev_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, prev_type)))
return ira->codegen->builtin_types.entry_invalid;
if (prev_type->data.unionation.tag_type == cur_type) {
prev_inst = cur_inst;
@ -9999,11 +9998,11 @@ static IrInstruction *ir_analyze_array_to_slice(IrAnalyze *ira, IrInstruction *s
static IrInstruction *ir_analyze_enum_to_int(IrAnalyze *ira, IrInstruction *source_instr,
IrInstruction *target, TypeTableEntry *wanted_type)
{
Error err;
assert(wanted_type->id == TypeTableEntryIdInt);
TypeTableEntry *actual_type = target->value.type;
ensure_complete_type(ira->codegen, actual_type);
if (type_is_invalid(actual_type))
if ((err = ensure_complete_type(ira->codegen, actual_type)))
return ira->codegen->invalid_instruction;
if (wanted_type != actual_type->data.enumeration.tag_int_type) {
@ -10069,6 +10068,7 @@ static IrInstruction *ir_analyze_undefined_to_anything(IrAnalyze *ira, IrInstruc
static IrInstruction *ir_analyze_enum_to_union(IrAnalyze *ira, IrInstruction *source_instr,
IrInstruction *target, TypeTableEntry *wanted_type)
{
Error err;
assert(wanted_type->id == TypeTableEntryIdUnion);
assert(target->value.type->id == TypeTableEntryIdEnum);
@ -10078,8 +10078,7 @@ static IrInstruction *ir_analyze_enum_to_union(IrAnalyze *ira, IrInstruction *so
return ira->codegen->invalid_instruction;
TypeUnionField *union_field = find_union_field_by_tag(wanted_type, &val->data.x_enum_tag);
assert(union_field != nullptr);
type_ensure_zero_bits_known(ira->codegen, union_field->type_entry);
if (type_is_invalid(union_field->type_entry))
if ((err = type_ensure_zero_bits_known(ira->codegen, union_field->type_entry)))
return ira->codegen->invalid_instruction;
if (!union_field->type_entry->zero_bits) {
AstNode *field_node = wanted_type->data.unionation.decl_node->data.container_decl.fields.at(
@ -10169,12 +10168,12 @@ static IrInstruction *ir_analyze_widen_or_shorten(IrAnalyze *ira, IrInstruction
static IrInstruction *ir_analyze_int_to_enum(IrAnalyze *ira, IrInstruction *source_instr,
IrInstruction *target, TypeTableEntry *wanted_type)
{
Error err;
assert(wanted_type->id == TypeTableEntryIdEnum);
TypeTableEntry *actual_type = target->value.type;
ensure_complete_type(ira->codegen, wanted_type);
if (type_is_invalid(wanted_type))
if ((err = ensure_complete_type(ira->codegen, wanted_type)))
return ira->codegen->invalid_instruction;
if (actual_type != wanted_type->data.enumeration.tag_int_type) {
@ -10517,6 +10516,7 @@ static void report_recursive_error(IrAnalyze *ira, AstNode *source_node, ConstCa
static IrInstruction *ir_analyze_cast(IrAnalyze *ira, IrInstruction *source_instr,
TypeTableEntry *wanted_type, IrInstruction *value)
{
Error err;
TypeTableEntry *actual_type = value->value.type;
AstNode *source_node = source_instr->source_node;
@ -10796,8 +10796,7 @@ static IrInstruction *ir_analyze_cast(IrAnalyze *ira, IrInstruction *source_inst
if (actual_type->id == TypeTableEntryIdComptimeFloat ||
actual_type->id == TypeTableEntryIdComptimeInt)
{
ensure_complete_type(ira->codegen, wanted_type);
if (type_is_invalid(wanted_type))
if ((err = ensure_complete_type(ira->codegen, wanted_type)))
return ira->codegen->invalid_instruction;
if (wanted_type->id == TypeTableEntryIdEnum) {
IrInstruction *cast1 = ir_analyze_cast(ira, source_instr, wanted_type->data.enumeration.tag_int_type, value);
@ -10853,8 +10852,7 @@ static IrInstruction *ir_analyze_cast(IrAnalyze *ira, IrInstruction *source_inst
// cast from union to the enum type of the union
if (actual_type->id == TypeTableEntryIdUnion && wanted_type->id == TypeTableEntryIdEnum) {
type_ensure_zero_bits_known(ira->codegen, actual_type);
if (type_is_invalid(actual_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, actual_type)))
return ira->codegen->invalid_instruction;
if (actual_type->data.unionation.tag_type == wanted_type) {
@ -10867,7 +10865,9 @@ static IrInstruction *ir_analyze_cast(IrAnalyze *ira, IrInstruction *source_inst
(wanted_type->data.unionation.decl_node->data.container_decl.auto_enum ||
wanted_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr))
{
type_ensure_zero_bits_known(ira->codegen, wanted_type);
if ((err = type_ensure_zero_bits_known(ira->codegen, wanted_type)))
return ira->codegen->invalid_instruction;
if (wanted_type->data.unionation.tag_type == actual_type) {
return ir_analyze_enum_to_union(ira, source_instr, value, wanted_type);
}
@ -10879,7 +10879,9 @@ static IrInstruction *ir_analyze_cast(IrAnalyze *ira, IrInstruction *source_inst
if (union_type->data.unionation.decl_node->data.container_decl.auto_enum ||
union_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr)
{
type_ensure_zero_bits_known(ira->codegen, union_type);
if ((err = type_ensure_zero_bits_known(ira->codegen, union_type)))
return ira->codegen->invalid_instruction;
if (union_type->data.unionation.tag_type == actual_type) {
IrInstruction *cast1 = ir_analyze_cast(ira, source_instr, union_type, value);
if (type_is_invalid(cast1->value.type))
@ -10923,8 +10925,7 @@ static IrInstruction *ir_analyze_cast(IrAnalyze *ira, IrInstruction *source_inst
types_match_const_cast_only(ira, wanted_type->data.pointer.child_type,
actual_type, source_node, !wanted_type->data.pointer.is_const).id == ConstCastResultIdOk)
{
type_ensure_zero_bits_known(ira->codegen, actual_type);
if (type_is_invalid(actual_type)) {
if ((err = type_ensure_zero_bits_known(ira->codegen, actual_type))) {
return ira->codegen->invalid_instruction;
}
if (!type_has_bits(actual_type)) {
@ -11323,6 +11324,7 @@ static bool optional_value_is_null(ConstExprValue *val) {
}
static TypeTableEntry *ir_analyze_bin_op_cmp(IrAnalyze *ira, IrInstructionBinOp *bin_op_instruction) {
Error err;
IrInstruction *op1 = bin_op_instruction->op1->other;
IrInstruction *op2 = bin_op_instruction->op2->other;
AstNode *source_node = bin_op_instruction->base.source_node;
@ -11458,8 +11460,7 @@ static TypeTableEntry *ir_analyze_bin_op_cmp(IrAnalyze *ira, IrInstructionBinOp
TypeTableEntry *resolved_type = ir_resolve_peer_types(ira, source_node, nullptr, instructions, 2);
if (type_is_invalid(resolved_type))
return resolved_type;
type_ensure_zero_bits_known(ira->codegen, resolved_type);
if (type_is_invalid(resolved_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, resolved_type)))
return resolved_type;
bool operator_allowed;
@ -12406,6 +12407,7 @@ static TypeTableEntry *ir_analyze_instruction_bin_op(IrAnalyze *ira, IrInstructi
}
static TypeTableEntry *ir_analyze_instruction_decl_var(IrAnalyze *ira, IrInstructionDeclVar *decl_var_instruction) {
Error err;
VariableTableEntry *var = decl_var_instruction->var;
IrInstruction *init_value = decl_var_instruction->init_value->other;
@ -12439,8 +12441,7 @@ static TypeTableEntry *ir_analyze_instruction_decl_var(IrAnalyze *ira, IrInstruc
if (type_is_invalid(result_type)) {
result_type = ira->codegen->builtin_types.entry_invalid;
} else {
type_ensure_zero_bits_known(ira->codegen, result_type);
if (type_is_invalid(result_type)) {
if ((err = type_ensure_zero_bits_known(ira->codegen, result_type))) {
result_type = ira->codegen->builtin_types.entry_invalid;
}
}
@ -12958,6 +12959,7 @@ static VariableTableEntry *get_fn_var_by_index(FnTableEntry *fn_entry, size_t in
static IrInstruction *ir_get_var_ptr(IrAnalyze *ira, IrInstruction *instruction,
VariableTableEntry *var)
{
Error err;
if (var->mem_slot_index != SIZE_MAX && var->owner_exec->analysis == nullptr) {
assert(ira->codegen->errors.length != 0);
return ira->codegen->invalid_instruction;
@ -13012,7 +13014,8 @@ no_mem_slot:
instruction->scope, instruction->source_node, var);
var_ptr_instruction->value.type = get_pointer_to_type_extra(ira->codegen, var->value->type,
var->src_is_const, is_volatile, PtrLenSingle, var->align_bytes, 0, 0);
type_ensure_zero_bits_known(ira->codegen, var->value->type);
if ((err = type_ensure_zero_bits_known(ira->codegen, var->value->type)))
return ira->codegen->invalid_instruction;
bool in_fn_scope = (scope_fn_entry(var->parent_scope) != nullptr);
var_ptr_instruction->value.data.rh_ptr = in_fn_scope ? RuntimeHintPtrStack : RuntimeHintPtrNonStack;
@ -13024,6 +13027,7 @@ static TypeTableEntry *ir_analyze_fn_call(IrAnalyze *ira, IrInstructionCall *cal
FnTableEntry *fn_entry, TypeTableEntry *fn_type, IrInstruction *fn_ref,
IrInstruction *first_arg_ptr, bool comptime_fn_call, FnInline fn_inline)
{
Error err;
FnTypeId *fn_type_id = &fn_type->data.fn.fn_type_id;
size_t first_arg_1_or_0 = first_arg_ptr ? 1 : 0;
@ -13388,8 +13392,7 @@ static TypeTableEntry *ir_analyze_fn_call(IrAnalyze *ira, IrInstructionCall *cal
inst_fn_type_id.return_type = specified_return_type;
}
type_ensure_zero_bits_known(ira->codegen, specified_return_type);
if (type_is_invalid(specified_return_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, specified_return_type)))
return ira->codegen->builtin_types.entry_invalid;
if (type_requires_comptime(specified_return_type)) {
@ -13664,12 +13667,12 @@ static TypeTableEntry *ir_analyze_dereference(IrAnalyze *ira, IrInstructionUnOp
}
static TypeTableEntry *ir_analyze_maybe(IrAnalyze *ira, IrInstructionUnOp *un_op_instruction) {
Error err;
IrInstruction *value = un_op_instruction->value->other;
TypeTableEntry *type_entry = ir_resolve_type(ira, value);
if (type_is_invalid(type_entry))
return ira->codegen->builtin_types.entry_invalid;
ensure_complete_type(ira->codegen, type_entry);
if (type_is_invalid(type_entry))
if ((err = ensure_complete_type(ira->codegen, type_entry)))
return ira->codegen->builtin_types.entry_invalid;
switch (type_entry->id) {
@ -14023,6 +14026,7 @@ static TypeTableEntry *adjust_ptr_len(CodeGen *g, TypeTableEntry *ptr_type, PtrL
}
static TypeTableEntry *ir_analyze_instruction_elem_ptr(IrAnalyze *ira, IrInstructionElemPtr *elem_ptr_instruction) {
Error err;
IrInstruction *array_ptr = elem_ptr_instruction->array_ptr->other;
if (type_is_invalid(array_ptr->value.type))
return ira->codegen->builtin_types.entry_invalid;
@ -14131,8 +14135,7 @@ static TypeTableEntry *ir_analyze_instruction_elem_ptr(IrAnalyze *ira, IrInstruc
return ira->codegen->builtin_types.entry_invalid;
bool safety_check_on = elem_ptr_instruction->safety_check_on;
ensure_complete_type(ira->codegen, return_type->data.pointer.child_type);
if (type_is_invalid(return_type->data.pointer.child_type))
if ((err = ensure_complete_type(ira->codegen, return_type->data.pointer.child_type)))
return ira->codegen->builtin_types.entry_invalid;
uint64_t elem_size = type_size(ira->codegen, return_type->data.pointer.child_type);
@ -14352,9 +14355,10 @@ static IrInstruction *ir_analyze_container_member_access_inner(IrAnalyze *ira,
static IrInstruction *ir_analyze_container_field_ptr(IrAnalyze *ira, Buf *field_name,
IrInstruction *source_instr, IrInstruction *container_ptr, TypeTableEntry *container_type)
{
Error err;
TypeTableEntry *bare_type = container_ref_type(container_type);
ensure_complete_type(ira->codegen, bare_type);
if (type_is_invalid(bare_type))
if ((err = ensure_complete_type(ira->codegen, bare_type)))
return ira->codegen->invalid_instruction;
assert(container_ptr->value.type->id == TypeTableEntryIdPointer);
@ -14553,6 +14557,7 @@ static ErrorTableEntry *find_err_table_entry(TypeTableEntry *err_set_type, Buf *
}
static TypeTableEntry *ir_analyze_instruction_field_ptr(IrAnalyze *ira, IrInstructionFieldPtr *field_ptr_instruction) {
Error err;
IrInstruction *container_ptr = field_ptr_instruction->container_ptr->other;
if (type_is_invalid(container_ptr->value.type))
return ira->codegen->builtin_types.entry_invalid;
@ -14654,8 +14659,7 @@ static TypeTableEntry *ir_analyze_instruction_field_ptr(IrAnalyze *ira, IrInstru
ConstPtrMutComptimeConst, ptr_is_const, ptr_is_volatile);
}
if (child_type->id == TypeTableEntryIdEnum) {
ensure_complete_type(ira->codegen, child_type);
if (type_is_invalid(child_type))
if ((err = ensure_complete_type(ira->codegen, child_type)))
return ira->codegen->builtin_types.entry_invalid;
TypeEnumField *field = find_enum_type_field(child_type, field_name);
@ -14679,8 +14683,7 @@ static TypeTableEntry *ir_analyze_instruction_field_ptr(IrAnalyze *ira, IrInstru
(child_type->data.unionation.decl_node->data.container_decl.init_arg_expr != nullptr ||
child_type->data.unionation.decl_node->data.container_decl.auto_enum))
{
ensure_complete_type(ira->codegen, child_type);
if (type_is_invalid(child_type))
if ((err = ensure_complete_type(ira->codegen, child_type)))
return ira->codegen->builtin_types.entry_invalid;
TypeUnionField *field = find_union_type_field(child_type, field_name);
if (field) {
@ -15257,6 +15260,7 @@ static TypeTableEntry *ir_analyze_instruction_set_float_mode(IrAnalyze *ira,
static TypeTableEntry *ir_analyze_instruction_slice_type(IrAnalyze *ira,
IrInstructionSliceType *slice_type_instruction)
{
Error err;
uint32_t align_bytes;
if (slice_type_instruction->align_value != nullptr) {
if (!ir_resolve_align(ira, slice_type_instruction->align_value->other, &align_bytes))
@ -15306,7 +15310,8 @@ static TypeTableEntry *ir_analyze_instruction_slice_type(IrAnalyze *ira,
case TypeTableEntryIdBoundFn:
case TypeTableEntryIdPromise:
{
type_ensure_zero_bits_known(ira->codegen, child_type);
if ((err = type_ensure_zero_bits_known(ira->codegen, child_type)))
return ira->codegen->builtin_types.entry_invalid;
TypeTableEntry *slice_ptr_type = get_pointer_to_type_extra(ira->codegen, child_type,
is_const, is_volatile, PtrLenUnknown, align_bytes, 0, 0);
TypeTableEntry *result_type = get_slice_type(ira->codegen, slice_ptr_type);
@ -15444,11 +15449,11 @@ static TypeTableEntry *ir_analyze_instruction_promise_type(IrAnalyze *ira, IrIns
static TypeTableEntry *ir_analyze_instruction_size_of(IrAnalyze *ira,
IrInstructionSizeOf *size_of_instruction)
{
Error err;
IrInstruction *type_value = size_of_instruction->type_value->other;
TypeTableEntry *type_entry = ir_resolve_type(ira, type_value);
ensure_complete_type(ira->codegen, type_entry);
if (type_is_invalid(type_entry))
if ((err = ensure_complete_type(ira->codegen, type_entry)))
return ira->codegen->builtin_types.entry_invalid;
switch (type_entry->id) {
@ -15819,6 +15824,7 @@ static TypeTableEntry *ir_analyze_instruction_switch_br(IrAnalyze *ira,
static TypeTableEntry *ir_analyze_instruction_switch_target(IrAnalyze *ira,
IrInstructionSwitchTarget *switch_target_instruction)
{
Error err;
IrInstruction *target_value_ptr = switch_target_instruction->target_value_ptr->other;
if (type_is_invalid(target_value_ptr->value.type))
return ira->codegen->builtin_types.entry_invalid;
@ -15845,8 +15851,7 @@ static TypeTableEntry *ir_analyze_instruction_switch_target(IrAnalyze *ira,
if (pointee_val->special == ConstValSpecialRuntime)
pointee_val = nullptr;
}
ensure_complete_type(ira->codegen, target_type);
if (type_is_invalid(target_type))
if ((err = ensure_complete_type(ira->codegen, target_type)))
return ira->codegen->builtin_types.entry_invalid;
switch (target_type->id) {
@ -15910,8 +15915,7 @@ static TypeTableEntry *ir_analyze_instruction_switch_target(IrAnalyze *ira,
return tag_type;
}
case TypeTableEntryIdEnum: {
type_ensure_zero_bits_known(ira->codegen, target_type);
if (type_is_invalid(target_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, target_type)))
return ira->codegen->builtin_types.entry_invalid;
if (target_type->data.enumeration.src_field_count < 2) {
TypeEnumField *only_field = &target_type->data.enumeration.fields[0];
@ -16113,10 +16117,10 @@ static TypeTableEntry *ir_analyze_instruction_ref(IrAnalyze *ira, IrInstructionR
static TypeTableEntry *ir_analyze_container_init_fields_union(IrAnalyze *ira, IrInstruction *instruction,
TypeTableEntry *container_type, size_t instr_field_count, IrInstructionContainerInitFieldsField *fields)
{
Error err;
assert(container_type->id == TypeTableEntryIdUnion);
ensure_complete_type(ira->codegen, container_type);
if (type_is_invalid(container_type))
if ((err = ensure_complete_type(ira->codegen, container_type)))
return ira->codegen->builtin_types.entry_invalid;
if (instr_field_count != 1) {
@ -16145,8 +16149,7 @@ static TypeTableEntry *ir_analyze_container_init_fields_union(IrAnalyze *ira, Ir
if (casted_field_value == ira->codegen->invalid_instruction)
return ira->codegen->builtin_types.entry_invalid;
type_ensure_zero_bits_known(ira->codegen, casted_field_value->value.type);
if (type_is_invalid(casted_field_value->value.type))
if ((err = type_ensure_zero_bits_known(ira->codegen, casted_field_value->value.type)))
return ira->codegen->builtin_types.entry_invalid;
bool is_comptime = ir_should_inline(ira->new_irb.exec, instruction->scope);
@ -16180,6 +16183,7 @@ static TypeTableEntry *ir_analyze_container_init_fields_union(IrAnalyze *ira, Ir
static TypeTableEntry *ir_analyze_container_init_fields(IrAnalyze *ira, IrInstruction *instruction,
TypeTableEntry *container_type, size_t instr_field_count, IrInstructionContainerInitFieldsField *fields)
{
Error err;
if (container_type->id == TypeTableEntryIdUnion) {
return ir_analyze_container_init_fields_union(ira, instruction, container_type, instr_field_count, fields);
}
@ -16190,8 +16194,7 @@ static TypeTableEntry *ir_analyze_container_init_fields(IrAnalyze *ira, IrInstru
return ira->codegen->builtin_types.entry_invalid;
}
ensure_complete_type(ira->codegen, container_type);
if (type_is_invalid(container_type))
if ((err = ensure_complete_type(ira->codegen, container_type)))
return ira->codegen->builtin_types.entry_invalid;
size_t actual_field_count = container_type->data.structure.src_field_count;
@ -16572,6 +16575,7 @@ static TypeTableEntry *ir_analyze_instruction_err_name(IrAnalyze *ira, IrInstruc
}
static TypeTableEntry *ir_analyze_instruction_enum_tag_name(IrAnalyze *ira, IrInstructionTagName *instruction) {
Error err;
IrInstruction *target = instruction->target->other;
if (type_is_invalid(target->value.type))
return ira->codegen->builtin_types.entry_invalid;
@ -16579,8 +16583,7 @@ static TypeTableEntry *ir_analyze_instruction_enum_tag_name(IrAnalyze *ira, IrIn
assert(target->value.type->id == TypeTableEntryIdEnum);
if (instr_is_comptime(target)) {
type_ensure_zero_bits_known(ira->codegen, target->value.type);
if (type_is_invalid(target->value.type))
if ((err = type_ensure_zero_bits_known(ira->codegen, target->value.type)))
return ira->codegen->builtin_types.entry_invalid;
TypeEnumField *field = find_enum_field_by_tag(target->value.type, &target->value.data.x_bigint);
ConstExprValue *array_val = create_const_str_lit(ira->codegen, field->name);
@ -16604,6 +16607,7 @@ static TypeTableEntry *ir_analyze_instruction_enum_tag_name(IrAnalyze *ira, IrIn
static TypeTableEntry *ir_analyze_instruction_field_parent_ptr(IrAnalyze *ira,
IrInstructionFieldParentPtr *instruction)
{
Error err;
IrInstruction *type_value = instruction->type_value->other;
TypeTableEntry *container_type = ir_resolve_type(ira, type_value);
if (type_is_invalid(container_type))
@ -16624,8 +16628,7 @@ static TypeTableEntry *ir_analyze_instruction_field_parent_ptr(IrAnalyze *ira,
return ira->codegen->builtin_types.entry_invalid;
}
ensure_complete_type(ira->codegen, container_type);
if (type_is_invalid(container_type))
if ((err = ensure_complete_type(ira->codegen, container_type)))
return ira->codegen->builtin_types.entry_invalid;
TypeStructField *field = find_struct_type_field(container_type, field_name);
@ -16697,13 +16700,13 @@ static TypeTableEntry *ir_analyze_instruction_field_parent_ptr(IrAnalyze *ira,
static TypeTableEntry *ir_analyze_instruction_offset_of(IrAnalyze *ira,
IrInstructionOffsetOf *instruction)
{
Error err;
IrInstruction *type_value = instruction->type_value->other;
TypeTableEntry *container_type = ir_resolve_type(ira, type_value);
if (type_is_invalid(container_type))
return ira->codegen->builtin_types.entry_invalid;
ensure_complete_type(ira->codegen, container_type);
if (type_is_invalid(container_type))
if ((err = ensure_complete_type(ira->codegen, container_type)))
return ira->codegen->builtin_types.entry_invalid;
IrInstruction *field_name_value = instruction->field_name->other;
@ -16750,6 +16753,7 @@ static void ensure_field_index(TypeTableEntry *type, const char *field_name, siz
static TypeTableEntry *ir_type_info_get_type(IrAnalyze *ira, const char *type_name, TypeTableEntry *root = nullptr)
{
Error err;
static ConstExprValue *type_info_var = nullptr;
static TypeTableEntry *type_info_type = nullptr;
if (type_info_var == nullptr)
@ -16757,8 +16761,7 @@ static TypeTableEntry *ir_type_info_get_type(IrAnalyze *ira, const char *type_na
type_info_var = get_builtin_value(ira->codegen, "TypeInfo");
assert(type_info_var->type->id == TypeTableEntryIdMetaType);
ensure_complete_type(ira->codegen, type_info_var->data.x_type);
if (type_is_invalid(type_info_var->data.x_type))
if ((err = ensure_complete_type(ira->codegen, type_info_var->data.x_type)))
return ira->codegen->builtin_types.entry_invalid;
type_info_type = type_info_var->data.x_type;
@ -16785,8 +16788,7 @@ static TypeTableEntry *ir_type_info_get_type(IrAnalyze *ira, const char *type_na
VariableTableEntry *var = tld->var;
ensure_complete_type(ira->codegen, var->value->type);
if (type_is_invalid(var->value->type))
if ((err = ensure_complete_type(ira->codegen, var->value->type)))
return ira->codegen->builtin_types.entry_invalid;
assert(var->value->type->id == TypeTableEntryIdMetaType);
return var->value->data.x_type;
@ -16794,9 +16796,9 @@ static TypeTableEntry *ir_type_info_get_type(IrAnalyze *ira, const char *type_na
static bool ir_make_type_info_defs(IrAnalyze *ira, ConstExprValue *out_val, ScopeDecls *decls_scope)
{
Error err;
TypeTableEntry *type_info_definition_type = ir_type_info_get_type(ira, "Definition");
ensure_complete_type(ira->codegen, type_info_definition_type);
if (type_is_invalid(type_info_definition_type))
if ((err = ensure_complete_type(ira->codegen, type_info_definition_type)))
return false;
ensure_field_index(type_info_definition_type, "name", 0);
@ -16804,18 +16806,15 @@ static bool ir_make_type_info_defs(IrAnalyze *ira, ConstExprValue *out_val, Scop
ensure_field_index(type_info_definition_type, "data", 2);
TypeTableEntry *type_info_definition_data_type = ir_type_info_get_type(ira, "Data", type_info_definition_type);
ensure_complete_type(ira->codegen, type_info_definition_data_type);
if (type_is_invalid(type_info_definition_data_type))
if ((err = ensure_complete_type(ira->codegen, type_info_definition_data_type)))
return false;
TypeTableEntry *type_info_fn_def_type = ir_type_info_get_type(ira, "FnDef", type_info_definition_data_type);
ensure_complete_type(ira->codegen, type_info_fn_def_type);
if (type_is_invalid(type_info_fn_def_type))
if ((err = ensure_complete_type(ira->codegen, type_info_fn_def_type)))
return false;
TypeTableEntry *type_info_fn_def_inline_type = ir_type_info_get_type(ira, "Inline", type_info_fn_def_type);
ensure_complete_type(ira->codegen, type_info_fn_def_inline_type);
if (type_is_invalid(type_info_fn_def_inline_type))
if ((err = ensure_complete_type(ira->codegen, type_info_fn_def_inline_type)))
return false;
// Loop through our definitions once to figure out how many definitions we will generate info for.
@ -16895,8 +16894,7 @@ static bool ir_make_type_info_defs(IrAnalyze *ira, ConstExprValue *out_val, Scop
case TldIdVar:
{
VariableTableEntry *var = ((TldVar *)curr_entry->value)->var;
ensure_complete_type(ira->codegen, var->value->type);
if (type_is_invalid(var->value->type))
if ((err = ensure_complete_type(ira->codegen, var->value->type)))
return false;
if (var->value->type->id == TypeTableEntryIdMetaType)
@ -17027,8 +17025,7 @@ static bool ir_make_type_info_defs(IrAnalyze *ira, ConstExprValue *out_val, Scop
case TldIdContainer:
{
TypeTableEntry *type_entry = ((TldContainer *)curr_entry->value)->type_entry;
ensure_complete_type(ira->codegen, type_entry);
if (type_is_invalid(type_entry))
if ((err = ensure_complete_type(ira->codegen, type_entry)))
return false;
// This is a type.
@ -17055,11 +17052,11 @@ static bool ir_make_type_info_defs(IrAnalyze *ira, ConstExprValue *out_val, Scop
}
static ConstExprValue *ir_make_type_info_value(IrAnalyze *ira, TypeTableEntry *type_entry) {
Error err;
assert(type_entry != nullptr);
assert(!type_is_invalid(type_entry));
ensure_complete_type(ira->codegen, type_entry);
if (type_is_invalid(type_entry))
if ((err = ensure_complete_type(ira->codegen, type_entry)))
return nullptr;
const auto make_enum_field_val = [ira](ConstExprValue *enum_field_val, TypeEnumField *enum_field,
@ -17093,8 +17090,7 @@ static ConstExprValue *ir_make_type_info_value(IrAnalyze *ira, TypeTableEntry *t
}
TypeTableEntry *type_info_pointer_type = ir_type_info_get_type(ira, "Pointer");
ensure_complete_type(ira->codegen, type_info_pointer_type);
assert(!type_is_invalid(type_info_pointer_type));
assertNoError(ensure_complete_type(ira->codegen, type_info_pointer_type));
ConstExprValue *result = create_const_vals(1);
result->special = ConstValSpecialStatic;
@ -17106,8 +17102,7 @@ static ConstExprValue *ir_make_type_info_value(IrAnalyze *ira, TypeTableEntry *t
// size: Size
ensure_field_index(result->type, "size", 0);
TypeTableEntry *type_info_pointer_size_type = ir_type_info_get_type(ira, "Size", type_info_pointer_type);
ensure_complete_type(ira->codegen, type_info_pointer_size_type);
assert(!type_is_invalid(type_info_pointer_size_type));
assertNoError(ensure_complete_type(ira->codegen, type_info_pointer_size_type));
fields[0].special = ConstValSpecialStatic;
fields[0].type = type_info_pointer_size_type;
bigint_init_unsigned(&fields[0].data.x_enum_tag, size_enum_index);
@ -18896,13 +18891,13 @@ static TypeTableEntry *ir_analyze_instruction_slice(IrAnalyze *ira, IrInstructio
}
static TypeTableEntry *ir_analyze_instruction_member_count(IrAnalyze *ira, IrInstructionMemberCount *instruction) {
Error err;
IrInstruction *container = instruction->container->other;
if (type_is_invalid(container->value.type))
return ira->codegen->builtin_types.entry_invalid;
TypeTableEntry *container_type = ir_resolve_type(ira, container);
ensure_complete_type(ira->codegen, container_type);
if (type_is_invalid(container_type))
if ((err = ensure_complete_type(ira->codegen, container_type)))
return ira->codegen->builtin_types.entry_invalid;
uint64_t result;
@ -18934,13 +18929,13 @@ static TypeTableEntry *ir_analyze_instruction_member_count(IrAnalyze *ira, IrIns
}
static TypeTableEntry *ir_analyze_instruction_member_type(IrAnalyze *ira, IrInstructionMemberType *instruction) {
Error err;
IrInstruction *container_type_value = instruction->container_type->other;
TypeTableEntry *container_type = ir_resolve_type(ira, container_type_value);
if (type_is_invalid(container_type))
return ira->codegen->builtin_types.entry_invalid;
ensure_complete_type(ira->codegen, container_type);
if (type_is_invalid(container_type))
if ((err = ensure_complete_type(ira->codegen, container_type)))
return ira->codegen->builtin_types.entry_invalid;
@ -18981,13 +18976,13 @@ static TypeTableEntry *ir_analyze_instruction_member_type(IrAnalyze *ira, IrInst
}
static TypeTableEntry *ir_analyze_instruction_member_name(IrAnalyze *ira, IrInstructionMemberName *instruction) {
Error err;
IrInstruction *container_type_value = instruction->container_type->other;
TypeTableEntry *container_type = ir_resolve_type(ira, container_type_value);
if (type_is_invalid(container_type))
return ira->codegen->builtin_types.entry_invalid;
ensure_complete_type(ira->codegen, container_type);
if (type_is_invalid(container_type))
if ((err = ensure_complete_type(ira->codegen, container_type)))
return ira->codegen->builtin_types.entry_invalid;
uint64_t member_index;
@ -19068,13 +19063,13 @@ static TypeTableEntry *ir_analyze_instruction_handle(IrAnalyze *ira, IrInstructi
}
static TypeTableEntry *ir_analyze_instruction_align_of(IrAnalyze *ira, IrInstructionAlignOf *instruction) {
Error err;
IrInstruction *type_value = instruction->type_value->other;
if (type_is_invalid(type_value->value.type))
return ira->codegen->builtin_types.entry_invalid;
TypeTableEntry *type_entry = ir_resolve_type(ira, type_value);
type_ensure_zero_bits_known(ira->codegen, type_entry);
if (type_is_invalid(type_entry))
if ((err = type_ensure_zero_bits_known(ira->codegen, type_entry)))
return ira->codegen->builtin_types.entry_invalid;
switch (type_entry->id) {
@ -19930,6 +19925,7 @@ static void buf_read_value_bytes(CodeGen *codegen, uint8_t *buf, ConstExprValue
}
static TypeTableEntry *ir_analyze_instruction_bit_cast(IrAnalyze *ira, IrInstructionBitCast *instruction) {
Error err;
IrInstruction *dest_type_value = instruction->dest_type->other;
TypeTableEntry *dest_type = ir_resolve_type(ira, dest_type_value);
if (type_is_invalid(dest_type))
@ -19940,12 +19936,10 @@ static TypeTableEntry *ir_analyze_instruction_bit_cast(IrAnalyze *ira, IrInstruc
if (type_is_invalid(src_type))
return ira->codegen->builtin_types.entry_invalid;
ensure_complete_type(ira->codegen, dest_type);
if (type_is_invalid(dest_type))
if ((err = ensure_complete_type(ira->codegen, dest_type)))
return ira->codegen->builtin_types.entry_invalid;
ensure_complete_type(ira->codegen, src_type);
if (type_is_invalid(src_type))
if ((err = ensure_complete_type(ira->codegen, src_type)))
return ira->codegen->builtin_types.entry_invalid;
if (get_codegen_ptr_type(src_type) != nullptr) {
@ -20031,6 +20025,7 @@ static TypeTableEntry *ir_analyze_instruction_bit_cast(IrAnalyze *ira, IrInstruc
}
static TypeTableEntry *ir_analyze_instruction_int_to_ptr(IrAnalyze *ira, IrInstructionIntToPtr *instruction) {
Error err;
IrInstruction *dest_type_value = instruction->dest_type->other;
TypeTableEntry *dest_type = ir_resolve_type(ira, dest_type_value);
if (type_is_invalid(dest_type))
@ -20041,7 +20036,8 @@ static TypeTableEntry *ir_analyze_instruction_int_to_ptr(IrAnalyze *ira, IrInstr
return ira->codegen->builtin_types.entry_invalid;
}
type_ensure_zero_bits_known(ira->codegen, dest_type);
if ((err = type_ensure_zero_bits_known(ira->codegen, dest_type)))
return ira->codegen->builtin_types.entry_invalid;
if (!type_has_bits(dest_type)) {
ir_add_error(ira, dest_type_value,
buf_sprintf("type '%s' has 0 bits and cannot store information", buf_ptr(&dest_type->name)));
@ -20174,6 +20170,7 @@ static TypeTableEntry *ir_analyze_instruction_ptr_to_int(IrAnalyze *ira, IrInstr
}
static TypeTableEntry *ir_analyze_instruction_ptr_type(IrAnalyze *ira, IrInstructionPtrType *instruction) {
Error err;
TypeTableEntry *child_type = ir_resolve_type(ira, instruction->child_type->other);
if (type_is_invalid(child_type))
return ira->codegen->builtin_types.entry_invalid;
@ -20191,8 +20188,7 @@ static TypeTableEntry *ir_analyze_instruction_ptr_type(IrAnalyze *ira, IrInstruc
if (!ir_resolve_align(ira, instruction->align_value->other, &align_bytes))
return ira->codegen->builtin_types.entry_invalid;
} else {
type_ensure_zero_bits_known(ira->codegen, child_type);
if (type_is_invalid(child_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, child_type)))
return ira->codegen->builtin_types.entry_invalid;
align_bytes = get_abi_alignment(ira->codegen, child_type);
}
@ -20312,22 +20308,21 @@ static TypeTableEntry *ir_analyze_instruction_arg_type(IrAnalyze *ira, IrInstruc
}
static TypeTableEntry *ir_analyze_instruction_tag_type(IrAnalyze *ira, IrInstructionTagType *instruction) {
Error err;
IrInstruction *target_inst = instruction->target->other;
TypeTableEntry *enum_type = ir_resolve_type(ira, target_inst);
if (type_is_invalid(enum_type))
return ira->codegen->builtin_types.entry_invalid;
if (enum_type->id == TypeTableEntryIdEnum) {
ensure_complete_type(ira->codegen, enum_type);
if (type_is_invalid(enum_type))
if ((err = ensure_complete_type(ira->codegen, enum_type)))
return ira->codegen->builtin_types.entry_invalid;
ConstExprValue *out_val = ir_build_const_from(ira, &instruction->base);
out_val->data.x_type = enum_type->data.enumeration.tag_int_type;
return ira->codegen->builtin_types.entry_type;
} else if (enum_type->id == TypeTableEntryIdUnion) {
ensure_complete_type(ira->codegen, enum_type);
if (type_is_invalid(enum_type))
if ((err = ensure_complete_type(ira->codegen, enum_type)))
return ira->codegen->builtin_types.entry_invalid;
AstNode *decl_node = enum_type->data.unionation.decl_node;
@ -20830,6 +20825,7 @@ static TypeTableEntry *ir_analyze_instruction_sqrt(IrAnalyze *ira, IrInstruction
}
static TypeTableEntry *ir_analyze_instruction_enum_to_int(IrAnalyze *ira, IrInstructionEnumToInt *instruction) {
Error err;
IrInstruction *target = instruction->target->other;
if (type_is_invalid(target->value.type))
return ira->codegen->builtin_types.entry_invalid;
@ -20840,8 +20836,7 @@ static TypeTableEntry *ir_analyze_instruction_enum_to_int(IrAnalyze *ira, IrInst
return ira->codegen->builtin_types.entry_invalid;
}
type_ensure_zero_bits_known(ira->codegen, target->value.type);
if (type_is_invalid(target->value.type))
if ((err = type_ensure_zero_bits_known(ira->codegen, target->value.type)))
return ira->codegen->builtin_types.entry_invalid;
TypeTableEntry *tag_type = target->value.type->data.enumeration.tag_int_type;
@ -20852,6 +20847,7 @@ static TypeTableEntry *ir_analyze_instruction_enum_to_int(IrAnalyze *ira, IrInst
}
static TypeTableEntry *ir_analyze_instruction_int_to_enum(IrAnalyze *ira, IrInstructionIntToEnum *instruction) {
Error err;
IrInstruction *dest_type_value = instruction->dest_type->other;
TypeTableEntry *dest_type = ir_resolve_type(ira, dest_type_value);
if (type_is_invalid(dest_type))
@ -20863,8 +20859,7 @@ static TypeTableEntry *ir_analyze_instruction_int_to_enum(IrAnalyze *ira, IrInst
return ira->codegen->builtin_types.entry_invalid;
}
type_ensure_zero_bits_known(ira->codegen, dest_type);
if (type_is_invalid(dest_type))
if ((err = type_ensure_zero_bits_known(ira->codegen, dest_type)))
return ira->codegen->builtin_types.entry_invalid;
TypeTableEntry *tag_type = dest_type->data.enumeration.tag_int_type;

36
src/result.hpp Normal file
View File

@ -0,0 +1,36 @@
/*
* Copyright (c) 2018 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#ifndef ZIG_RESULT_HPP
#define ZIG_RESULT_HPP
#include "error.hpp"
#include <assert.h>
static inline void assertNoError(Error err) {
assert(err == ErrorNone);
}
template<typename T>
struct Result {
T data;
Error err;
Result(T x) : data(x), err(ErrorNone) {}
Result(Error err) : err(err) {
assert(err != ErrorNone);
}
T unwrap() {
assert(err == ErrorNone);
return data;
}
};
#endif

View File

@ -21,6 +21,7 @@
#define ATTRIBUTE_PRINTF(a, b)
#define ATTRIBUTE_RETURNS_NOALIAS __declspec(restrict)
#define ATTRIBUTE_NORETURN __declspec(noreturn)
#define ATTRIBUTE_MUST_USE
#else
@ -28,6 +29,7 @@
#define ATTRIBUTE_PRINTF(a, b) __attribute__((format(printf, a, b)))
#define ATTRIBUTE_RETURNS_NOALIAS __attribute__((__malloc__))
#define ATTRIBUTE_NORETURN __attribute__((noreturn))
#define ATTRIBUTE_MUST_USE __attribute__((warn_unused_result))
#endif

View File

@ -1,3 +1,5 @@
const macho = @import("../macho.zig");
extern "c" fn __error() *c_int;
pub extern "c" fn _NSGetExecutablePath(buf: [*]u8, bufsize: *u32) c_int;
pub extern "c" fn _dyld_get_image_header(image_index: u32) ?*mach_header;
@ -40,6 +42,9 @@ pub extern "c" fn socket(domain: c_int, type: c_int, protocol: c_int) c_int;
/// absolute as the header is not part of any section.
pub extern "c" var _mh_execute_header: if (@sizeOf(usize) == 8) mach_header_64 else mach_header;
pub const mach_header_64 = macho.mach_header_64;
pub const mach_header = macho.mach_header;
pub use @import("../os/darwin/errno.zig");
pub const _errno = __error;
@ -146,353 +151,6 @@ pub const Kevent = extern struct {
udata: usize,
};
pub const mach_header = extern struct {
magic: u32,
cputype: cpu_type_t,
cpusubtype: cpu_subtype_t,
filetype: u32,
ncmds: u32,
sizeofcmds: u32,
flags: u32,
};
pub const mach_header_64 = extern struct {
magic: u32,
cputype: cpu_type_t,
cpusubtype: cpu_subtype_t,
filetype: u32,
ncmds: u32,
sizeofcmds: u32,
flags: u32,
reserved: u32,
};
pub const load_command = extern struct {
cmd: u32,
cmdsize: u32,
};
/// The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
/// "stab" style symbol table information as described in the header files
/// <nlist.h> and <stab.h>.
pub const symtab_command = extern struct {
cmd: u32, /// LC_SYMTAB
cmdsize: u32, /// sizeof(struct symtab_command)
symoff: u32, /// symbol table offset
nsyms: u32, /// number of symbol table entries
stroff: u32, /// string table offset
strsize: u32, /// string table size in bytes
};
/// The linkedit_data_command contains the offsets and sizes of a blob
/// of data in the __LINKEDIT segment.
const linkedit_data_command = extern struct {
cmd: u32,/// LC_CODE_SIGNATURE, LC_SEGMENT_SPLIT_INFO, LC_FUNCTION_STARTS, LC_DATA_IN_CODE, LC_DYLIB_CODE_SIGN_DRS or LC_LINKER_OPTIMIZATION_HINT.
cmdsize: u32, /// sizeof(struct linkedit_data_command)
dataoff: u32 , /// file offset of data in __LINKEDIT segment
datasize: u32 , /// file size of data in __LINKEDIT segment
};
/// The segment load command indicates that a part of this file is to be
/// mapped into the task's address space. The size of this segment in memory,
/// vmsize, maybe equal to or larger than the amount to map from this file,
/// filesize. The file is mapped starting at fileoff to the beginning of
/// the segment in memory, vmaddr. The rest of the memory of the segment,
/// if any, is allocated zero fill on demand. The segment's maximum virtual
/// memory protection and initial virtual memory protection are specified
/// by the maxprot and initprot fields. If the segment has sections then the
/// section structures directly follow the segment command and their size is
/// reflected in cmdsize.
pub const segment_command = extern struct {
cmd: u32,/// LC_SEGMENT
cmdsize: u32,/// includes sizeof section structs
segname: [16]u8,/// segment name
vmaddr: u32,/// memory address of this segment
vmsize: u32,/// memory size of this segment
fileoff: u32,/// file offset of this segment
filesize: u32,/// amount to map from the file
maxprot: vm_prot_t,/// maximum VM protection
initprot: vm_prot_t,/// initial VM protection
nsects: u32,/// number of sections in segment
flags: u32,
};
/// The 64-bit segment load command indicates that a part of this file is to be
/// mapped into a 64-bit task's address space. If the 64-bit segment has
/// sections then section_64 structures directly follow the 64-bit segment
/// command and their size is reflected in cmdsize.
pub const segment_command_64 = extern struct {
cmd: u32, /// LC_SEGMENT_64
cmdsize: u32, /// includes sizeof section_64 structs
segname: [16]u8, /// segment name
vmaddr: u64, /// memory address of this segment
vmsize: u64, /// memory size of this segment
fileoff: u64, /// file offset of this segment
filesize: u64, /// amount to map from the file
maxprot: vm_prot_t, /// maximum VM protection
initprot: vm_prot_t, /// initial VM protection
nsects: u32, /// number of sections in segment
flags: u32,
};
/// A segment is made up of zero or more sections. Non-MH_OBJECT files have
/// all of their segments with the proper sections in each, and padded to the
/// specified segment alignment when produced by the link editor. The first
/// segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
/// and load commands of the object file before its first section. The zero
/// fill sections are always last in their segment (in all formats). This
/// allows the zeroed segment padding to be mapped into memory where zero fill
/// sections might be. The gigabyte zero fill sections, those with the section
/// type S_GB_ZEROFILL, can only be in a segment with sections of this type.
/// These segments are then placed after all other segments.
///
/// The MH_OBJECT format has all of its sections in one segment for
/// compactness. There is no padding to a specified segment boundary and the
/// mach_header and load commands are not part of the segment.
///
/// Sections with the same section name, sectname, going into the same segment,
/// segname, are combined by the link editor. The resulting section is aligned
/// to the maximum alignment of the combined sections and is the new section's
/// alignment. The combined sections are aligned to their original alignment in
/// the combined section. Any padded bytes to get the specified alignment are
/// zeroed.
///
/// The format of the relocation entries referenced by the reloff and nreloc
/// fields of the section structure for mach object files is described in the
/// header file <reloc.h>.
pub const @"section" = extern struct {
sectname: [16]u8, /// name of this section
segname: [16]u8, /// segment this section goes in
addr: u32, /// memory address of this section
size: u32, /// size in bytes of this section
offset: u32, /// file offset of this section
@"align": u32, /// section alignment (power of 2)
reloff: u32, /// file offset of relocation entries
nreloc: u32, /// number of relocation entries
flags: u32, /// flags (section type and attributes
reserved1: u32, /// reserved (for offset or index)
reserved2: u32, /// reserved (for count or sizeof)
};
pub const section_64 = extern struct {
sectname: [16]u8, /// name of this section
segname: [16]u8, /// segment this section goes in
addr: u64, /// memory address of this section
size: u64, /// size in bytes of this section
offset: u32, /// file offset of this section
@"align": u32, /// section alignment (power of 2)
reloff: u32, /// file offset of relocation entries
nreloc: u32, /// number of relocation entries
flags: u32, /// flags (section type and attributes
reserved1: u32, /// reserved (for offset or index)
reserved2: u32, /// reserved (for count or sizeof)
reserved3: u32, /// reserved
};
pub const nlist = extern struct {
n_strx: u32,
n_type: u8,
n_sect: u8,
n_desc: i16,
n_value: u32,
};
pub const nlist_64 = extern struct {
n_strx: u32,
n_type: u8,
n_sect: u8,
n_desc: u16,
n_value: u64,
};
/// After MacOS X 10.1 when a new load command is added that is required to be
/// understood by the dynamic linker for the image to execute properly the
/// LC_REQ_DYLD bit will be or'ed into the load command constant. If the dynamic
/// linker sees such a load command it it does not understand will issue a
/// "unknown load command required for execution" error and refuse to use the
/// image. Other load commands without this bit that are not understood will
/// simply be ignored.
pub const LC_REQ_DYLD = 0x80000000;
pub const LC_SEGMENT = 0x1; /// segment of this file to be mapped
pub const LC_SYMTAB = 0x2; /// link-edit stab symbol table info
pub const LC_SYMSEG = 0x3; /// link-edit gdb symbol table info (obsolete)
pub const LC_THREAD = 0x4; /// thread
pub const LC_UNIXTHREAD = 0x5; /// unix thread (includes a stack)
pub const LC_LOADFVMLIB = 0x6; /// load a specified fixed VM shared library
pub const LC_IDFVMLIB = 0x7; /// fixed VM shared library identification
pub const LC_IDENT = 0x8; /// object identification info (obsolete)
pub const LC_FVMFILE = 0x9; /// fixed VM file inclusion (internal use)
pub const LC_PREPAGE = 0xa; /// prepage command (internal use)
pub const LC_DYSYMTAB = 0xb; /// dynamic link-edit symbol table info
pub const LC_LOAD_DYLIB = 0xc; /// load a dynamically linked shared library
pub const LC_ID_DYLIB = 0xd; /// dynamically linked shared lib ident
pub const LC_LOAD_DYLINKER = 0xe; /// load a dynamic linker
pub const LC_ID_DYLINKER = 0xf; /// dynamic linker identification
pub const LC_PREBOUND_DYLIB = 0x10; /// modules prebound for a dynamically
pub const LC_ROUTINES = 0x11; /// image routines
pub const LC_SUB_FRAMEWORK = 0x12; /// sub framework
pub const LC_SUB_UMBRELLA = 0x13; /// sub umbrella
pub const LC_SUB_CLIENT = 0x14; /// sub client
pub const LC_SUB_LIBRARY = 0x15; /// sub library
pub const LC_TWOLEVEL_HINTS = 0x16; /// two-level namespace lookup hints
pub const LC_PREBIND_CKSUM = 0x17; /// prebind checksum
/// load a dynamically linked shared library that is allowed to be missing
/// (all symbols are weak imported).
pub const LC_LOAD_WEAK_DYLIB = (0x18 | LC_REQ_DYLD);
pub const LC_SEGMENT_64 = 0x19; /// 64-bit segment of this file to be mapped
pub const LC_ROUTINES_64 = 0x1a; /// 64-bit image routines
pub const LC_UUID = 0x1b; /// the uuid
pub const LC_RPATH = (0x1c | LC_REQ_DYLD); /// runpath additions
pub const LC_CODE_SIGNATURE = 0x1d; /// local of code signature
pub const LC_SEGMENT_SPLIT_INFO = 0x1e; /// local of info to split segments
pub const LC_REEXPORT_DYLIB = (0x1f | LC_REQ_DYLD); /// load and re-export dylib
pub const LC_LAZY_LOAD_DYLIB = 0x20; /// delay load of dylib until first use
pub const LC_ENCRYPTION_INFO = 0x21; /// encrypted segment information
pub const LC_DYLD_INFO = 0x22; /// compressed dyld information
pub const LC_DYLD_INFO_ONLY = (0x22|LC_REQ_DYLD); /// compressed dyld information only
pub const LC_LOAD_UPWARD_DYLIB = (0x23 | LC_REQ_DYLD); /// load upward dylib
pub const LC_VERSION_MIN_MACOSX = 0x24; /// build for MacOSX min OS version
pub const LC_VERSION_MIN_IPHONEOS = 0x25; /// build for iPhoneOS min OS version
pub const LC_FUNCTION_STARTS = 0x26; /// compressed table of function start addresses
pub const LC_DYLD_ENVIRONMENT = 0x27; /// string for dyld to treat like environment variable
pub const LC_MAIN = (0x28|LC_REQ_DYLD); /// replacement for LC_UNIXTHREAD
pub const LC_DATA_IN_CODE = 0x29; /// table of non-instructions in __text
pub const LC_SOURCE_VERSION = 0x2A; /// source version used to build binary
pub const LC_DYLIB_CODE_SIGN_DRS = 0x2B; /// Code signing DRs copied from linked dylibs
pub const LC_ENCRYPTION_INFO_64 = 0x2C; /// 64-bit encrypted segment information
pub const LC_LINKER_OPTION = 0x2D; /// linker options in MH_OBJECT files
pub const LC_LINKER_OPTIMIZATION_HINT = 0x2E; /// optimization hints in MH_OBJECT files
pub const LC_VERSION_MIN_TVOS = 0x2F; /// build for AppleTV min OS version
pub const LC_VERSION_MIN_WATCHOS = 0x30; /// build for Watch min OS version
pub const LC_NOTE = 0x31; /// arbitrary data included within a Mach-O file
pub const LC_BUILD_VERSION = 0x32; /// build for platform min OS version
pub const MH_MAGIC = 0xfeedface; /// the mach magic number
pub const MH_CIGAM = 0xcefaedfe; /// NXSwapInt(MH_MAGIC)
pub const MH_MAGIC_64 = 0xfeedfacf; /// the 64-bit mach magic number
pub const MH_CIGAM_64 = 0xcffaedfe; /// NXSwapInt(MH_MAGIC_64)
pub const MH_OBJECT = 0x1; /// relocatable object file
pub const MH_EXECUTE = 0x2; /// demand paged executable file
pub const MH_FVMLIB = 0x3; /// fixed VM shared library file
pub const MH_CORE = 0x4; /// core file
pub const MH_PRELOAD = 0x5; /// preloaded executable file
pub const MH_DYLIB = 0x6; /// dynamically bound shared library
pub const MH_DYLINKER = 0x7; /// dynamic link editor
pub const MH_BUNDLE = 0x8; /// dynamically bound bundle file
pub const MH_DYLIB_STUB = 0x9; /// shared library stub for static linking only, no section contents
pub const MH_DSYM = 0xa; /// companion file with only debug sections
pub const MH_KEXT_BUNDLE = 0xb; /// x86_64 kexts
// Constants for the flags field of the mach_header
pub const MH_NOUNDEFS = 0x1; /// the object file has no undefined references
pub const MH_INCRLINK = 0x2; /// the object file is the output of an incremental link against a base file and can't be link edited again
pub const MH_DYLDLINK = 0x4; /// the object file is input for the dynamic linker and can't be staticly link edited again
pub const MH_BINDATLOAD = 0x8; /// the object file's undefined references are bound by the dynamic linker when loaded.
pub const MH_PREBOUND = 0x10; /// the file has its dynamic undefined references prebound.
pub const MH_SPLIT_SEGS = 0x20; /// the file has its read-only and read-write segments split
pub const MH_LAZY_INIT = 0x40; /// the shared library init routine is to be run lazily via catching memory faults to its writeable segments (obsolete)
pub const MH_TWOLEVEL = 0x80; /// the image is using two-level name space bindings
pub const MH_FORCE_FLAT = 0x100; /// the executable is forcing all images to use flat name space bindings
pub const MH_NOMULTIDEFS = 0x200; /// this umbrella guarantees no multiple defintions of symbols in its sub-images so the two-level namespace hints can always be used.
pub const MH_NOFIXPREBINDING = 0x400; /// do not have dyld notify the prebinding agent about this executable
pub const MH_PREBINDABLE = 0x800; /// the binary is not prebound but can have its prebinding redone. only used when MH_PREBOUND is not set.
pub const MH_ALLMODSBOUND = 0x1000; /// indicates that this binary binds to all two-level namespace modules of its dependent libraries. only used when MH_PREBINDABLE and MH_TWOLEVEL are both set.
pub const MH_SUBSECTIONS_VIA_SYMBOLS = 0x2000;/// safe to divide up the sections into sub-sections via symbols for dead code stripping
pub const MH_CANONICAL = 0x4000; /// the binary has been canonicalized via the unprebind operation
pub const MH_WEAK_DEFINES = 0x8000; /// the final linked image contains external weak symbols
pub const MH_BINDS_TO_WEAK = 0x10000; /// the final linked image uses weak symbols
pub const MH_ALLOW_STACK_EXECUTION = 0x20000;/// When this bit is set, all stacks in the task will be given stack execution privilege. Only used in MH_EXECUTE filetypes.
pub const MH_ROOT_SAFE = 0x40000; /// When this bit is set, the binary declares it is safe for use in processes with uid zero
pub const MH_SETUID_SAFE = 0x80000; /// When this bit is set, the binary declares it is safe for use in processes when issetugid() is true
pub const MH_NO_REEXPORTED_DYLIBS = 0x100000; /// When this bit is set on a dylib, the static linker does not need to examine dependent dylibs to see if any are re-exported
pub const MH_PIE = 0x200000; /// When this bit is set, the OS will load the main executable at a random address. Only used in MH_EXECUTE filetypes.
pub const MH_DEAD_STRIPPABLE_DYLIB = 0x400000; /// Only for use on dylibs. When linking against a dylib that has this bit set, the static linker will automatically not create a LC_LOAD_DYLIB load command to the dylib if no symbols are being referenced from the dylib.
pub const MH_HAS_TLV_DESCRIPTORS = 0x800000; /// Contains a section of type S_THREAD_LOCAL_VARIABLES
pub const MH_NO_HEAP_EXECUTION = 0x1000000; /// When this bit is set, the OS will run the main executable with a non-executable heap even on platforms (e.g. i386) that don't require it. Only used in MH_EXECUTE filetypes.
pub const MH_APP_EXTENSION_SAFE = 0x02000000; /// The code was linked for use in an application extension.
pub const MH_NLIST_OUTOFSYNC_WITH_DYLDINFO = 0x04000000; /// The external symbols listed in the nlist symbol table do not include all the symbols listed in the dyld info.
/// The flags field of a section structure is separated into two parts a section
/// type and section attributes. The section types are mutually exclusive (it
/// can only have one type) but the section attributes are not (it may have more
/// than one attribute).
/// 256 section types
pub const SECTION_TYPE = 0x000000ff;
pub const SECTION_ATTRIBUTES = 0xffffff00; /// 24 section attributes
pub const S_REGULAR = 0x0; /// regular section
pub const S_ZEROFILL = 0x1; /// zero fill on demand section
pub const S_CSTRING_LITERALS = 0x2; /// section with only literal C string
pub const S_4BYTE_LITERALS = 0x3; /// section with only 4 byte literals
pub const S_8BYTE_LITERALS = 0x4; /// section with only 8 byte literals
pub const S_LITERAL_POINTERS = 0x5; /// section with only pointers to
pub const N_STAB = 0xe0; /// if any of these bits set, a symbolic debugging entry
pub const N_PEXT = 0x10; /// private external symbol bit
pub const N_TYPE = 0x0e; /// mask for the type bits
pub const N_EXT = 0x01; /// external symbol bit, set for external symbols
pub const N_GSYM = 0x20; /// global symbol: name,,NO_SECT,type,0
pub const N_FNAME = 0x22; /// procedure name (f77 kludge): name,,NO_SECT,0,0
pub const N_FUN = 0x24; /// procedure: name,,n_sect,linenumber,address
pub const N_STSYM = 0x26; /// static symbol: name,,n_sect,type,address
pub const N_LCSYM = 0x28; /// .lcomm symbol: name,,n_sect,type,address
pub const N_BNSYM = 0x2e; /// begin nsect sym: 0,,n_sect,0,address
pub const N_AST = 0x32; /// AST file path: name,,NO_SECT,0,0
pub const N_OPT = 0x3c; /// emitted with gcc2_compiled and in gcc source
pub const N_RSYM = 0x40; /// register sym: name,,NO_SECT,type,register
pub const N_SLINE = 0x44; /// src line: 0,,n_sect,linenumber,address
pub const N_ENSYM = 0x4e; /// end nsect sym: 0,,n_sect,0,address
pub const N_SSYM = 0x60; /// structure elt: name,,NO_SECT,type,struct_offset
pub const N_SO = 0x64; /// source file name: name,,n_sect,0,address
pub const N_OSO = 0x66; /// object file name: name,,0,0,st_mtime
pub const N_LSYM = 0x80; /// local sym: name,,NO_SECT,type,offset
pub const N_BINCL = 0x82; /// include file beginning: name,,NO_SECT,0,sum
pub const N_SOL = 0x84; /// #included file name: name,,n_sect,0,address
pub const N_PARAMS = 0x86; /// compiler parameters: name,,NO_SECT,0,0
pub const N_VERSION = 0x88; /// compiler version: name,,NO_SECT,0,0
pub const N_OLEVEL = 0x8A; /// compiler -O level: name,,NO_SECT,0,0
pub const N_PSYM = 0xa0; /// parameter: name,,NO_SECT,type,offset
pub const N_EINCL = 0xa2; /// include file end: name,,NO_SECT,0,0
pub const N_ENTRY = 0xa4; /// alternate entry: name,,n_sect,linenumber,address
pub const N_LBRAC = 0xc0; /// left bracket: 0,,NO_SECT,nesting level,address
pub const N_EXCL = 0xc2; /// deleted include file: name,,NO_SECT,0,sum
pub const N_RBRAC = 0xe0; /// right bracket: 0,,NO_SECT,nesting level,address
pub const N_BCOMM = 0xe2; /// begin common: name,,NO_SECT,0,0
pub const N_ECOMM = 0xe4; /// end common: name,,n_sect,0,0
pub const N_ECOML = 0xe8; /// end common (local name): 0,,n_sect,0,address
pub const N_LENG = 0xfe; /// second stab entry with length information
/// If a segment contains any sections marked with S_ATTR_DEBUG then all
/// sections in that segment must have this attribute. No section other than
/// a section marked with this attribute may reference the contents of this
/// section. A section with this attribute may contain no symbols and must have
/// a section type S_REGULAR. The static linker will not copy section contents
/// from sections with this attribute into its output file. These sections
/// generally contain DWARF debugging info.
pub const S_ATTR_DEBUG = 0x02000000; /// a debug section
pub const cpu_type_t = integer_t;
pub const cpu_subtype_t = integer_t;
pub const integer_t = c_int;
pub const vm_prot_t = c_int;
// sys/types.h on macos uses #pragma pack(4) so these checks are
// to make sure the struct is laid out the same. These values were
// produced from C code using the offsetof macro.

View File

@ -8,3 +8,6 @@ pub const pthread_attr_t = extern struct {
__size: [56]u8,
__align: c_long,
};
/// See std.elf for constants for this
pub extern fn getauxval(__type: c_ulong) c_ulong;

View File

@ -4,6 +4,7 @@ const mem = std.mem;
const io = std.io;
const os = std.os;
const elf = std.elf;
const macho = std.macho;
const DW = std.dwarf;
const ArrayList = std.ArrayList;
const builtin = @import("builtin");
@ -369,33 +370,7 @@ pub const OpenSelfDebugInfoError = error{
pub fn openSelfDebugInfo(allocator: *mem.Allocator) !DebugInfo {
switch (builtin.os) {
builtin.Os.linux => {
const st = try allocator.create(DebugInfo{
.self_exe_file = undefined,
.elf = undefined,
.debug_info = undefined,
.debug_abbrev = undefined,
.debug_str = undefined,
.debug_line = undefined,
.debug_ranges = null,
.abbrev_table_list = ArrayList(AbbrevTableHeader).init(allocator),
.compile_unit_list = ArrayList(CompileUnit).init(allocator),
});
errdefer allocator.destroy(st);
st.self_exe_file = try os.openSelfExe();
errdefer st.self_exe_file.close();
try st.elf.openFile(allocator, &st.self_exe_file);
errdefer st.elf.close();
st.debug_info = (try st.elf.findSection(".debug_info")) orelse return error.MissingDebugInfo;
st.debug_abbrev = (try st.elf.findSection(".debug_abbrev")) orelse return error.MissingDebugInfo;
st.debug_str = (try st.elf.findSection(".debug_str")) orelse return error.MissingDebugInfo;
st.debug_line = (try st.elf.findSection(".debug_line")) orelse return error.MissingDebugInfo;
st.debug_ranges = (try st.elf.findSection(".debug_ranges"));
try scanAllCompileUnits(st);
return st;
},
builtin.Os.linux => return openSelfDebugInfoLinux(allocator),
builtin.Os.macosx, builtin.Os.ios => return openSelfDebugInfoMacOs(allocator),
builtin.Os.windows => {
// TODO: https://github.com/ziglang/zig/issues/721
@ -405,40 +380,91 @@ pub fn openSelfDebugInfo(allocator: *mem.Allocator) !DebugInfo {
}
}
fn openSelfDebugInfoLinux(allocator: *mem.Allocator) !DebugInfo {
var di = DebugInfo{
.self_exe_file = undefined,
.elf = undefined,
.debug_info = undefined,
.debug_abbrev = undefined,
.debug_str = undefined,
.debug_line = undefined,
.debug_ranges = null,
.abbrev_table_list = ArrayList(AbbrevTableHeader).init(allocator),
.compile_unit_list = ArrayList(CompileUnit).init(allocator),
};
di.self_exe_file = try os.openSelfExe();
errdefer di.self_exe_file.close();
try di.elf.openFile(allocator, &di.self_exe_file);
errdefer di.elf.close();
di.debug_info = (try di.elf.findSection(".debug_info")) orelse return error.MissingDebugInfo;
di.debug_abbrev = (try di.elf.findSection(".debug_abbrev")) orelse return error.MissingDebugInfo;
di.debug_str = (try di.elf.findSection(".debug_str")) orelse return error.MissingDebugInfo;
di.debug_line = (try di.elf.findSection(".debug_line")) orelse return error.MissingDebugInfo;
di.debug_ranges = (try di.elf.findSection(".debug_ranges"));
try scanAllCompileUnits(&di);
return di;
}
pub fn findElfSection(elf: *Elf, name: []const u8) ?*elf.Shdr {
var file_stream = io.FileInStream.init(elf.in_file);
const in = &file_stream.stream;
section_loop: for (elf.section_headers) |*elf_section| {
if (elf_section.sh_type == SHT_NULL) continue;
const name_offset = elf.string_section.offset + elf_section.name;
try elf.in_file.seekTo(name_offset);
for (name) |expected_c| {
const target_c = try in.readByte();
if (target_c == 0 or expected_c != target_c) continue :section_loop;
}
{
const null_byte = try in.readByte();
if (null_byte == 0) return elf_section;
}
}
return null;
}
fn openSelfDebugInfoMacOs(allocator: *mem.Allocator) !DebugInfo {
const hdr = &std.c._mh_execute_header;
assert(hdr.magic == std.c.MH_MAGIC_64);
assert(hdr.magic == std.macho.MH_MAGIC_64);
const hdr_base = @ptrCast([*]u8, hdr);
var ptr = hdr_base + @sizeOf(std.c.mach_header_64);
var ptr = hdr_base + @sizeOf(macho.mach_header_64);
var ncmd: u32 = hdr.ncmds;
const symtab = while (ncmd != 0) : (ncmd -= 1) {
const lc = @ptrCast(*std.c.load_command, ptr);
const lc = @ptrCast(*std.macho.load_command, ptr);
switch (lc.cmd) {
std.c.LC_SYMTAB => break @ptrCast(*std.c.symtab_command, ptr),
std.macho.LC_SYMTAB => break @ptrCast(*std.macho.symtab_command, ptr),
else => {},
}
ptr += lc.cmdsize; // TODO https://github.com/ziglang/zig/issues/1403
} else {
return error.MissingDebugInfo;
};
const syms = @ptrCast([*]std.c.nlist_64, hdr_base + symtab.symoff)[0..symtab.nsyms];
const syms = @ptrCast([*]macho.nlist_64, hdr_base + symtab.symoff)[0..symtab.nsyms];
const strings = @ptrCast([*]u8, hdr_base + symtab.stroff)[0..symtab.strsize];
const symbols_buf = try allocator.alloc(MachoSymbol, syms.len);
var ofile: ?*std.c.nlist_64 = null;
var ofile: ?*macho.nlist_64 = null;
var reloc: u64 = 0;
var symbol_index: usize = 0;
var last_len: u64 = 0;
for (syms) |*sym| {
if (sym.n_type & std.c.N_STAB != 0) {
if (sym.n_type & std.macho.N_STAB != 0) {
switch (sym.n_type) {
std.c.N_OSO => {
std.macho.N_OSO => {
ofile = sym;
reloc = 0;
},
std.c.N_FUN => {
std.macho.N_FUN => {
if (sym.n_sect == 0) {
last_len = sym.n_value;
} else {
@ -450,7 +476,7 @@ fn openSelfDebugInfoMacOs(allocator: *mem.Allocator) !DebugInfo {
symbol_index += 1;
}
},
std.c.N_BNSYM => {
std.macho.N_BNSYM => {
if (reloc == 0) {
reloc = sym.n_value;
}
@ -459,8 +485,8 @@ fn openSelfDebugInfoMacOs(allocator: *mem.Allocator) !DebugInfo {
}
}
}
const sentinel = try allocator.createOne(std.c.nlist_64);
sentinel.* = std.c.nlist_64{
const sentinel = try allocator.createOne(macho.nlist_64);
sentinel.* = macho.nlist_64{
.n_strx = 0,
.n_type = 36,
.n_sect = 0,
@ -515,8 +541,8 @@ fn printLineFromFile(out_stream: var, line_info: *const LineInfo) !void {
}
const MachoSymbol = struct {
nlist: *std.c.nlist_64,
ofile: ?*std.c.nlist_64,
nlist: *macho.nlist_64,
ofile: ?*macho.nlist_64,
reloc: u64,
/// Returns the address from the macho file
@ -530,9 +556,9 @@ const MachoSymbol = struct {
};
const MachOFile = struct {
bytes: []align(@alignOf(std.c.mach_header_64)) const u8,
sect_debug_info: ?*const std.c.section_64,
sect_debug_line: ?*const std.c.section_64,
bytes: []align(@alignOf(macho.mach_header_64)) const u8,
sect_debug_info: ?*const macho.section_64,
sect_debug_line: ?*const macho.section_64,
};
pub const DebugInfo = switch (builtin.os) {
@ -542,10 +568,10 @@ pub const DebugInfo = switch (builtin.os) {
ofiles: OFileTable,
const OFileTable = std.HashMap(
*std.c.nlist_64,
*macho.nlist_64,
MachOFile,
std.hash_map.getHashPtrAddrFn(*std.c.nlist_64),
std.hash_map.getTrivialEqlFn(*std.c.nlist_64),
std.hash_map.getHashPtrAddrFn(*macho.nlist_64),
std.hash_map.getTrivialEqlFn(*macho.nlist_64),
);
pub fn allocator(self: DebugInfo) *mem.Allocator {
@ -563,7 +589,7 @@ pub const DebugInfo = switch (builtin.os) {
abbrev_table_list: ArrayList(AbbrevTableHeader),
compile_unit_list: ArrayList(CompileUnit),
pub fn allocator(self: *const DebugInfo) *mem.Allocator {
pub fn allocator(self: DebugInfo) *mem.Allocator {
return self.abbrev_table_list.allocator;
}
@ -983,30 +1009,31 @@ fn getLineNumberInfoMacOs(di: *DebugInfo, symbol: MachoSymbol, target_address: u
const ofile_path = mem.toSliceConst(u8, di.strings.ptr + ofile.n_strx);
gop.kv.value = MachOFile{
.bytes = try std.io.readFileAllocAligned(di.ofiles.allocator, ofile_path, @alignOf(std.c.mach_header_64)),
.bytes = try std.io.readFileAllocAligned(di.ofiles.allocator, ofile_path, @alignOf(macho.mach_header_64)),
.sect_debug_info = null,
.sect_debug_line = null,
};
const hdr = @ptrCast(*const std.c.mach_header_64, gop.kv.value.bytes.ptr);
if (hdr.magic != std.c.MH_MAGIC_64) return error.InvalidDebugInfo;
const hdr = @ptrCast(*const macho.mach_header_64, gop.kv.value.bytes.ptr);
if (hdr.magic != std.macho.MH_MAGIC_64) return error.InvalidDebugInfo;
const hdr_base = @ptrCast([*]const u8, hdr);
var ptr = hdr_base + @sizeOf(std.c.mach_header_64);
var ptr = hdr_base + @sizeOf(macho.mach_header_64);
var ncmd: u32 = hdr.ncmds;
const segcmd = while (ncmd != 0) : (ncmd -= 1) {
const lc = @ptrCast(*const std.c.load_command, ptr);
const lc = @ptrCast(*const std.macho.load_command, ptr);
switch (lc.cmd) {
std.c.LC_SEGMENT_64 => break @ptrCast(*const std.c.segment_command_64, ptr),
std.macho.LC_SEGMENT_64 => break @ptrCast(*const std.macho.segment_command_64, ptr),
else => {},
}
ptr += lc.cmdsize; // TODO https://github.com/ziglang/zig/issues/1403
} else {
return error.MissingDebugInfo;
};
const sections = @alignCast(@alignOf(std.c.section_64), @ptrCast([*]const std.c.section_64, ptr + @sizeOf(std.c.segment_command_64)))[0..segcmd.nsects];
const sections = @alignCast(@alignOf(macho.section_64), @ptrCast([*]const macho.section_64, ptr + @sizeOf(std.macho.segment_command_64)))[0..segcmd.nsects];
for (sections) |*sect| {
if (sect.flags & std.c.SECTION_TYPE == std.c.S_REGULAR and
(sect.flags & std.c.SECTION_ATTRIBUTES) & std.c.S_ATTR_DEBUG == std.c.S_ATTR_DEBUG) {
if (sect.flags & macho.SECTION_TYPE == macho.S_REGULAR and
(sect.flags & macho.SECTION_ATTRIBUTES) & macho.S_ATTR_DEBUG == macho.S_ATTR_DEBUG)
{
const sect_name = mem.toSliceConst(u8, &sect.sectname);
if (mem.eql(u8, sect_name, "__debug_line")) {
gop.kv.value.sect_debug_line = sect;
@ -1052,7 +1079,7 @@ fn getLineNumberInfoMacOs(di: *DebugInfo, symbol: MachoSymbol, target_address: u
const opcode_base = readByteMem(&ptr);
const standard_opcode_lengths = ptr[0..opcode_base - 1];
const standard_opcode_lengths = ptr[0 .. opcode_base - 1];
ptr += opcode_base - 1;
var include_directories = ArrayList([]const u8).init(di.allocator());

View File

@ -869,6 +869,11 @@ pub const Phdr = switch (@sizeOf(usize)) {
8 => Elf64_Phdr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Shdr = switch (@sizeOf(usize)) {
4 => Elf32_Shdr,
8 => Elf64_Shdr,
else => @compileError("expected pointer size of 32 or 64"),
};
pub const Sym = switch (@sizeOf(usize)) {
4 => Elf32_Sym,
8 => Elf64_Sym,

348
std/macho.zig Normal file
View File

@ -0,0 +1,348 @@
pub const mach_header = extern struct {
magic: u32,
cputype: cpu_type_t,
cpusubtype: cpu_subtype_t,
filetype: u32,
ncmds: u32,
sizeofcmds: u32,
flags: u32,
};
pub const mach_header_64 = extern struct {
magic: u32,
cputype: cpu_type_t,
cpusubtype: cpu_subtype_t,
filetype: u32,
ncmds: u32,
sizeofcmds: u32,
flags: u32,
reserved: u32,
};
pub const load_command = extern struct {
cmd: u32,
cmdsize: u32,
};
/// The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
/// "stab" style symbol table information as described in the header files
/// <nlist.h> and <stab.h>.
pub const symtab_command = extern struct {
cmd: u32, /// LC_SYMTAB
cmdsize: u32, /// sizeof(struct symtab_command)
symoff: u32, /// symbol table offset
nsyms: u32, /// number of symbol table entries
stroff: u32, /// string table offset
strsize: u32, /// string table size in bytes
};
/// The linkedit_data_command contains the offsets and sizes of a blob
/// of data in the __LINKEDIT segment.
const linkedit_data_command = extern struct {
cmd: u32,/// LC_CODE_SIGNATURE, LC_SEGMENT_SPLIT_INFO, LC_FUNCTION_STARTS, LC_DATA_IN_CODE, LC_DYLIB_CODE_SIGN_DRS or LC_LINKER_OPTIMIZATION_HINT.
cmdsize: u32, /// sizeof(struct linkedit_data_command)
dataoff: u32 , /// file offset of data in __LINKEDIT segment
datasize: u32 , /// file size of data in __LINKEDIT segment
};
/// The segment load command indicates that a part of this file is to be
/// mapped into the task's address space. The size of this segment in memory,
/// vmsize, maybe equal to or larger than the amount to map from this file,
/// filesize. The file is mapped starting at fileoff to the beginning of
/// the segment in memory, vmaddr. The rest of the memory of the segment,
/// if any, is allocated zero fill on demand. The segment's maximum virtual
/// memory protection and initial virtual memory protection are specified
/// by the maxprot and initprot fields. If the segment has sections then the
/// section structures directly follow the segment command and their size is
/// reflected in cmdsize.
pub const segment_command = extern struct {
cmd: u32,/// LC_SEGMENT
cmdsize: u32,/// includes sizeof section structs
segname: [16]u8,/// segment name
vmaddr: u32,/// memory address of this segment
vmsize: u32,/// memory size of this segment
fileoff: u32,/// file offset of this segment
filesize: u32,/// amount to map from the file
maxprot: vm_prot_t,/// maximum VM protection
initprot: vm_prot_t,/// initial VM protection
nsects: u32,/// number of sections in segment
flags: u32,
};
/// The 64-bit segment load command indicates that a part of this file is to be
/// mapped into a 64-bit task's address space. If the 64-bit segment has
/// sections then section_64 structures directly follow the 64-bit segment
/// command and their size is reflected in cmdsize.
pub const segment_command_64 = extern struct {
cmd: u32, /// LC_SEGMENT_64
cmdsize: u32, /// includes sizeof section_64 structs
segname: [16]u8, /// segment name
vmaddr: u64, /// memory address of this segment
vmsize: u64, /// memory size of this segment
fileoff: u64, /// file offset of this segment
filesize: u64, /// amount to map from the file
maxprot: vm_prot_t, /// maximum VM protection
initprot: vm_prot_t, /// initial VM protection
nsects: u32, /// number of sections in segment
flags: u32,
};
/// A segment is made up of zero or more sections. Non-MH_OBJECT files have
/// all of their segments with the proper sections in each, and padded to the
/// specified segment alignment when produced by the link editor. The first
/// segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
/// and load commands of the object file before its first section. The zero
/// fill sections are always last in their segment (in all formats). This
/// allows the zeroed segment padding to be mapped into memory where zero fill
/// sections might be. The gigabyte zero fill sections, those with the section
/// type S_GB_ZEROFILL, can only be in a segment with sections of this type.
/// These segments are then placed after all other segments.
///
/// The MH_OBJECT format has all of its sections in one segment for
/// compactness. There is no padding to a specified segment boundary and the
/// mach_header and load commands are not part of the segment.
///
/// Sections with the same section name, sectname, going into the same segment,
/// segname, are combined by the link editor. The resulting section is aligned
/// to the maximum alignment of the combined sections and is the new section's
/// alignment. The combined sections are aligned to their original alignment in
/// the combined section. Any padded bytes to get the specified alignment are
/// zeroed.
///
/// The format of the relocation entries referenced by the reloff and nreloc
/// fields of the section structure for mach object files is described in the
/// header file <reloc.h>.
pub const @"section" = extern struct {
sectname: [16]u8, /// name of this section
segname: [16]u8, /// segment this section goes in
addr: u32, /// memory address of this section
size: u32, /// size in bytes of this section
offset: u32, /// file offset of this section
@"align": u32, /// section alignment (power of 2)
reloff: u32, /// file offset of relocation entries
nreloc: u32, /// number of relocation entries
flags: u32, /// flags (section type and attributes
reserved1: u32, /// reserved (for offset or index)
reserved2: u32, /// reserved (for count or sizeof)
};
pub const section_64 = extern struct {
sectname: [16]u8, /// name of this section
segname: [16]u8, /// segment this section goes in
addr: u64, /// memory address of this section
size: u64, /// size in bytes of this section
offset: u32, /// file offset of this section
@"align": u32, /// section alignment (power of 2)
reloff: u32, /// file offset of relocation entries
nreloc: u32, /// number of relocation entries
flags: u32, /// flags (section type and attributes
reserved1: u32, /// reserved (for offset or index)
reserved2: u32, /// reserved (for count or sizeof)
reserved3: u32, /// reserved
};
pub const nlist = extern struct {
n_strx: u32,
n_type: u8,
n_sect: u8,
n_desc: i16,
n_value: u32,
};
pub const nlist_64 = extern struct {
n_strx: u32,
n_type: u8,
n_sect: u8,
n_desc: u16,
n_value: u64,
};
/// After MacOS X 10.1 when a new load command is added that is required to be
/// understood by the dynamic linker for the image to execute properly the
/// LC_REQ_DYLD bit will be or'ed into the load command constant. If the dynamic
/// linker sees such a load command it it does not understand will issue a
/// "unknown load command required for execution" error and refuse to use the
/// image. Other load commands without this bit that are not understood will
/// simply be ignored.
pub const LC_REQ_DYLD = 0x80000000;
pub const LC_SEGMENT = 0x1; /// segment of this file to be mapped
pub const LC_SYMTAB = 0x2; /// link-edit stab symbol table info
pub const LC_SYMSEG = 0x3; /// link-edit gdb symbol table info (obsolete)
pub const LC_THREAD = 0x4; /// thread
pub const LC_UNIXTHREAD = 0x5; /// unix thread (includes a stack)
pub const LC_LOADFVMLIB = 0x6; /// load a specified fixed VM shared library
pub const LC_IDFVMLIB = 0x7; /// fixed VM shared library identification
pub const LC_IDENT = 0x8; /// object identification info (obsolete)
pub const LC_FVMFILE = 0x9; /// fixed VM file inclusion (internal use)
pub const LC_PREPAGE = 0xa; /// prepage command (internal use)
pub const LC_DYSYMTAB = 0xb; /// dynamic link-edit symbol table info
pub const LC_LOAD_DYLIB = 0xc; /// load a dynamically linked shared library
pub const LC_ID_DYLIB = 0xd; /// dynamically linked shared lib ident
pub const LC_LOAD_DYLINKER = 0xe; /// load a dynamic linker
pub const LC_ID_DYLINKER = 0xf; /// dynamic linker identification
pub const LC_PREBOUND_DYLIB = 0x10; /// modules prebound for a dynamically
pub const LC_ROUTINES = 0x11; /// image routines
pub const LC_SUB_FRAMEWORK = 0x12; /// sub framework
pub const LC_SUB_UMBRELLA = 0x13; /// sub umbrella
pub const LC_SUB_CLIENT = 0x14; /// sub client
pub const LC_SUB_LIBRARY = 0x15; /// sub library
pub const LC_TWOLEVEL_HINTS = 0x16; /// two-level namespace lookup hints
pub const LC_PREBIND_CKSUM = 0x17; /// prebind checksum
/// load a dynamically linked shared library that is allowed to be missing
/// (all symbols are weak imported).
pub const LC_LOAD_WEAK_DYLIB = (0x18 | LC_REQ_DYLD);
pub const LC_SEGMENT_64 = 0x19; /// 64-bit segment of this file to be mapped
pub const LC_ROUTINES_64 = 0x1a; /// 64-bit image routines
pub const LC_UUID = 0x1b; /// the uuid
pub const LC_RPATH = (0x1c | LC_REQ_DYLD); /// runpath additions
pub const LC_CODE_SIGNATURE = 0x1d; /// local of code signature
pub const LC_SEGMENT_SPLIT_INFO = 0x1e; /// local of info to split segments
pub const LC_REEXPORT_DYLIB = (0x1f | LC_REQ_DYLD); /// load and re-export dylib
pub const LC_LAZY_LOAD_DYLIB = 0x20; /// delay load of dylib until first use
pub const LC_ENCRYPTION_INFO = 0x21; /// encrypted segment information
pub const LC_DYLD_INFO = 0x22; /// compressed dyld information
pub const LC_DYLD_INFO_ONLY = (0x22|LC_REQ_DYLD); /// compressed dyld information only
pub const LC_LOAD_UPWARD_DYLIB = (0x23 | LC_REQ_DYLD); /// load upward dylib
pub const LC_VERSION_MIN_MACOSX = 0x24; /// build for MacOSX min OS version
pub const LC_VERSION_MIN_IPHONEOS = 0x25; /// build for iPhoneOS min OS version
pub const LC_FUNCTION_STARTS = 0x26; /// compressed table of function start addresses
pub const LC_DYLD_ENVIRONMENT = 0x27; /// string for dyld to treat like environment variable
pub const LC_MAIN = (0x28|LC_REQ_DYLD); /// replacement for LC_UNIXTHREAD
pub const LC_DATA_IN_CODE = 0x29; /// table of non-instructions in __text
pub const LC_SOURCE_VERSION = 0x2A; /// source version used to build binary
pub const LC_DYLIB_CODE_SIGN_DRS = 0x2B; /// Code signing DRs copied from linked dylibs
pub const LC_ENCRYPTION_INFO_64 = 0x2C; /// 64-bit encrypted segment information
pub const LC_LINKER_OPTION = 0x2D; /// linker options in MH_OBJECT files
pub const LC_LINKER_OPTIMIZATION_HINT = 0x2E; /// optimization hints in MH_OBJECT files
pub const LC_VERSION_MIN_TVOS = 0x2F; /// build for AppleTV min OS version
pub const LC_VERSION_MIN_WATCHOS = 0x30; /// build for Watch min OS version
pub const LC_NOTE = 0x31; /// arbitrary data included within a Mach-O file
pub const LC_BUILD_VERSION = 0x32; /// build for platform min OS version
pub const MH_MAGIC = 0xfeedface; /// the mach magic number
pub const MH_CIGAM = 0xcefaedfe; /// NXSwapInt(MH_MAGIC)
pub const MH_MAGIC_64 = 0xfeedfacf; /// the 64-bit mach magic number
pub const MH_CIGAM_64 = 0xcffaedfe; /// NXSwapInt(MH_MAGIC_64)
pub const MH_OBJECT = 0x1; /// relocatable object file
pub const MH_EXECUTE = 0x2; /// demand paged executable file
pub const MH_FVMLIB = 0x3; /// fixed VM shared library file
pub const MH_CORE = 0x4; /// core file
pub const MH_PRELOAD = 0x5; /// preloaded executable file
pub const MH_DYLIB = 0x6; /// dynamically bound shared library
pub const MH_DYLINKER = 0x7; /// dynamic link editor
pub const MH_BUNDLE = 0x8; /// dynamically bound bundle file
pub const MH_DYLIB_STUB = 0x9; /// shared library stub for static linking only, no section contents
pub const MH_DSYM = 0xa; /// companion file with only debug sections
pub const MH_KEXT_BUNDLE = 0xb; /// x86_64 kexts
// Constants for the flags field of the mach_header
pub const MH_NOUNDEFS = 0x1; /// the object file has no undefined references
pub const MH_INCRLINK = 0x2; /// the object file is the output of an incremental link against a base file and can't be link edited again
pub const MH_DYLDLINK = 0x4; /// the object file is input for the dynamic linker and can't be staticly link edited again
pub const MH_BINDATLOAD = 0x8; /// the object file's undefined references are bound by the dynamic linker when loaded.
pub const MH_PREBOUND = 0x10; /// the file has its dynamic undefined references prebound.
pub const MH_SPLIT_SEGS = 0x20; /// the file has its read-only and read-write segments split
pub const MH_LAZY_INIT = 0x40; /// the shared library init routine is to be run lazily via catching memory faults to its writeable segments (obsolete)
pub const MH_TWOLEVEL = 0x80; /// the image is using two-level name space bindings
pub const MH_FORCE_FLAT = 0x100; /// the executable is forcing all images to use flat name space bindings
pub const MH_NOMULTIDEFS = 0x200; /// this umbrella guarantees no multiple defintions of symbols in its sub-images so the two-level namespace hints can always be used.
pub const MH_NOFIXPREBINDING = 0x400; /// do not have dyld notify the prebinding agent about this executable
pub const MH_PREBINDABLE = 0x800; /// the binary is not prebound but can have its prebinding redone. only used when MH_PREBOUND is not set.
pub const MH_ALLMODSBOUND = 0x1000; /// indicates that this binary binds to all two-level namespace modules of its dependent libraries. only used when MH_PREBINDABLE and MH_TWOLEVEL are both set.
pub const MH_SUBSECTIONS_VIA_SYMBOLS = 0x2000;/// safe to divide up the sections into sub-sections via symbols for dead code stripping
pub const MH_CANONICAL = 0x4000; /// the binary has been canonicalized via the unprebind operation
pub const MH_WEAK_DEFINES = 0x8000; /// the final linked image contains external weak symbols
pub const MH_BINDS_TO_WEAK = 0x10000; /// the final linked image uses weak symbols
pub const MH_ALLOW_STACK_EXECUTION = 0x20000;/// When this bit is set, all stacks in the task will be given stack execution privilege. Only used in MH_EXECUTE filetypes.
pub const MH_ROOT_SAFE = 0x40000; /// When this bit is set, the binary declares it is safe for use in processes with uid zero
pub const MH_SETUID_SAFE = 0x80000; /// When this bit is set, the binary declares it is safe for use in processes when issetugid() is true
pub const MH_NO_REEXPORTED_DYLIBS = 0x100000; /// When this bit is set on a dylib, the static linker does not need to examine dependent dylibs to see if any are re-exported
pub const MH_PIE = 0x200000; /// When this bit is set, the OS will load the main executable at a random address. Only used in MH_EXECUTE filetypes.
pub const MH_DEAD_STRIPPABLE_DYLIB = 0x400000; /// Only for use on dylibs. When linking against a dylib that has this bit set, the static linker will automatically not create a LC_LOAD_DYLIB load command to the dylib if no symbols are being referenced from the dylib.
pub const MH_HAS_TLV_DESCRIPTORS = 0x800000; /// Contains a section of type S_THREAD_LOCAL_VARIABLES
pub const MH_NO_HEAP_EXECUTION = 0x1000000; /// When this bit is set, the OS will run the main executable with a non-executable heap even on platforms (e.g. i386) that don't require it. Only used in MH_EXECUTE filetypes.
pub const MH_APP_EXTENSION_SAFE = 0x02000000; /// The code was linked for use in an application extension.
pub const MH_NLIST_OUTOFSYNC_WITH_DYLDINFO = 0x04000000; /// The external symbols listed in the nlist symbol table do not include all the symbols listed in the dyld info.
/// The flags field of a section structure is separated into two parts a section
/// type and section attributes. The section types are mutually exclusive (it
/// can only have one type) but the section attributes are not (it may have more
/// than one attribute).
/// 256 section types
pub const SECTION_TYPE = 0x000000ff;
pub const SECTION_ATTRIBUTES = 0xffffff00; /// 24 section attributes
pub const S_REGULAR = 0x0; /// regular section
pub const S_ZEROFILL = 0x1; /// zero fill on demand section
pub const S_CSTRING_LITERALS = 0x2; /// section with only literal C string
pub const S_4BYTE_LITERALS = 0x3; /// section with only 4 byte literals
pub const S_8BYTE_LITERALS = 0x4; /// section with only 8 byte literals
pub const S_LITERAL_POINTERS = 0x5; /// section with only pointers to
pub const N_STAB = 0xe0; /// if any of these bits set, a symbolic debugging entry
pub const N_PEXT = 0x10; /// private external symbol bit
pub const N_TYPE = 0x0e; /// mask for the type bits
pub const N_EXT = 0x01; /// external symbol bit, set for external symbols
pub const N_GSYM = 0x20; /// global symbol: name,,NO_SECT,type,0
pub const N_FNAME = 0x22; /// procedure name (f77 kludge): name,,NO_SECT,0,0
pub const N_FUN = 0x24; /// procedure: name,,n_sect,linenumber,address
pub const N_STSYM = 0x26; /// static symbol: name,,n_sect,type,address
pub const N_LCSYM = 0x28; /// .lcomm symbol: name,,n_sect,type,address
pub const N_BNSYM = 0x2e; /// begin nsect sym: 0,,n_sect,0,address
pub const N_AST = 0x32; /// AST file path: name,,NO_SECT,0,0
pub const N_OPT = 0x3c; /// emitted with gcc2_compiled and in gcc source
pub const N_RSYM = 0x40; /// register sym: name,,NO_SECT,type,register
pub const N_SLINE = 0x44; /// src line: 0,,n_sect,linenumber,address
pub const N_ENSYM = 0x4e; /// end nsect sym: 0,,n_sect,0,address
pub const N_SSYM = 0x60; /// structure elt: name,,NO_SECT,type,struct_offset
pub const N_SO = 0x64; /// source file name: name,,n_sect,0,address
pub const N_OSO = 0x66; /// object file name: name,,0,0,st_mtime
pub const N_LSYM = 0x80; /// local sym: name,,NO_SECT,type,offset
pub const N_BINCL = 0x82; /// include file beginning: name,,NO_SECT,0,sum
pub const N_SOL = 0x84; /// #included file name: name,,n_sect,0,address
pub const N_PARAMS = 0x86; /// compiler parameters: name,,NO_SECT,0,0
pub const N_VERSION = 0x88; /// compiler version: name,,NO_SECT,0,0
pub const N_OLEVEL = 0x8A; /// compiler -O level: name,,NO_SECT,0,0
pub const N_PSYM = 0xa0; /// parameter: name,,NO_SECT,type,offset
pub const N_EINCL = 0xa2; /// include file end: name,,NO_SECT,0,0
pub const N_ENTRY = 0xa4; /// alternate entry: name,,n_sect,linenumber,address
pub const N_LBRAC = 0xc0; /// left bracket: 0,,NO_SECT,nesting level,address
pub const N_EXCL = 0xc2; /// deleted include file: name,,NO_SECT,0,sum
pub const N_RBRAC = 0xe0; /// right bracket: 0,,NO_SECT,nesting level,address
pub const N_BCOMM = 0xe2; /// begin common: name,,NO_SECT,0,0
pub const N_ECOMM = 0xe4; /// end common: name,,n_sect,0,0
pub const N_ECOML = 0xe8; /// end common (local name): 0,,n_sect,0,address
pub const N_LENG = 0xfe; /// second stab entry with length information
/// If a segment contains any sections marked with S_ATTR_DEBUG then all
/// sections in that segment must have this attribute. No section other than
/// a section marked with this attribute may reference the contents of this
/// section. A section with this attribute may contain no symbols and must have
/// a section type S_REGULAR. The static linker will not copy section contents
/// from sections with this attribute into its output file. These sections
/// generally contain DWARF debugging info.
pub const S_ATTR_DEBUG = 0x02000000; /// a debug section
pub const cpu_type_t = integer_t;
pub const cpu_subtype_t = integer_t;
pub const integer_t = c_int;
pub const vm_prot_t = c_int;

View File

@ -635,6 +635,35 @@ fn posixExecveErrnoToErr(err: usize) PosixExecveError {
pub var linux_aux_raw = []usize{0} ** 38;
pub var posix_environ_raw: [][*]u8 = undefined;
/// See std.elf for the constants.
pub fn linuxGetAuxVal(index: usize) usize {
if (builtin.link_libc) {
return usize(std.c.getauxval(index));
} else {
return linux_aux_raw[index];
}
}
pub fn getBaseAddress() usize {
switch (builtin.os) {
builtin.Os.linux => {
const base = linuxGetAuxVal(std.elf.AT_BASE);
if (base != 0) {
return base;
}
const phdr = linuxGetAuxVal(std.elf.AT_PHDR);
const ElfHeader = switch (@sizeOf(usize)) {
4 => std.elf.Elf32_Ehdr,
8 => std.elf.Elf64_Ehdr,
else => @compileError("Unsupported architecture"),
};
return phdr - @sizeOf(ElfHeader);
},
builtin.Os.macosx => return @ptrToInt(&std.c._mh_execute_header),
else => @compileError("Unsupported OS"),
}
}
/// Caller must free result when done.
/// TODO make this go through libc when we have it
pub fn getEnvMap(allocator: *Allocator) !BufMap {