inline parameters

This replaces the current generic syntax for functions and replaces
it with the concept of inline parameters.

This paves the way for the "all structs anonymous" proposal.

Closes #151.
This commit is contained in:
Andrew Kelley 2016-07-24 18:35:50 -07:00
parent 425c0ffa01
commit 78d4fb20c4
19 changed files with 568 additions and 296 deletions

View File

@ -25,7 +25,7 @@ UseDecl = "use" Expression ";"
ExternDecl = "extern" (FnProto | VariableDeclaration) ";"
FnProto = "fn" option("Symbol") option(ParamDeclList) ParamDeclList option("->" TypeExpr)
FnProto = "fn" option("Symbol") ParamDeclList option("->" TypeExpr)
Directive = "#" "Symbol" "(" Expression ")"
@ -35,7 +35,7 @@ FnDef = option("inline" | "extern") FnProto Block
ParamDeclList = "(" list(ParamDecl, ",") ")"
ParamDecl = option("noalias") option("Symbol" ":") TypeExpr | "..."
ParamDecl = option("noalias" | "inline") option("Symbol" ":") TypeExpr | "..."
Block = "{" list(option(Statement), ";") "}"

View File

@ -23,7 +23,7 @@ pub fn main(args: [][]u8) -> %void {
return err;
};
const guess = io.parse_unsigned(u8)(line_buf[0...line_len - 1], 10) %% {
const guess = io.parse_unsigned(u8, line_buf[0...line_len - 1], 10) %% {
%%io.stdout.printf("Invalid number.\n");
continue;
};

View File

@ -195,10 +195,8 @@ struct AstNodeRoot {
struct AstNodeFnProto {
TopLevelDecl top_level_decl;
Buf name;
ZigList<AstNode *> generic_params;
ZigList<AstNode *> params;
AstNode *return_type;
bool generic_params_is_var_args;
bool is_var_args;
bool is_extern;
bool is_inline;
@ -210,7 +208,10 @@ struct AstNodeFnProto {
FnTableEntry *fn_table_entry;
bool skip;
Expr resolved_expr;
TypeTableEntry *generic_fn_type;
// computed from params field
int inline_arg_count;
// if this is a generic function implementation, this points to the generic node
AstNode *generic_proto_node;
};
struct AstNodeFnDef {
@ -219,6 +220,7 @@ struct AstNodeFnDef {
// populated by semantic analyzer
TypeTableEntry *implicit_return_type;
// the first child block context
BlockContext *block_context;
};
@ -230,6 +232,7 @@ struct AstNodeParamDecl {
Buf name;
AstNode *type;
bool is_noalias;
bool is_inline;
// populated by semantic analyzer
VariableTableEntry *variable;
@ -841,6 +844,7 @@ struct FnTypeId {
bool is_naked;
bool is_cold;
bool is_extern;
bool is_inline;
FnTypeParamInfo prealloc_param_info[fn_type_id_prealloc_param_info_count];
};
@ -1063,7 +1067,6 @@ struct FnTableEntry {
ZigList<LabelTableEntry *> all_labels;
Buf symbol_name;
TypeTableEntry *type_entry; // function type
bool is_inline;
bool internal_linkage;
bool is_extern;
bool is_test;
@ -1172,8 +1175,8 @@ struct CodeGen {
ZigList<ImportTableEntry *> import_queue;
int import_queue_index;
ZigList<AstNode *> export_queue;
int export_queue_index;
ZigList<AstNode *> resolve_queue;
int resolve_queue_index;
ZigList<AstNode *> use_queue;
int use_queue_index;

View File

@ -32,6 +32,8 @@ static TypeTableEntry *analyze_block_expr(CodeGen *g, ImportTableEntry *import,
static TypeTableEntry *resolve_expr_const_val_as_void(CodeGen *g, AstNode *node);
static TypeTableEntry *resolve_expr_const_val_as_fn(CodeGen *g, AstNode *node, FnTableEntry *fn,
bool depends_on_compile_var);
static TypeTableEntry *resolve_expr_const_val_as_generic_fn(CodeGen *g, AstNode *node,
TypeTableEntry *type_entry, bool depends_on_compile_var);
static TypeTableEntry *resolve_expr_const_val_as_type(CodeGen *g, AstNode *node, TypeTableEntry *type,
bool depends_on_compile_var);
static TypeTableEntry *resolve_expr_const_val_as_unsigned_num_lit(CodeGen *g, AstNode *node,
@ -874,7 +876,8 @@ static TypeTableEntry *analyze_fn_proto_type(CodeGen *g, ImportTableEntry *impor
fn_type_id.is_extern = fn_proto->is_extern || (fn_proto->top_level_decl.visib_mod == VisibModExport);
fn_type_id.is_naked = is_naked;
fn_type_id.is_cold = is_cold;
fn_type_id.param_count = node->data.fn_proto.params.length;
fn_type_id.is_inline = fn_proto->is_inline;
fn_type_id.param_count = fn_proto->params.length;
if (fn_type_id.param_count > fn_type_id_prealloc_param_info_count) {
fn_type_id.param_info = allocate_nonzero<FnTypeParamInfo>(fn_type_id.param_count);
@ -883,15 +886,52 @@ static TypeTableEntry *analyze_fn_proto_type(CodeGen *g, ImportTableEntry *impor
}
fn_type_id.is_var_args = fn_proto->is_var_args;
fn_type_id.return_type = analyze_type_expr(g, import, context, node->data.fn_proto.return_type);
fn_type_id.return_type = analyze_type_expr(g, import, context, fn_proto->return_type);
if (fn_type_id.return_type->id == TypeTableEntryIdInvalid) {
switch (fn_type_id.return_type->id) {
case TypeTableEntryIdInvalid:
fn_proto->skip = true;
break;
case TypeTableEntryIdNumLitFloat:
case TypeTableEntryIdNumLitInt:
case TypeTableEntryIdUndefLit:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdGenericFn:
fn_proto->skip = true;
add_node_error(g, fn_proto->return_type,
buf_sprintf("return type '%s' not allowed", buf_ptr(&fn_type_id.return_type->name)));
break;
case TypeTableEntryIdMetaType:
if (!fn_proto->is_inline) {
fn_proto->skip = true;
add_node_error(g, fn_proto->return_type,
buf_sprintf("function with return type '%s' must be declared inline",
buf_ptr(&fn_type_id.return_type->name)));
return g->builtin_types.entry_invalid;
}
break;
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
case TypeTableEntryIdInt:
case TypeTableEntryIdFloat:
case TypeTableEntryIdPointer:
case TypeTableEntryIdArray:
case TypeTableEntryIdStruct:
case TypeTableEntryIdMaybe:
case TypeTableEntryIdErrorUnion:
case TypeTableEntryIdPureError:
case TypeTableEntryIdEnum:
case TypeTableEntryIdUnion:
case TypeTableEntryIdFn:
case TypeTableEntryIdTypeDecl:
break;
}
for (int i = 0; i < fn_type_id.param_count; i += 1) {
AstNode *child = node->data.fn_proto.params.at(i);
AstNode *child = fn_proto->params.at(i);
assert(child->type == NodeTypeParamDecl);
TypeTableEntry *type_entry = analyze_type_expr(g, import, context,
child->data.param_decl.type);
switch (type_entry->id) {
@ -901,13 +941,20 @@ static TypeTableEntry *analyze_fn_proto_type(CodeGen *g, ImportTableEntry *impor
case TypeTableEntryIdNumLitFloat:
case TypeTableEntryIdNumLitInt:
case TypeTableEntryIdUndefLit:
case TypeTableEntryIdMetaType:
case TypeTableEntryIdUnreachable:
case TypeTableEntryIdNamespace:
case TypeTableEntryIdGenericFn:
fn_proto->skip = true;
add_node_error(g, child->data.param_decl.type,
buf_sprintf("parameter of type '%s' not allowed'", buf_ptr(&type_entry->name)));
buf_sprintf("parameter of type '%s' not allowed", buf_ptr(&type_entry->name)));
break;
case TypeTableEntryIdMetaType:
if (!child->data.param_decl.is_inline) {
fn_proto->skip = true;
add_node_error(g, child->data.param_decl.type,
buf_sprintf("parameter of type '%s' must be declared inline",
buf_ptr(&type_entry->name)));
}
break;
case TypeTableEntryIdVoid:
case TypeTableEntryIdBool:
@ -998,8 +1045,6 @@ static void resolve_function_proto(CodeGen *g, AstNode *node, FnTableEntry *fn_t
return;
}
fn_table_entry->is_inline = fn_proto->is_inline;
bool is_cold = false;
bool is_naked = false;
bool is_test = false;
@ -1095,7 +1140,7 @@ static void resolve_function_proto(CodeGen *g, AstNode *node, FnTableEntry *fn_t
return;
}
if (fn_table_entry->is_inline && fn_table_entry->is_noinline) {
if (fn_proto->is_inline && fn_table_entry->is_noinline) {
add_node_error(g, node, buf_sprintf("function is both inline and noinline"));
fn_proto->skip = true;
return;
@ -1109,10 +1154,14 @@ static void resolve_function_proto(CodeGen *g, AstNode *node, FnTableEntry *fn_t
symbol_name = buf_sprintf("_%s", buf_ptr(&fn_table_entry->symbol_name));
}
fn_table_entry->fn_value = LLVMAddFunction(g->module, buf_ptr(symbol_name),
fn_type->data.fn.raw_type_ref);
if (fn_table_entry->fn_def_node) {
BlockContext *context = new_block_context(fn_table_entry->fn_def_node, containing_context);
fn_table_entry->fn_def_node->data.fn_def.block_context = context;
}
if (fn_table_entry->is_inline) {
fn_table_entry->fn_value = LLVMAddFunction(g->module, buf_ptr(symbol_name), fn_type->data.fn.raw_type_ref);
if (fn_proto->is_inline) {
LLVMAddFunctionAttr(fn_table_entry->fn_value, LLVMAlwaysInlineAttribute);
}
if (fn_table_entry->is_noinline) {
@ -1150,9 +1199,7 @@ static void resolve_function_proto(CodeGen *g, AstNode *node, FnTableEntry *fn_t
fn_type->di_type, fn_table_entry->internal_linkage,
is_definition, scope_line, flags, is_optimized, nullptr);
BlockContext *context = new_block_context(fn_table_entry->fn_def_node, containing_context);
fn_table_entry->fn_def_node->data.fn_def.block_context = context;
context->di_scope = LLVMZigSubprogramToScope(subprogram);
fn_table_entry->fn_def_node->data.fn_def.block_context->di_scope = LLVMZigSubprogramToScope(subprogram);
ZigLLVMFnSetSubprogram(fn_table_entry->fn_value, subprogram);
}
}
@ -1176,6 +1223,7 @@ static void resolve_enum_type(CodeGen *g, ImportTableEntry *import, TypeTableEnt
return;
}
assert(decl_node->type == NodeTypeContainerDecl);
assert(enum_type->di_type);
enum_type->deep_const = true;
@ -1370,7 +1418,7 @@ static void resolve_struct_type(CodeGen *g, ImportTableEntry *import, TypeTableE
return;
}
assert(decl_node->type == NodeTypeContainerDecl);
assert(struct_type->di_type);
struct_type->deep_const = true;
@ -1496,16 +1544,8 @@ static void get_fully_qualified_decl_name(Buf *buf, AstNode *decl_node, uint8_t
}
static void preview_generic_fn_proto(CodeGen *g, ImportTableEntry *import, AstNode *node) {
if (node->type == NodeTypeFnProto) {
if (node->data.fn_proto.generic_params_is_var_args) {
add_node_error(g, node, buf_sprintf("generic parameters cannot be var args"));
node->data.fn_proto.skip = true;
node->data.fn_proto.generic_fn_type = g->builtin_types.entry_invalid;
return;
}
assert(node->type == NodeTypeContainerDecl);
node->data.fn_proto.generic_fn_type = get_generic_fn_type(g, node);
} else if (node->type == NodeTypeContainerDecl) {
if (node->data.struct_decl.generic_params_is_var_args) {
add_node_error(g, node, buf_sprintf("generic parameters cannot be var args"));
node->data.struct_decl.skip = true;
@ -1514,20 +1554,20 @@ static void preview_generic_fn_proto(CodeGen *g, ImportTableEntry *import, AstNo
}
node->data.struct_decl.generic_fn_type = get_generic_fn_type(g, node);
} else {
zig_unreachable();
}
}
static void preview_fn_proto_instance(CodeGen *g, ImportTableEntry *import, AstNode *proto_node,
BlockContext *containing_context)
{
assert(proto_node->type == NodeTypeFnProto);
if (proto_node->data.fn_proto.skip) {
return;
}
bool is_generic_instance = (proto_node->data.fn_proto.generic_params.length > 0);
bool is_generic_instance = proto_node->data.fn_proto.generic_proto_node;
bool is_generic_fn = proto_node->data.fn_proto.inline_arg_count > 0;
assert(!is_generic_instance || !is_generic_fn);
AstNode *parent_decl = proto_node->data.fn_proto.top_level_decl.parent_decl;
Buf *proto_name = &proto_node->data.fn_proto.name;
@ -1551,6 +1591,24 @@ static void preview_fn_proto_instance(CodeGen *g, ImportTableEntry *import, AstN
get_fully_qualified_decl_name(&fn_table_entry->symbol_name, proto_node, '_');
proto_node->data.fn_proto.fn_table_entry = fn_table_entry;
if (is_generic_fn) {
fn_table_entry->type_entry = get_generic_fn_type(g, proto_node);
if (is_extern || proto_node->data.fn_proto.top_level_decl.visib_mod == VisibModExport) {
for (int i = 0; i < proto_node->data.fn_proto.params.length; i += 1) {
AstNode *param_decl_node = proto_node->data.fn_proto.params.at(i);
if (param_decl_node->data.param_decl.is_inline) {
proto_node->data.fn_proto.skip = true;
add_node_error(g, param_decl_node,
buf_sprintf("inline parameter not allowed in extern function"));
}
}
}
} else {
g->fn_protos.append(fn_table_entry);
if (fn_def_node) {
@ -1564,7 +1622,6 @@ static void preview_fn_proto_instance(CodeGen *g, ImportTableEntry *import, AstN
g->main_fn = fn_table_entry;
}
proto_node->data.fn_proto.fn_table_entry = fn_table_entry;
resolve_function_proto(g, proto_node, fn_table_entry, import, containing_context);
if (is_main_fn && !g->link_libc) {
@ -1578,14 +1635,6 @@ static void preview_fn_proto_instance(CodeGen *g, ImportTableEntry *import, AstN
}
}
}
static void preview_fn_proto(CodeGen *g, ImportTableEntry *import, AstNode *proto_node) {
if (proto_node->data.fn_proto.generic_params.length > 0) {
return preview_generic_fn_proto(g, import, proto_node);
} else {
return preview_fn_proto_instance(g, import, proto_node, proto_node->block_context);
}
}
static void scan_struct_decl(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) {
@ -1683,7 +1732,7 @@ static void resolve_top_level_decl(CodeGen *g, AstNode *node, bool pointer_only)
switch (node->type) {
case NodeTypeFnProto:
preview_fn_proto(g, import, node);
preview_fn_proto_instance(g, import, node, node->block_context);
break;
case NodeTypeContainerDecl:
resolve_struct_decl(g, import, node);
@ -2600,7 +2649,11 @@ static TypeTableEntry *analyze_field_access_expr(CodeGen *g, ImportTableEntry *i
node->data.field_access_expr.is_member_fn = true;
FnTableEntry *fn_entry = fn_decl_node->data.fn_proto.fn_table_entry;
if (fn_entry->type_entry->id == TypeTableEntryIdGenericFn) {
return resolve_expr_const_val_as_generic_fn(g, node, fn_entry->type_entry, false);
} else {
return resolve_expr_const_val_as_fn(g, node, fn_entry, false);
}
} else {
add_node_error(g, node, buf_sprintf("no function named '%s' in '%s'",
buf_ptr(field_name), buf_ptr(&bare_struct_type->name)));
@ -3004,13 +3057,11 @@ static TypeTableEntry *analyze_decl_ref(CodeGen *g, AstNode *source_node, AstNod
VariableTableEntry *var = decl_node->data.variable_declaration.variable;
return analyze_var_ref(g, source_node, var, block_context, depends_on_compile_var);
} else if (decl_node->type == NodeTypeFnProto) {
if (decl_node->data.fn_proto.generic_params.length > 0) {
TypeTableEntry *type_entry = decl_node->data.fn_proto.generic_fn_type;
assert(type_entry);
return resolve_expr_const_val_as_generic_fn(g, source_node, type_entry, depends_on_compile_var);
} else {
FnTableEntry *fn_entry = decl_node->data.fn_proto.fn_table_entry;
assert(fn_entry->type_entry);
if (fn_entry->type_entry->id == TypeTableEntryIdGenericFn) {
return resolve_expr_const_val_as_generic_fn(g, source_node, fn_entry->type_entry, depends_on_compile_var);
} else {
return resolve_expr_const_val_as_fn(g, source_node, fn_entry, depends_on_compile_var);
}
} else if (decl_node->type == NodeTypeContainerDecl) {
@ -5238,6 +5289,8 @@ static TypeTableEntry *analyze_builtin_fn_call_expr(CodeGen *g, ImportTableEntry
zig_unreachable();
}
// Before calling this function, set node->data.fn_call_expr.fn_table_entry if the function is known
// at compile time. Otherwise this is a function pointer call.
static TypeTableEntry *analyze_fn_call_ptr(CodeGen *g, ImportTableEntry *import, BlockContext *context,
TypeTableEntry *expected_type, AstNode *node, TypeTableEntry *fn_type,
AstNode *struct_node)
@ -5248,26 +5301,30 @@ static TypeTableEntry *analyze_fn_call_ptr(CodeGen *g, ImportTableEntry *import,
return fn_type;
}
// count parameters
int src_param_count = fn_type->data.fn.fn_type_id.param_count;
int actual_param_count = node->data.fn_call_expr.params.length;
// The function call might include inline parameters which we need to ignore according to the
// fn_type.
FnTableEntry *fn_table_entry = node->data.fn_call_expr.fn_entry;
AstNode *generic_proto_node = fn_table_entry ?
fn_table_entry->proto_node->data.fn_proto.generic_proto_node : nullptr;
if (struct_node) {
actual_param_count += 1;
}
// count parameters
int struct_node_1_or_0 = struct_node ? 1 : 0;
int src_param_count = fn_type->data.fn.fn_type_id.param_count +
(generic_proto_node ? generic_proto_node->data.fn_proto.inline_arg_count : 0);
int call_param_count = node->data.fn_call_expr.params.length;
bool ok_invocation = true;
if (fn_type->data.fn.fn_type_id.is_var_args) {
if (actual_param_count < src_param_count) {
if (call_param_count < src_param_count - struct_node_1_or_0) {
ok_invocation = false;
add_node_error(g, node,
buf_sprintf("expected at least %d arguments, got %d", src_param_count, actual_param_count));
buf_sprintf("expected at least %d arguments, got %d", src_param_count, call_param_count));
}
} else if (src_param_count != actual_param_count) {
} else if (src_param_count - struct_node_1_or_0 != call_param_count) {
ok_invocation = false;
add_node_error(g, node,
buf_sprintf("expected %d arguments, got %d", src_param_count, actual_param_count));
buf_sprintf("expected %d arguments, got %d", src_param_count, call_param_count));
}
bool all_args_const_expr = true;
@ -5281,17 +5338,30 @@ static TypeTableEntry *analyze_fn_call_ptr(CodeGen *g, ImportTableEntry *import,
// analyze each parameter. in the case of a method, we already analyzed the
// first parameter in order to figure out which struct we were calling a method on.
for (int i = 0; i < node->data.fn_call_expr.params.length; i += 1) {
AstNode **child = &node->data.fn_call_expr.params.at(i);
int next_type_i = struct_node_1_or_0;
for (int call_i = 0; call_i < call_param_count; call_i += 1) {
int proto_i = call_i + struct_node_1_or_0;
AstNode **param_node = &node->data.fn_call_expr.params.at(call_i);
// determine the expected type for each parameter
TypeTableEntry *expected_param_type = nullptr;
int fn_proto_i = i + (struct_node ? 1 : 0);
if (fn_proto_i < src_param_count) {
expected_param_type = fn_type->data.fn.fn_type_id.param_info[fn_proto_i].type;
if (proto_i < src_param_count) {
if (generic_proto_node &&
generic_proto_node->data.fn_proto.params.at(proto_i)->data.param_decl.is_inline)
{
continue;
}
analyze_expression(g, import, context, expected_param_type, *child);
ConstExprValue *const_arg_val = &get_resolved_expr(*child)->const_val;
FnTypeParamInfo *param_info = &fn_type->data.fn.fn_type_id.param_info[next_type_i];
next_type_i += 1;
expected_param_type = param_info->type;
}
TypeTableEntry *param_type = analyze_expression(g, import, context, expected_param_type, *param_node);
if (param_type->id == TypeTableEntryIdInvalid) {
return param_type;
}
ConstExprValue *const_arg_val = &get_resolved_expr(*param_node)->const_val;
if (!const_arg_val->ok) {
all_args_const_expr = false;
}
@ -5303,7 +5373,6 @@ static TypeTableEntry *analyze_fn_call_ptr(CodeGen *g, ImportTableEntry *import,
return return_type;
}
FnTableEntry *fn_table_entry = node->data.fn_call_expr.fn_entry;
ConstExprValue *result_val = &get_resolved_expr(node)->const_val;
if (ok_invocation && fn_table_entry && fn_table_entry->is_pure && fn_table_entry->want_pure != WantPureFalse) {
if (fn_table_entry->anal_state == FnAnalStateReady) {
@ -5335,14 +5404,103 @@ static TypeTableEntry *analyze_fn_call_ptr(CodeGen *g, ImportTableEntry *import,
return return_type;
}
static TypeTableEntry *analyze_fn_call_raw(CodeGen *g, ImportTableEntry *import, BlockContext *context,
TypeTableEntry *expected_type, AstNode *node, FnTableEntry *fn_table_entry, AstNode *struct_node)
static TypeTableEntry *analyze_fn_call_with_inline_args(CodeGen *g, ImportTableEntry *import,
BlockContext *parent_context, TypeTableEntry *expected_type, AstNode *call_node,
FnTableEntry *fn_table_entry, AstNode *struct_node)
{
assert(node->type == NodeTypeFnCallExpr);
assert(call_node->type == NodeTypeFnCallExpr);
assert(fn_table_entry);
node->data.fn_call_expr.fn_entry = fn_table_entry;
AstNode *decl_node = fn_table_entry->proto_node;
return analyze_fn_call_ptr(g, import, context, expected_type, node, fn_table_entry->type_entry, struct_node);
// count parameters
int struct_node_1_or_0 = (struct_node ? 1 : 0);
int src_param_count = decl_node->data.fn_proto.params.length;
int call_param_count = call_node->data.fn_call_expr.params.length;
if (src_param_count != call_param_count + struct_node_1_or_0) {
add_node_error(g, call_node,
buf_sprintf("expected %d arguments, got %d", src_param_count, call_param_count));
return g->builtin_types.entry_invalid;
}
int inline_arg_count = decl_node->data.fn_proto.inline_arg_count;
assert(inline_arg_count > 0);
BlockContext *child_context = decl_node->owner->block_context;
int next_generic_param_index = 0;
GenericFnTypeId *generic_fn_type_id = allocate<GenericFnTypeId>(1);
generic_fn_type_id->decl_node = decl_node;
generic_fn_type_id->generic_param_count = inline_arg_count;
generic_fn_type_id->generic_params = allocate<GenericParamValue>(inline_arg_count);
for (int call_i = 0; call_i < call_param_count; call_i += 1) {
int proto_i = call_i + struct_node_1_or_0;
AstNode *generic_param_decl_node = decl_node->data.fn_proto.params.at(proto_i);
assert(generic_param_decl_node->type == NodeTypeParamDecl);
bool is_inline = generic_param_decl_node->data.param_decl.is_inline;
if (!is_inline) continue;
AstNode **generic_param_type_node = &generic_param_decl_node->data.param_decl.type;
TypeTableEntry *expected_param_type = analyze_type_expr(g, decl_node->owner, child_context,
*generic_param_type_node);
if (expected_param_type->id == TypeTableEntryIdInvalid) {
return expected_param_type;
}
AstNode **param_node = &call_node->data.fn_call_expr.params.at(call_i);
TypeTableEntry *param_type = analyze_expression(g, import, parent_context,
expected_param_type, *param_node);
if (param_type->id == TypeTableEntryIdInvalid) {
return param_type;
}
// set child_context so that the previous param is in scope
child_context = new_block_context(generic_param_decl_node, child_context);
ConstExprValue *const_val = &get_resolved_expr(*param_node)->const_val;
if (const_val->ok) {
add_local_var(g, generic_param_decl_node, decl_node->owner, child_context,
&generic_param_decl_node->data.param_decl.name, param_type, true, *param_node);
} else {
add_node_error(g, *param_node,
buf_sprintf("unable to evaluate constant expression for inline parameter"));
return g->builtin_types.entry_invalid;
}
GenericParamValue *generic_param_value =
&generic_fn_type_id->generic_params[next_generic_param_index];
generic_param_value->type = param_type;
generic_param_value->node = *param_node;
next_generic_param_index += 1;
}
assert(next_generic_param_index == inline_arg_count);
auto entry = g->generic_table.maybe_get(generic_fn_type_id);
FnTableEntry *impl_fn;
if (entry) {
AstNode *impl_decl_node = entry->value;
assert(impl_decl_node->type == NodeTypeFnProto);
impl_fn = impl_decl_node->data.fn_proto.fn_table_entry;
} else {
AstNode *decl_node = generic_fn_type_id->decl_node;
AstNode *impl_fn_def_node = ast_clone_subtree_special(decl_node->data.fn_proto.fn_def_node,
&g->next_node_index, AstCloneSpecialOmitInlineParams);
AstNode *impl_decl_node = impl_fn_def_node->data.fn_def.fn_proto;
impl_decl_node->data.fn_proto.inline_arg_count = 0;
impl_decl_node->data.fn_proto.generic_proto_node = decl_node;
preview_fn_proto_instance(g, import, impl_decl_node, child_context);
g->generic_table.put(generic_fn_type_id, impl_decl_node);
impl_fn = impl_decl_node->data.fn_proto.fn_table_entry;
}
call_node->data.fn_call_expr.fn_entry = impl_fn;
return analyze_fn_call_ptr(g, import, parent_context, expected_type, call_node,
impl_fn->type_entry, struct_node);
}
static TypeTableEntry *analyze_generic_fn_call(CodeGen *g, ImportTableEntry *import, BlockContext *parent_context,
@ -5352,14 +5510,8 @@ static TypeTableEntry *analyze_generic_fn_call(CodeGen *g, ImportTableEntry *imp
assert(generic_fn_type->id == TypeTableEntryIdGenericFn);
AstNode *decl_node = generic_fn_type->data.generic_fn.decl_node;
ZigList<AstNode *> *generic_params;
if (decl_node->type == NodeTypeFnProto) {
generic_params = &decl_node->data.fn_proto.generic_params;
} else if (decl_node->type == NodeTypeContainerDecl) {
generic_params = &decl_node->data.struct_decl.generic_params;
} else {
zig_unreachable();
}
assert(decl_node->type == NodeTypeContainerDecl);
ZigList<AstNode *> *generic_params = &decl_node->data.struct_decl.generic_params;
int expected_param_count = generic_params->length;
int actual_param_count = node->data.fn_call_expr.params.length;
@ -5405,10 +5557,6 @@ static TypeTableEntry *analyze_generic_fn_call(CodeGen *g, ImportTableEntry *imp
} else {
add_node_error(g, *param_node, buf_sprintf("unable to evaluate constant expression"));
add_local_var(g, generic_param_decl_node, decl_node->owner, child_context,
&generic_param_decl_node->data.param_decl.name, g->builtin_types.entry_invalid,
true, nullptr);
return g->builtin_types.entry_invalid;
}
@ -5420,36 +5568,19 @@ static TypeTableEntry *analyze_generic_fn_call(CodeGen *g, ImportTableEntry *imp
auto entry = g->generic_table.maybe_get(generic_fn_type_id);
if (entry) {
AstNode *impl_decl_node = entry->value;
if (impl_decl_node->type == NodeTypeFnProto) {
FnTableEntry *fn_table_entry = impl_decl_node->data.fn_proto.fn_table_entry;
return resolve_expr_const_val_as_fn(g, node, fn_table_entry, false);
} else if (impl_decl_node->type == NodeTypeContainerDecl) {
assert(impl_decl_node->type == NodeTypeContainerDecl);
TypeTableEntry *type_entry = impl_decl_node->data.struct_decl.type_entry;
return resolve_expr_const_val_as_type(g, node, type_entry, false);
} else {
zig_unreachable();
}
}
// make a type from the generic parameters supplied
if (decl_node->type == NodeTypeFnProto) {
AstNode *impl_fn_def_node = ast_clone_subtree(decl_node->data.fn_proto.fn_def_node, &g->next_node_index);
AstNode *impl_decl_node = impl_fn_def_node->data.fn_def.fn_proto;
preview_fn_proto_instance(g, import, impl_decl_node, child_context);
g->generic_table.put(generic_fn_type_id, impl_decl_node);
FnTableEntry *fn_table_entry = impl_decl_node->data.fn_proto.fn_table_entry;
return resolve_expr_const_val_as_fn(g, node, fn_table_entry, false);
} else if (decl_node->type == NodeTypeContainerDecl) {
assert(decl_node->type == NodeTypeContainerDecl);
AstNode *impl_decl_node = ast_clone_subtree(decl_node, &g->next_node_index);
g->generic_table.put(generic_fn_type_id, impl_decl_node);
scan_struct_decl(g, import, child_context, impl_decl_node);
TypeTableEntry *type_entry = impl_decl_node->data.struct_decl.type_entry;
resolve_struct_type(g, import, type_entry);
return resolve_expr_const_val_as_type(g, node, type_entry, false);
} else {
zig_unreachable();
}
}
static TypeTableEntry *analyze_fn_call_expr(CodeGen *g, ImportTableEntry *import, BlockContext *context,
@ -5487,10 +5618,32 @@ static TypeTableEntry *analyze_fn_call_expr(CodeGen *g, ImportTableEntry *import
struct_node = nullptr;
}
return analyze_fn_call_raw(g, import, context, expected_type, node,
const_val->data.x_fn, struct_node);
FnTableEntry *fn_table_entry = const_val->data.x_fn;
node->data.fn_call_expr.fn_entry = fn_table_entry;
return analyze_fn_call_ptr(g, import, context, expected_type, node,
fn_table_entry->type_entry, struct_node);
} else if (invoke_type_entry->id == TypeTableEntryIdGenericFn) {
TypeTableEntry *generic_fn_type = const_val->data.x_type;
AstNode *decl_node = generic_fn_type->data.generic_fn.decl_node;
if (decl_node->type == NodeTypeFnProto) {
AstNode *struct_node;
if (fn_ref_expr->type == NodeTypeFieldAccessExpr &&
fn_ref_expr->data.field_access_expr.is_member_fn)
{
struct_node = fn_ref_expr->data.field_access_expr.struct_expr;
} else {
struct_node = nullptr;
}
FnTableEntry *fn_table_entry = decl_node->data.fn_proto.fn_table_entry;
if (fn_table_entry->proto_node->data.fn_proto.skip) {
return g->builtin_types.entry_invalid;
}
return analyze_fn_call_with_inline_args(g, import, context, expected_type, node,
fn_table_entry, struct_node);
} else {
return analyze_generic_fn_call(g, import, context, expected_type, node, const_val->data.x_type);
}
} else {
add_node_error(g, fn_ref_expr,
buf_sprintf("type '%s' not a function", buf_ptr(&invoke_type_entry->name)));
@ -6367,7 +6520,9 @@ static void analyze_fn_body(CodeGen *g, FnTableEntry *fn_table_entry) {
var->src_arg_index = i;
param_decl_node->data.param_decl.variable = var;
if (fn_type->data.fn.gen_param_info) {
var->gen_arg_index = fn_type->data.fn.gen_param_info[i].gen_index;
}
if (!type->deep_const) {
fn_table_entry->is_pure = false;
@ -6406,11 +6561,11 @@ static void add_top_level_decl(CodeGen *g, ImportTableEntry *import, BlockContex
tld->import = import;
tld->name = name;
bool want_as_export = (g->check_unused || g->is_test_build || tld->visib_mod == VisibModExport);
bool is_generic = (node->type == NodeTypeFnProto && node->data.fn_proto.generic_params.length > 0) ||
(node->type == NodeTypeContainerDecl && node->data.struct_decl.generic_params.length > 0);
if (!is_generic && want_as_export) {
g->export_queue.append(node);
bool want_to_resolve = (g->check_unused || g->is_test_build || tld->visib_mod == VisibModExport);
bool is_generic_container = (node->type == NodeTypeContainerDecl &&
node->data.struct_decl.generic_params.length > 0);
if (want_to_resolve && !is_generic_container) {
g->resolve_queue.append(node);
}
node->block_context = block_context;
@ -6425,6 +6580,18 @@ static void add_top_level_decl(CodeGen *g, ImportTableEntry *import, BlockContex
}
}
static int fn_proto_inline_arg_count(AstNode *proto_node) {
assert(proto_node->type == NodeTypeFnProto);
int result = 0;
for (int i = 0; i < proto_node->data.fn_proto.params.length; i += 1) {
AstNode *param_node = proto_node->data.fn_proto.params.at(i);
assert(param_node->type == NodeTypeParamDecl);
result += param_node->data.param_decl.is_inline ? 1 : 0;
}
return result;
}
static void scan_decls(CodeGen *g, ImportTableEntry *import, BlockContext *context, AstNode *node) {
switch (node->type) {
case NodeTypeRoot:
@ -6467,6 +6634,7 @@ static void scan_decls(CodeGen *g, ImportTableEntry *import, BlockContext *conte
add_node_error(g, node, buf_sprintf("missing function name"));
break;
}
node->data.fn_proto.inline_arg_count = fn_proto_inline_arg_count(node);
add_top_level_decl(g, import, context, node, fn_name);
break;
@ -6692,8 +6860,8 @@ void semantic_analyze(CodeGen *g) {
resolve_use_decl(g, use_decl_node);
}
for (; g->export_queue_index < g->export_queue.length; g->export_queue_index += 1) {
AstNode *decl_node = g->export_queue.at(g->export_queue_index);
for (; g->resolve_queue_index < g->resolve_queue.length; g->resolve_queue_index += 1) {
AstNode *decl_node = g->resolve_queue.at(g->resolve_queue_index);
bool pointer_only = false;
resolve_top_level_decl(g, decl_node, pointer_only);
}
@ -6983,11 +7151,9 @@ bool fn_type_id_eql(FnTypeId *a, FnTypeId *b) {
FnTypeParamInfo *a_param_info = &a->param_info[i];
FnTypeParamInfo *b_param_info = &b->param_info[i];
if (a_param_info->type != b_param_info->type) {
return false;
}
if (a_param_info->is_noalias != b_param_info->is_noalias) {
if (a_param_info->type != b_param_info->type ||
a_param_info->is_noalias != b_param_info->is_noalias)
{
return false;
}
}

View File

@ -353,7 +353,8 @@ static void render_node(AstRender *ar, AstNode *node) {
assert(param_decl->type == NodeTypeParamDecl);
if (buf_len(&param_decl->data.param_decl.name) > 0) {
const char *noalias_str = param_decl->data.param_decl.is_noalias ? "noalias " : "";
fprintf(ar->f, "%s", noalias_str);
const char *inline_str = param_decl->data.param_decl.is_inline ? "inline " : "";
fprintf(ar->f, "%s%s", noalias_str, inline_str);
print_symbol(ar, &param_decl->data.param_decl.name);
fprintf(ar->f, ": ");
}

View File

@ -1062,12 +1062,15 @@ static LLVMValueRef gen_fn_call_expr(CodeGen *g, AstNode *node) {
TypeTableEntry *fn_type;
LLVMValueRef fn_val;
AstNode *generic_proto_node;
if (fn_table_entry) {
fn_val = fn_table_entry->fn_value;
fn_type = fn_table_entry->type_entry;
generic_proto_node = fn_table_entry->proto_node->data.fn_proto.generic_proto_node;
} else {
fn_val = gen_expr(g, fn_ref_expr);
fn_type = get_expr_type(fn_ref_expr);
generic_proto_node = nullptr;
}
TypeTableEntry *src_return_type = fn_type->data.fn.fn_type_id.return_type;
@ -1093,8 +1096,14 @@ static LLVMValueRef gen_fn_call_expr(CodeGen *g, AstNode *node) {
gen_param_index += 1;
}
for (int i = 0; i < fn_call_param_count; i += 1) {
AstNode *expr_node = node->data.fn_call_expr.params.at(i);
for (int call_i = 0; call_i < fn_call_param_count; call_i += 1) {
int proto_i = call_i + (struct_type ? 1 : 0);
if (generic_proto_node &&
generic_proto_node->data.fn_proto.params.at(proto_i)->data.param_decl.is_inline)
{
continue;
}
AstNode *expr_node = node->data.fn_call_expr.params.at(call_i);
LLVMValueRef param_value = gen_expr(g, expr_node);
assert(param_value);
TypeTableEntry *param_type = get_expr_type(expr_node);
@ -3734,7 +3743,7 @@ static void delete_unused_builtin_fns(CodeGen *g) {
}
}
static bool skip_fn_codegen(CodeGen *g, FnTableEntry *fn_entry) {
static bool should_skip_fn_codegen(CodeGen *g, FnTableEntry *fn_entry) {
if (g->is_test_build) {
if (fn_entry->is_test) {
return false;
@ -3889,7 +3898,7 @@ static void do_code_gen(CodeGen *g) {
// Generate function prototypes
for (int fn_proto_i = 0; fn_proto_i < g->fn_protos.length; fn_proto_i += 1) {
FnTableEntry *fn_table_entry = g->fn_protos.at(fn_proto_i);
if (skip_fn_codegen(g, fn_table_entry)) {
if (should_skip_fn_codegen(g, fn_table_entry)) {
// huge time saver
LLVMDeleteFunction(fn_table_entry->fn_value);
fn_table_entry->fn_value = nullptr;
@ -3995,7 +4004,7 @@ static void do_code_gen(CodeGen *g) {
// Generate function definitions.
for (int fn_i = 0; fn_i < g->fn_defs.length; fn_i += 1) {
FnTableEntry *fn_table_entry = g->fn_defs.at(fn_i);
if (skip_fn_codegen(g, fn_table_entry)) {
if (should_skip_fn_codegen(g, fn_table_entry)) {
// huge time saver
continue;
}

View File

@ -884,9 +884,9 @@ static bool eval_fn_call_expr(EvalFn *ef, AstNode *node, ConstExprValue *out_val
int param_count = node->data.fn_call_expr.params.length;
ConstExprValue *args = allocate<ConstExprValue>(param_count);
for (int i = 0; i < param_count; i += 1) {
AstNode *param_expr_node = node->data.fn_call_expr.params.at(i);
ConstExprValue *param_val = &args[i];
for (int call_i = 0; call_i < param_count; call_i += 1) {
AstNode *param_expr_node = node->data.fn_call_expr.params.at(call_i);
ConstExprValue *param_val = &args[call_i];
if (eval_expr(ef, param_expr_node, param_val)) return true;
}
@ -1291,6 +1291,13 @@ static bool eval_expr(EvalFn *ef, AstNode *node, ConstExprValue *out) {
}
static bool eval_fn_args(EvalFnRoot *efr, FnTableEntry *fn, ConstExprValue *args, ConstExprValue *out_val) {
AstNode *acting_proto_node;
if (fn->proto_node->data.fn_proto.generic_proto_node) {
acting_proto_node = fn->proto_node->data.fn_proto.generic_proto_node;
} else {
acting_proto_node = fn->proto_node;
}
EvalFn ef = {0};
ef.root = efr;
ef.fn = fn;
@ -1300,12 +1307,12 @@ static bool eval_fn_args(EvalFnRoot *efr, FnTableEntry *fn, ConstExprValue *args
root_scope->block_context = fn->fn_def_node->data.fn_def.body->block_context;
ef.scope_stack.append(root_scope);
int param_count = fn->type_entry->data.fn.fn_type_id.param_count;
for (int i = 0; i < param_count; i += 1) {
AstNode *decl_param_node = fn->proto_node->data.fn_proto.params.at(i);
int param_count = acting_proto_node->data.fn_proto.params.length;
for (int proto_i = 0; proto_i < param_count; proto_i += 1) {
AstNode *decl_param_node = acting_proto_node->data.fn_proto.params.at(proto_i);
assert(decl_param_node->type == NodeTypeParamDecl);
ConstExprValue *src_const_val = &args[i];
ConstExprValue *src_const_val = &args[proto_i];
assert(src_const_val->ok);
root_scope->vars.add_one();
@ -1315,7 +1322,6 @@ static bool eval_fn_args(EvalFnRoot *efr, FnTableEntry *fn, ConstExprValue *args
}
return eval_expr(&ef, fn->fn_def_node->data.fn_def.body, out_val);
}
bool eval_fn(CodeGen *g, AstNode *node, FnTableEntry *fn, ConstExprValue *out_val,
@ -1329,9 +1335,16 @@ bool eval_fn(CodeGen *g, AstNode *node, FnTableEntry *fn, ConstExprValue *out_va
efr.call_node = node;
efr.branch_quota = branch_quota;
AstNode *acting_proto_node;
if (fn->proto_node->data.fn_proto.generic_proto_node) {
acting_proto_node = fn->proto_node->data.fn_proto.generic_proto_node;
} else {
acting_proto_node = fn->proto_node;
}
int call_param_count = node->data.fn_call_expr.params.length;
int type_param_count = fn->type_entry->data.fn.fn_type_id.param_count;
ConstExprValue *args = allocate<ConstExprValue>(type_param_count);
int proto_param_count = acting_proto_node->data.fn_proto.params.length;
ConstExprValue *args = allocate<ConstExprValue>(proto_param_count);
int next_arg_index = 0;
if (struct_node) {
ConstExprValue *struct_val = &get_resolved_expr(struct_node)->const_val;

View File

@ -747,7 +747,7 @@ static void ast_parse_directives(ParseContext *pc, int *token_index,
}
/*
ParamDecl = option("noalias") option("Symbol" ":") PrefixOpExpression | "..."
ParamDecl = option("noalias" | "inline") option("Symbol" ":") TypeExpr | "..."
*/
static AstNode *ast_parse_param_decl(ParseContext *pc, int *token_index) {
Token *token = &pc->tokens->at(*token_index);
@ -763,6 +763,10 @@ static AstNode *ast_parse_param_decl(ParseContext *pc, int *token_index) {
node->data.param_decl.is_noalias = true;
*token_index += 1;
token = &pc->tokens->at(*token_index);
} else if (token->id == TokenIdKeywordInline) {
node->data.param_decl.is_inline = true;
*token_index += 1;
token = &pc->tokens->at(*token_index);
}
buf_resize(&node->data.param_decl.name, 0);
@ -2472,7 +2476,7 @@ static AstNode *ast_parse_block(ParseContext *pc, int *token_index, bool mandato
}
/*
FnProto = "fn" option("Symbol") option(ParamDeclList) ParamDeclList option("->" TypeExpr)
FnProto = "fn" option("Symbol") ParamDeclList option("->" TypeExpr)
*/
static AstNode *ast_parse_fn_proto(ParseContext *pc, int *token_index, bool mandatory,
ZigList<AstNode*> *directives, VisibMod visib_mod)
@ -2502,17 +2506,6 @@ static AstNode *ast_parse_fn_proto(ParseContext *pc, int *token_index, bool mand
ast_parse_param_decl_list(pc, token_index, &node->data.fn_proto.params, &node->data.fn_proto.is_var_args);
Token *maybe_lparen = &pc->tokens->at(*token_index);
if (maybe_lparen->id == TokenIdLParen) {
for (int i = 0; i < node->data.fn_proto.params.length; i += 1) {
node->data.fn_proto.generic_params.append(node->data.fn_proto.params.at(i));
}
node->data.fn_proto.generic_params_is_var_args = node->data.fn_proto.is_var_args;
node->data.fn_proto.params.resize(0);
ast_parse_param_decl_list(pc, token_index, &node->data.fn_proto.params, &node->data.fn_proto.is_var_args);
}
Token *next_token = &pc->tokens->at(*token_index);
if (next_token->id == TokenIdArrow) {
*token_index += 1;
@ -2931,7 +2924,6 @@ void ast_visit_node_children(AstNode *node, void (*visit)(AstNode **, void *cont
case NodeTypeFnProto:
visit_field(&node->data.fn_proto.return_type, visit, context);
visit_node_list(node->data.fn_proto.top_level_decl.directives, visit, context);
visit_node_list(&node->data.fn_proto.generic_params, visit, context);
visit_node_list(&node->data.fn_proto.params, visit, context);
break;
case NodeTypeFnDef:
@ -3123,6 +3115,22 @@ static void clone_subtree_list(ZigList<AstNode *> *dest, ZigList<AstNode *> *src
}
}
static void clone_subtree_list_omit_inline_params(ZigList<AstNode *> *dest, ZigList<AstNode *> *src,
uint32_t *next_node_index)
{
memset(dest, 0, sizeof(ZigList<AstNode *>));
dest->ensure_capacity(src->length);
for (int i = 0; i < src->length; i += 1) {
AstNode *src_node = src->at(i);
assert(src_node->type == NodeTypeParamDecl);
if (src_node->data.param_decl.is_inline) {
continue;
}
dest->append(ast_clone_subtree(src_node, next_node_index));
dest->last()->parent_field = &dest->last();
}
}
static void clone_subtree_list_ptr(ZigList<AstNode *> **dest_ptr, ZigList<AstNode *> *src,
uint32_t *next_node_index)
{
@ -3133,20 +3141,26 @@ static void clone_subtree_list_ptr(ZigList<AstNode *> **dest_ptr, ZigList<AstNod
}
}
static void clone_subtree_field(AstNode **dest, AstNode *src, uint32_t *next_node_index) {
static void clone_subtree_field_special(AstNode **dest, AstNode *src, uint32_t *next_node_index,
enum AstCloneSpecial special)
{
if (src) {
*dest = ast_clone_subtree(src, next_node_index);
*dest = ast_clone_subtree_special(src, next_node_index, special);
(*dest)->parent_field = dest;
} else {
*dest = nullptr;
}
}
static void clone_subtree_field(AstNode **dest, AstNode *src, uint32_t *next_node_index) {
return clone_subtree_field_special(dest, src, next_node_index, AstCloneSpecialNone);
}
static void clone_subtree_tld(TopLevelDecl *dest, TopLevelDecl *src, uint32_t *next_node_index) {
clone_subtree_list_ptr(&dest->directives, src->directives, next_node_index);
}
AstNode *ast_clone_subtree(AstNode *old_node, uint32_t *next_node_index) {
AstNode *ast_clone_subtree_special(AstNode *old_node, uint32_t *next_node_index, enum AstCloneSpecial special) {
AstNode *new_node = allocate_nonzero<AstNode>(1);
memcpy(new_node, old_node, sizeof(AstNode));
new_node->create_index = *next_node_index;
@ -3163,14 +3177,19 @@ AstNode *ast_clone_subtree(AstNode *old_node, uint32_t *next_node_index) {
next_node_index);
clone_subtree_field(&new_node->data.fn_proto.return_type, old_node->data.fn_proto.return_type,
next_node_index);
clone_subtree_list(&new_node->data.fn_proto.generic_params,
&old_node->data.fn_proto.generic_params, next_node_index);
if (special == AstCloneSpecialOmitInlineParams) {
clone_subtree_list_omit_inline_params(&new_node->data.fn_proto.params, &old_node->data.fn_proto.params,
next_node_index);
} else {
clone_subtree_list(&new_node->data.fn_proto.params, &old_node->data.fn_proto.params,
next_node_index);
}
break;
case NodeTypeFnDef:
clone_subtree_field(&new_node->data.fn_def.fn_proto, old_node->data.fn_def.fn_proto, next_node_index);
clone_subtree_field_special(&new_node->data.fn_def.fn_proto, old_node->data.fn_def.fn_proto,
next_node_index, special);
new_node->data.fn_def.fn_proto->data.fn_proto.fn_def_node = new_node;
clone_subtree_field(&new_node->data.fn_def.body, old_node->data.fn_def.body, next_node_index);
break;
@ -3354,3 +3373,7 @@ AstNode *ast_clone_subtree(AstNode *old_node, uint32_t *next_node_index) {
return new_node;
}
AstNode *ast_clone_subtree(AstNode *old_node, uint32_t *next_node_index) {
return ast_clone_subtree_special(old_node, next_node_index, AstCloneSpecialNone);
}

View File

@ -25,6 +25,13 @@ void ast_print(AstNode *node, int indent);
void normalize_parent_ptrs(AstNode *node);
AstNode *ast_clone_subtree(AstNode *node, uint32_t *next_node_index);
enum AstCloneSpecial {
AstCloneSpecialNone,
AstCloneSpecialOmitInlineParams,
};
AstNode *ast_clone_subtree_special(AstNode *node, uint32_t *next_node_index, enum AstCloneSpecial special);
void ast_visit_node_children(AstNode *node, void (*visit)(AstNode **, void *context), void *context);
#endif

View File

@ -7,7 +7,7 @@ const want_modification_safety = !@compile_var("is_release");
const debug_u32 = if (want_modification_safety) u32 else void;
/*
pub fn HashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b: K)->bool) {
pub inline fn HashMap(inline K: type, inline V: type, inline hash: fn(key: K)->u32, inline eql: fn(a: K, b: K)->bool) {
SmallHashMap(K, V, hash, eql, 8);
}
*/
@ -70,7 +70,7 @@ pub struct SmallHashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b
pub fn deinit(hm: &Self) {
if (hm.entries.ptr != &hm.prealloc_entries[0]) {
hm.allocator.free(hm.allocator, ([]u8)(hm.entries));
hm.allocator.free(Entry, hm.entries);
}
}
@ -103,7 +103,7 @@ pub struct SmallHashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b
}
}
if (old_entries.ptr != &hm.prealloc_entries[0]) {
hm.allocator.free(hm.allocator, ([]u8)(old_entries));
hm.allocator.free(Entry, old_entries);
}
}
@ -152,7 +152,7 @@ pub struct SmallHashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b
}
fn init_capacity(hm: &Self, capacity: isize) -> %void {
hm.entries = ([]Entry)(%return hm.allocator.alloc(hm.allocator, capacity * @sizeof(Entry)));
hm.entries = %return hm.allocator.alloc(Entry, capacity);
hm.size = 0;
hm.max_distance_from_start_index = 0;
for (hm.entries) |*entry| {
@ -180,7 +180,7 @@ pub struct SmallHashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b
if (entry.distance_from_start_index < distance_from_start_index) {
// robin hood to the rescue
const tmp = *entry;
hm.max_distance_from_start_index = math.max(isize)(
hm.max_distance_from_start_index = math.max(isize,
hm.max_distance_from_start_index, distance_from_start_index);
*entry = Entry {
.used = true,
@ -201,7 +201,8 @@ pub struct SmallHashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b
hm.size += 1;
}
hm.max_distance_from_start_index = math.max(isize)(distance_from_start_index, hm.max_distance_from_start_index);
hm.max_distance_from_start_index = math.max(isize, distance_from_start_index,
hm.max_distance_from_start_index);
*entry = Entry {
.used = true,
.distance_from_start_index = distance_from_start_index,
@ -231,9 +232,9 @@ pub struct SmallHashMap(K: type, V: type, hash: fn(key: K)->u32, eql: fn(a: K, b
}
var global_allocator = Allocator {
.alloc = global_alloc,
.realloc = global_realloc,
.free = global_free,
.alloc_fn = global_alloc,
.realloc_fn = global_realloc,
.free_fn = global_free,
.context = null,
};

View File

@ -69,7 +69,7 @@ pub struct OutStream {
const dest_space_left = os.buffer.len - os.index;
while (src_bytes_left > 0) {
const copy_amt = math.min(isize)(dest_space_left, src_bytes_left);
const copy_amt = math.min(isize, dest_space_left, src_bytes_left);
@memcpy(&os.buffer[os.index], &bytes[src_index], copy_amt);
os.index += copy_amt;
if (os.index == os.buffer.len) {
@ -208,59 +208,47 @@ pub struct InStream {
}
}
pub error InvalidChar;
pub error Overflow;
pub fn parse_unsigned(T: type)(buf: []u8, radix: u8) -> %T {
pub fn parse_unsigned(inline T: type, buf: []u8, radix: u8) -> %T {
var x: T = 0;
for (buf) |c| {
const digit = char_to_digit(c);
if (digit >= radix) {
return error.InvalidChar;
}
// x *= radix
if (@mul_with_overflow(T, x, radix, &x)) {
return error.Overflow;
}
// x += digit
if (@add_with_overflow(T, x, digit, &x)) {
return error.Overflow;
}
const digit = %return char_to_digit(c, radix);
x = %return math.mul_overflow(T, x, radix);
x = %return math.add_overflow(T, x, digit);
}
return x;
}
fn char_to_digit(c: u8) -> u8 {
// TODO use switch with range
if ('0' <= c && c <= '9') {
pub error InvalidChar;
fn char_to_digit(c: u8, radix: u8) -> %u8 {
const value = if ('0' <= c && c <= '9') {
c - '0'
} else if ('A' <= c && c <= 'Z') {
c - 'A' + 10
} else if ('a' <= c && c <= 'z') {
c - 'a' + 10
} else {
@max_value(u8)
}
return error.InvalidChar;
};
return if (value >= radix) error.InvalidChar else value;
}
pub fn buf_print_signed(T: type)(out_buf: []u8, x: T) -> isize {
pub fn buf_print_signed(inline T: type, out_buf: []u8, x: T) -> isize {
const uint = @int_type(false, T.bit_count, false);
if (x < 0) {
out_buf[0] = '-';
return 1 + buf_print_unsigned(uint)(out_buf[1...], uint(-(x + 1)) + 1);
return 1 + buf_print_unsigned(uint, out_buf[1...], uint(-(x + 1)) + 1);
} else {
return buf_print_unsigned(uint)(out_buf, uint(x));
return buf_print_unsigned(uint, out_buf, uint(x));
}
}
pub const buf_print_i64 = buf_print_signed(i64);
pub fn buf_print_i64(out_buf: []u8, x: i64) -> isize {
buf_print_signed(i64, out_buf, x)
}
pub fn buf_print_unsigned(T: type)(out_buf: []u8, x: T) -> isize {
pub fn buf_print_unsigned(inline T: type, out_buf: []u8, x: T) -> isize {
var buf: [max_u64_base10_digits]u8 = undefined;
var a = x;
var index: isize = buf.len;
@ -281,7 +269,9 @@ pub fn buf_print_unsigned(T: type)(out_buf: []u8, x: T) -> isize {
return len;
}
pub const buf_print_u64 = buf_print_unsigned(u64);
pub fn buf_print_u64(out_buf: []u8, x: u64) -> isize {
buf_print_unsigned(u64, out_buf, x)
}
pub fn buf_print_f64(out_buf: []u8, x: f64, decimals: isize) -> isize {
const numExpBits = 11;
@ -409,7 +399,7 @@ pub fn buf_print_f64(out_buf: []u8, x: f64, decimals: isize) -> isize {
#attribute("test")
fn parse_u64_digit_too_big() {
parse_unsigned(u64)("123a", 10) %% |err| {
parse_unsigned(u64, "123a", 10) %% |err| {
if (err == error.InvalidChar) return;
unreachable{};
};

View File

@ -2,59 +2,58 @@ const assert = @import("debug.zig").assert;
const mem = @import("mem.zig");
const Allocator = mem.Allocator;
/*
pub fn List(T: type) -> type {
pub inline fn List(inline T: type) -> type {
SmallList(T, 8)
}
*/
pub struct SmallList(T: type, STATIC_SIZE: isize) {
const Self = SmallList(T, STATIC_SIZE);
items: []T,
length: isize,
prealloc_items: [STATIC_SIZE]T,
allocator: &Allocator,
pub fn init(l: &SmallList(T, STATIC_SIZE), allocator: &Allocator) {
pub fn init(l: &Self, allocator: &Allocator) {
l.items = l.prealloc_items[0...];
l.length = 0;
l.allocator = allocator;
}
pub fn deinit(l: &SmallList(T, STATIC_SIZE)) {
pub fn deinit(l: &Self) {
if (l.items.ptr != &l.prealloc_items[0]) {
l.allocator.free(l.allocator, ([]u8)(l.items));
l.allocator.free(T, l.items);
}
}
pub fn append(l: &SmallList(T, STATIC_SIZE), item: T) -> %void {
pub fn append(l: &Self, item: T) -> %void {
const new_length = l.length + 1;
%return l.ensure_capacity(new_length);
l.items[l.length] = item;
l.length = new_length;
}
pub fn ensure_capacity(l: &SmallList(T, STATIC_SIZE), new_capacity: isize) -> %void {
pub fn ensure_capacity(l: &Self, new_capacity: isize) -> %void {
const old_capacity = l.items.len;
var better_capacity = old_capacity;
while (better_capacity < new_capacity) {
better_capacity *= 2;
}
if (better_capacity != old_capacity) {
const alloc_bytes = better_capacity * @sizeof(T);
if (l.items.ptr == &l.prealloc_items[0]) {
l.items = ([]T)(%return l.allocator.alloc(l.allocator, alloc_bytes));
@memcpy(l.items.ptr, &l.prealloc_items[0], old_capacity * @sizeof(T));
l.items = %return l.allocator.alloc(T, better_capacity);
mem.copy(T, l.items, l.prealloc_items[0...old_capacity]);
} else {
l.items = ([]T)(%return l.allocator.realloc(l.allocator, ([]u8)(l.items), alloc_bytes));
l.items = %return l.allocator.realloc(T, l.items, better_capacity);
}
}
}
}
var global_allocator = Allocator {
.alloc = global_alloc,
.realloc = global_realloc,
.free = global_free,
.alloc_fn = global_alloc,
.realloc_fn = global_realloc,
.free_fn = global_free,
.context = null,
};

View File

@ -26,10 +26,24 @@ pub fn f64_is_inf(f: f64) -> bool {
f == f64_get_neg_inf() || f == f64_get_pos_inf()
}
pub fn min(T: type)(x: T, y: T) -> T {
pub fn min(inline T: type, x: T, y: T) -> T {
if (x < y) x else y
}
pub fn max(T: type)(x: T, y: T) -> T {
pub fn max(inline T: type, x: T, y: T) -> T {
if (x > y) x else y
}
pub error Overflow;
pub fn mul_overflow(inline T: type, a: T, b: T) -> %T {
var answer: T = undefined;
if (@mul_with_overflow(T, a, b, &answer)) error.Overflow else answer
}
pub fn add_overflow(inline T: type, a: T, b: T) -> %T {
var answer: T = undefined;
if (@add_with_overflow(T, a, b, &answer)) error.Overflow else answer
}
pub fn sub_overflow(inline T: type, a: T, b: T) -> %T {
var answer: T = undefined;
if (@sub_with_overflow(T, a, b, &answer)) error.Overflow else answer
}

View File

@ -1,18 +1,46 @@
const assert = @import("debug.zig").assert;
const math = @import("math.zig");
const os = @import("os.zig");
const io = @import("io.zig");
pub error NoMem;
pub type Context = u8;
pub struct Allocator {
alloc: fn (self: &Allocator, n: isize) -> %[]u8,
realloc: fn (self: &Allocator, old_mem: []u8, new_size: isize) -> %[]u8,
free: fn (self: &Allocator, mem: []u8),
alloc_fn: fn (self: &Allocator, n: isize) -> %[]u8,
realloc_fn: fn (self: &Allocator, old_mem: []u8, new_size: isize) -> %[]u8,
free_fn: fn (self: &Allocator, mem: []u8),
context: ?&Context,
/// Aborts the program if an allocation fails.
fn checked_alloc(self: &Allocator, inline T: type, n: isize) -> []T {
alloc(self, T, n) %% |err| {
// TODO var args printf
%%io.stderr.write("allocation failure: ");
%%io.stderr.write(@err_name(err));
%%io.stderr.printf("\n");
os.abort()
}
}
fn alloc(self: &Allocator, inline T: type, n: isize) -> %[]T {
const byte_count = %return math.mul_overflow(isize, @sizeof(T), n);
([]T)(%return self.alloc_fn(self, byte_count))
}
fn realloc(self: &Allocator, inline T: type, old_mem: []T, n: isize) -> %[]T {
const byte_count = %return math.mul_overflow(isize, @sizeof(T), n);
([]T)(%return self.realloc_fn(self, ([]u8)(old_mem), byte_count))
}
fn free(self: &Allocator, inline T: type, mem: []T) {
self.free_fn(self, ([]u8)(mem));
}
}
/// Copy all of source into dest at position 0.
/// dest.len must be >= source.len.
pub fn copy(T)(dest: []T, source: []T) {
pub fn copy(inline T: type, dest: []T, source: []T) {
assert(dest.len >= source.len);
@memcpy(dest.ptr, source.ptr, @sizeof(T) * source.len);
}

View File

@ -99,14 +99,14 @@ pub fn connect_addr(addr: &Address, port: u16) -> %Connection {
const connect_ret = if (addr.family == linux.AF_INET) {
var os_addr: linux.sockaddr_in = undefined;
os_addr.family = addr.family;
os_addr.port = host_to_be(u16)(port);
os_addr.port = swap_if_little_endian(u16, port);
@memcpy((&u8)(&os_addr.addr), &addr.addr[0], 4);
@memset(&os_addr.zero, 0, @sizeof(@typeof(os_addr.zero)));
linux.connect(socket_fd, (&linux.sockaddr)(&os_addr), @sizeof(linux.sockaddr_in))
} else if (addr.family == linux.AF_INET6) {
var os_addr: linux.sockaddr_in6 = undefined;
os_addr.family = addr.family;
os_addr.port = host_to_be(u16)(port);
os_addr.port = swap_if_little_endian(u16, port);
os_addr.flowinfo = 0;
os_addr.scope_id = addr.scope_id;
@memcpy(&os_addr.addr[0], &addr.addr[0], 16);
@ -319,7 +319,7 @@ fn parse_ip4(buf: []const u8) -> %u32 {
#attribute("test")
fn test_parse_ip4() {
assert(%%parse_ip4("127.0.0.1") == be_to_host(u32)(0x7f000001));
assert(%%parse_ip4("127.0.0.1") == swap_if_little_endian(u32, 0x7f000001));
switch (parse_ip4("256.0.0.1")) { Overflow => {}, else => unreachable {}, }
switch (parse_ip4("x.0.0.1")) { InvalidChar => {}, else => unreachable {}, }
switch (parse_ip4("127.0.0.1.1")) { JunkAtEnd => {}, else => unreachable {}, }
@ -352,12 +352,11 @@ fn test_lookup_simple_ip() {
}
}
const be_to_host = host_to_be;
fn host_to_be(T: type)(x: T) -> T {
if (@compile_var("is_big_endian")) x else endian_swap(T)(x)
fn swap_if_little_endian(inline T: type, x: T) -> T {
if (@compile_var("is_big_endian")) x else endian_swap(T, x)
}
fn endian_swap(T: type)(x: T) -> T {
fn endian_swap(inline T: type, x: T) -> T {
const x_slice = ([]u8)((&const x)[0...1]);
var result: T = undefined;
const result_slice = ([]u8)((&result)[0...1]);

View File

@ -1,8 +1,10 @@
const assert = @import("debug.zig").assert;
pub const eql = slice_eql(u8);
pub fn eql(a: []const u8, b: []const u8) -> bool {
slice_eql(u8, a, b)
}
pub fn slice_eql(T: type)(a: []const T, b: []const T) -> bool {
pub fn slice_eql(inline T: type, a: []const T, b: []const T) -> bool {
if (a.len != b.len) return false;
for (a) |item, index| {
if (b[index] != item) return false;

View File

@ -9,6 +9,7 @@ extern var zig_test_fn_list: []TestFn;
pub fn run_tests() -> %void {
for (zig_test_fn_list) |test_fn, i| {
// TODO: print var args
%%io.stderr.write("Test ");
%%io.stderr.print_i64(i + 1);
%%io.stderr.write("/");

View File

@ -1181,11 +1181,11 @@ const invalid = foo > foo;
)SOURCE", 1, ".tmp_source.zig:3:21: error: operator not allowed for type 'fn()'");
add_compile_fail_case("generic function instance with non-constant expression", R"SOURCE(
fn foo(x: i32)(y: i32) -> i32 { return x + y; }
fn foo(inline x: i32, y: i32) -> i32 { return x + y; }
fn test1(a: i32, b: i32) -> i32 {
return foo(a)(b);
return foo(a, b);
}
)SOURCE", 1, ".tmp_source.zig:4:16: error: unable to evaluate constant expression");
)SOURCE", 1, ".tmp_source.zig:4:16: error: unable to evaluate constant expression for inline parameter");
add_compile_fail_case("goto jumping into block", R"SOURCE(
fn f() {
@ -1406,6 +1406,27 @@ fn f() {
}
)SOURCE", 1, ".tmp_source.zig:3:13: error: unable to evaluate constant expression");
add_compile_fail_case("export function with inline parameter", R"SOURCE(
export fn foo(inline x: i32, y: i32) -> i32{
x + y
}
)SOURCE", 1, ".tmp_source.zig:2:15: error: inline parameter not allowed in extern function");
add_compile_fail_case("extern function with inline parameter", R"SOURCE(
extern fn foo(inline x: i32, y: i32) -> i32;
fn f() -> i32 {
foo(1, 2)
}
)SOURCE", 1, ".tmp_source.zig:2:15: error: inline parameter not allowed in extern function");
/* TODO
add_compile_fail_case("inline export function", R"SOURCE(
export inline fn foo(x: i32, y: i32) -> i32{
x + y
}
)SOURCE", 1, ".tmp_source.zig:2:1: error: extern functions cannot be inline");
*/
}
//////////////////////////////////////////////////////////////////////////////

View File

@ -712,17 +712,17 @@ three)";
#attribute("test")
fn simple_generic_fn() {
assert(max(i32)(3, -1) == 3);
assert(max(f32)(0.123, 0.456) == 0.456);
assert(add(2)(3) == 5);
assert(max(i32, 3, -1) == 3);
assert(max(f32, 0.123, 0.456) == 0.456);
assert(add(2, 3) == 5);
}
fn max(T: type)(a: T, b: T) -> T {
fn max(inline T: type, a: T, b: T) -> T {
return if (a > b) a else b;
}
fn add(a: i32)(b: i32) -> i32 {
return a + b;
fn add(inline a: i32, b: i32) -> i32 {
return @const_eval(a) + b;
}
@ -734,23 +734,18 @@ fn constant_equal_function_pointers() {
fn empty_fn() {}
#attribute("test")
fn generic_function_equality() {
assert(max(i32) == max(i32));
}
#attribute("test")
fn generic_malloc_free() {
const a = %%mem_alloc(u8)(10);
mem_free(u8)(a);
const a = %%mem_alloc(u8, 10);
mem_free(u8, a);
}
const some_mem : [100]u8 = undefined;
#static_eval_enable(false)
fn mem_alloc(T: type)(n: isize) -> %[]T {
fn mem_alloc(inline T: type, n: isize) -> %[]T {
return (&T)(&some_mem[0])[0...n];
}
fn mem_free(T: type)(mem: []T) { }
fn mem_free(inline T: type, mem: []T) { }
#attribute("test")
@ -982,11 +977,11 @@ pub fn vec3(x: f32, y: f32, z: f32) -> Vec3 {
#attribute("test")
fn generic_fn_with_implicit_cast() {
assert(get_first_byte(u8)([]u8 {13}) == 13);
assert(get_first_byte(u16)([]u16 {0, 13}) == 0);
assert(get_first_byte(u8, []u8 {13}) == 13);
assert(get_first_byte(u16, []u16 {0, 13}) == 0);
}
fn get_byte(ptr: ?&u8) -> u8 {*??ptr}
fn get_first_byte(T: type)(mem: []T) -> u8 {
fn get_first_byte(inline T: type, mem: []T) -> u8 {
get_byte((&u8)(&mem[0]))
}
@ -1651,9 +1646,9 @@ struct GenericDataThing(count: isize) {
#attribute("test")
fn use_generic_param_in_generic_param() {
assert(a_generic_fn(i32, 3)(4) == 7);
assert(a_generic_fn(i32, 3, 4) == 7);
}
fn a_generic_fn(T: type, a: T)(b: T) -> T {
fn a_generic_fn(inline T: type, inline a: T, b: T) -> T {
return a + b;
}