Add initial big.Rational type

master
Marc Tiehuis 2019-03-26 19:53:02 +13:00
parent ea1d2a2409
commit 5f4fcd5030
3 changed files with 901 additions and 0 deletions

View File

@ -521,6 +521,7 @@ set(ZIG_STD_FILES
"math/atanh.zig"
"math/big.zig"
"math/big/int.zig"
"math/big/rational.zig"
"math/cbrt.zig"
"math/ceil.zig"
"math/complex.zig"

View File

@ -1,5 +1,7 @@
pub use @import("big/int.zig");
pub use @import("big/rational.zig");
test "math.big" {
_ = @import("big/int.zig");
_ = @import("big/rational.zig");
}

898
std/math/big/rational.zig Normal file
View File

@ -0,0 +1,898 @@
const std = @import("../../std.zig");
const builtin = @import("builtin");
const debug = std.debug;
const math = std.math;
const mem = std.mem;
const Allocator = mem.Allocator;
const ArrayList = std.ArrayList;
const TypeId = builtin.TypeId;
const bn = @import("int.zig");
const Limb = bn.Limb;
const DoubleLimb = bn.DoubleLimb;
const Int = bn.Int;
pub const Rational = struct {
// sign of Rational is a.positive, b.positive is ignored
p: Int,
q: Int,
pub fn init(a: *Allocator) !Rational {
return Rational{
.p = try Int.init(a),
.q = try Int.initSet(a, 1),
};
}
pub fn deinit(self: *Rational) void {
self.p.deinit();
self.q.deinit();
}
pub fn setInt(self: *Rational, a: var) !void {
try self.p.set(a);
try self.q.set(1);
}
// TODO: Accept a/b fractions and exponent form
pub fn setFloatString(self: *Rational, str: []const u8) !void {
if (str.len == 0) {
return error.InvalidFloatString;
}
const State = enum {
Integer,
Fractional,
};
var state = State.Integer;
var point: ?usize = null;
var start: usize = 0;
if (str[0] == '-') {
start += 1;
}
for (str) |c, i| {
switch (state) {
State.Integer => {
switch (c) {
'.' => {
state = State.Fractional;
point = i;
},
'0'...'9' => {
// okay
},
else => {
return error.InvalidFloatString;
},
}
},
State.Fractional => {
switch (c) {
'0'...'9' => {
// okay
},
else => {
return error.InvalidFloatString;
},
}
},
}
}
// TODO: batch the multiplies by 10
if (point) |i| {
try self.p.setString(10, str[0..i]);
const base = Int.initFixed(([]Limb{10})[0..]);
var j: usize = start;
while (j < str.len - i - 1) : (j += 1) {
try self.p.mul(self.p, base);
}
try self.q.setString(10, str[i + 1 ..]);
try self.p.add(self.p, self.q);
try self.q.set(1);
var k: usize = i + 1;
while (k < str.len) : (k += 1) {
try self.q.mul(self.q, base);
}
try self.reduce();
} else {
try self.p.setString(10, str[0..]);
try self.q.set(1);
}
}
// Translated from golang.go/src/math/big/rat.go.
pub fn setFloat(self: *Rational, comptime T: type, f: T) !void {
debug.assert(@typeId(T) == builtin.TypeId.Float);
const UnsignedIntType = @IntType(false, T.bit_count);
const f_bits = @bitCast(UnsignedIntType, f);
const exponent_bits = math.floatExponentBits(T);
const exponent_bias = (1 << (exponent_bits - 1)) - 1;
const mantissa_bits = math.floatMantissaBits(T);
const exponent_mask = (1 << exponent_bits) - 1;
const mantissa_mask = (1 << mantissa_bits) - 1;
var exponent = @intCast(i16, (f_bits >> mantissa_bits) & exponent_mask);
var mantissa = f_bits & mantissa_mask;
switch (exponent) {
exponent_mask => {
return error.NonFiniteFloat;
},
0 => {
// denormal
exponent -= exponent_bias - 1;
},
else => {
// normal
mantissa |= 1 << mantissa_bits;
exponent -= exponent_bias;
},
}
var shift: i16 = mantissa_bits - exponent;
// factor out powers of two early from rational
while (mantissa & 1 == 0 and shift > 0) {
mantissa >>= 1;
shift -= 1;
}
try self.p.set(mantissa);
self.p.positive = f >= 0;
try self.q.set(1);
if (shift >= 0) {
try self.q.shiftLeft(self.q, @intCast(usize, shift));
} else {
try self.p.shiftLeft(self.p, @intCast(usize, -shift));
}
try self.reduce();
}
// Translated from golang.go/src/math/big/rat.go.
pub fn toFloat(self: Rational, comptime T: type) !T {
debug.assert(@typeId(T) == builtin.TypeId.Float);
const fsize = T.bit_count;
const BitReprType = @IntType(false, T.bit_count);
const msize = math.floatMantissaBits(T);
const msize1 = msize + 1;
const msize2 = msize1 + 1;
const esize = math.floatExponentBits(T);
const ebias = (1 << (esize - 1)) - 1;
const emin = 1 - ebias;
const emax = ebias;
if (self.p.eqZero()) {
return 0;
}
// 1. left-shift a or sub so that a/b is in [1 << msize1, 1 << (msize2 + 1)]
var exp = @intCast(isize, self.p.bitCountTwosComp()) - @intCast(isize, self.q.bitCountTwosComp());
var a2 = try self.p.clone();
defer a2.deinit();
var b2 = try self.q.clone();
defer b2.deinit();
const shift = msize2 - exp;
if (shift >= 0) {
try a2.shiftLeft(a2, @intCast(usize, shift));
} else {
try b2.shiftLeft(b2, @intCast(usize, -shift));
}
// 2. compute quotient and remainder
var q = try Int.init(self.p.allocator.?);
defer q.deinit();
// unused
var r = try Int.init(self.p.allocator.?);
defer r.deinit();
try Int.divTrunc(&q, &r, a2, b2);
var mantissa = extractLowBits(q, BitReprType);
var have_rem = r.len > 0;
// 3. q didn't fit in msize2 bits, redo division b2 << 1
if (mantissa >> msize2 == 1) {
if (mantissa & 1 == 1) {
have_rem = true;
}
mantissa >>= 1;
exp += 1;
}
if (mantissa >> msize1 != 1) {
@panic("unexpected bits in result");
}
// 4. Rounding
if (emin - msize <= exp and exp <= emin) {
// denormal
const shift1 = @intCast(math.Log2Int(BitReprType), emin - (exp - 1));
const lost_bits = mantissa & ((@intCast(BitReprType, 1) << shift1) - 1);
have_rem = have_rem or lost_bits != 0;
mantissa >>= shift1;
exp = 2 - ebias;
}
// round q using round-half-to-even
var exact = !have_rem;
if (mantissa & 1 != 0) {
exact = false;
if (have_rem or (mantissa & 2 != 0)) {
mantissa += 1;
if (mantissa >= 1 << msize2) {
// 11...1 => 100...0
mantissa >>= 1;
exp += 1;
}
}
}
mantissa >>= 1;
const f = math.scalbn(@intToFloat(T, mantissa), @intCast(i32, exp - msize1));
if (math.isInf(f)) {
exact = false;
}
return if (self.p.positive) f else -f;
}
pub fn setRatio(self: *Rational, p: var, q: var) !void {
try self.p.set(p);
try self.q.set(q);
self.p.positive = (@boolToInt(self.p.positive) ^ @boolToInt(self.q.positive)) == 0;
self.q.positive = true;
try self.reduce();
if (self.q.eqZero()) {
@panic("cannot set rational with denominator = 0");
}
}
pub fn copyInt(self: *Rational, a: Int) !void {
try self.p.copy(a);
try self.q.set(1);
}
pub fn copyRatio(self: *Rational, a: Int, b: Int) !void {
try self.p.copy(a);
try self.q.copy(b);
self.p.positive = (@boolToInt(self.p.positive) ^ @boolToInt(self.q.positive)) == 0;
self.q.positive = true;
try self.reduce();
}
pub fn abs(r: *Rational) void {
r.p.abs();
}
pub fn negate(r: *Rational) void {
r.p.negate();
}
pub fn swap(r: *Rational, other: *Rational) void {
r.p.swap(&other.p);
r.q.swap(&other.q);
}
pub fn cmp(a: Rational, b: Rational) !i8 {
return cmpInternal(a, b, true);
}
pub fn cmpAbs(a: Rational, b: Rational) !i8 {
return cmpInternal(a, b, false);
}
// p/q > x/y iff p*y > x*q
fn cmpInternal(a: Rational, b: Rational, is_abs: bool) !i8 {
// TODO: Would a div compare algorithm of sorts be viable and quicker? Can we avoid
// the memory allocations here?
var q = try Int.init(a.p.allocator.?);
defer q.deinit();
var p = try Int.init(b.p.allocator.?);
defer p.deinit();
try q.mul(a.p, b.q);
try p.mul(b.p, a.q);
return if (is_abs) q.cmpAbs(p) else q.cmp(p);
}
// r/q = ap/aq + bp/bq = (ap*bq + bp*aq) / (aq*bq)
//
// For best performance, rma should not alias a or b.
pub fn add(rma: *Rational, a: Rational, b: Rational) !void {
var r = rma;
var aliased = rma.p.limbs.ptr == a.p.limbs.ptr or rma.p.limbs.ptr == b.p.limbs.ptr;
var sr: Rational = undefined;
if (aliased) {
sr = try Rational.init(rma.p.allocator.?);
r = &sr;
aliased = true;
}
defer if (aliased) {
rma.swap(r);
r.deinit();
};
try r.p.mul(a.p, b.q);
try r.q.mul(b.p, a.q);
try r.p.add(r.p, r.q);
try r.q.mul(a.q, b.q);
try r.reduce();
}
// r/q = ap/aq - bp/bq = (ap*bq - bp*aq) / (aq*bq)
//
// For best performance, rma should not alias a or b.
pub fn sub(rma: *Rational, a: Rational, b: Rational) !void {
var r = rma;
var aliased = rma.p.limbs.ptr == a.p.limbs.ptr or rma.p.limbs.ptr == b.p.limbs.ptr;
var sr: Rational = undefined;
if (aliased) {
sr = try Rational.init(rma.p.allocator.?);
r = &sr;
aliased = true;
}
defer if (aliased) {
rma.swap(r);
r.deinit();
};
try r.p.mul(a.p, b.q);
try r.q.mul(b.p, a.q);
try r.p.sub(r.p, r.q);
try r.q.mul(a.q, b.q);
try r.reduce();
}
// r/q = ap/aq * bp/bq = ap*bp / aq*bq
pub fn mul(r: *Rational, a: Rational, b: Rational) !void {
try r.p.mul(a.p, b.p);
try r.q.mul(a.q, b.q);
try r.reduce();
}
// r/q = (ap/aq) / (bp/bq) = ap*bq / bp*aq
pub fn div(r: *Rational, a: Rational, b: Rational) !void {
if (b.p.eqZero()) {
@panic("division by zero");
}
try r.p.mul(a.p, b.q);
try r.q.mul(b.p, a.q);
try r.reduce();
}
// r/q = q/r
pub fn invert(r: *Rational) void {
Int.swap(&r.p, &r.q);
}
// reduce r/q such that gcd(r, q) = 1
fn reduce(r: *Rational) !void {
var a = try Int.init(r.p.allocator.?);
defer a.deinit();
const sign = r.p.positive;
r.p.abs();
try gcd(&a, r.p, r.q);
r.p.positive = sign;
const one = Int.initFixed(([]Limb{1})[0..]);
if (a.cmp(one) != 0) {
var unused = try Int.init(r.p.allocator.?);
defer unused.deinit();
// TODO: divexact would be useful here
// TODO: don't copy r.q for div
try Int.divTrunc(&r.p, &unused, r.p, a);
try Int.divTrunc(&r.q, &unused, r.q, a);
}
}
};
var al = debug.global_allocator;
const SignedDoubleLimb = @IntType(true, DoubleLimb.bit_count);
fn gcd(rma: *Int, x: Int, y: Int) !void {
var r = rma;
var aliased = rma.limbs.ptr == x.limbs.ptr or rma.limbs.ptr == y.limbs.ptr;
var sr: Int = undefined;
if (aliased) {
sr = try Int.initCapacity(rma.allocator.?, math.max(x.len, y.len));
r = &sr;
aliased = true;
}
defer if (aliased) {
rma.swap(r);
r.deinit();
};
if (x.cmp(y) > 0) {
try gcdLehmer(r, x, y);
} else {
try gcdLehmer(r, y, x);
}
}
// Storage must live for the lifetime of the returned value
fn FixedIntFromSignedDoubleLimb(A: SignedDoubleLimb, storage: []Limb) Int {
std.debug.assert(storage.len >= 2);
var A_is_positive = A >= 0;
const Au = @intCast(DoubleLimb, if (A < 0) -A else A);
storage[0] = @truncate(Limb, Au);
storage[1] = @truncate(Limb, Au >> Limb.bit_count);
var Ap = Int.initFixed(storage[0..2]);
Ap.positive = A_is_positive;
return Ap;
}
// Handbook of Applied Cryptography, 14.57
//
// r = gcd(x, y) where x, y > 0
fn gcdLehmer(r: *Int, xa: Int, ya: Int) !void {
debug.assert(xa.positive and ya.positive);
debug.assert(xa.cmp(ya) >= 0);
var x = try xa.clone();
defer x.deinit();
var y = try ya.clone();
defer y.deinit();
var T = try Int.init(r.allocator.?);
defer T.deinit();
while (y.len > 1) {
debug.assert(x.len >= y.len);
// chop the leading zeros of the limbs and normalize
const offset = @clz(x.limbs[x.len - 1]);
var xh: SignedDoubleLimb = math.shl(Limb, x.limbs[x.len - 1], offset) |
math.shr(Limb, x.limbs[x.len - 2], Limb.bit_count - offset);
var yh: SignedDoubleLimb = if (y.len == x.len)
math.shl(Limb, y.limbs[y.len - 1], offset) | math.shr(Limb, y.limbs[y.len - 2], Limb.bit_count - offset)
else if (y.len == x.len - 1)
math.shr(Limb, y.limbs[y.len - 2], Limb.bit_count - offset)
else
0;
var A: SignedDoubleLimb = 1;
var B: SignedDoubleLimb = 0;
var C: SignedDoubleLimb = 0;
var D: SignedDoubleLimb = 1;
while (yh + C != 0 and yh + D != 0) {
const q = @divFloor(xh + A, yh + C);
const qp = @divFloor(xh + B, yh + D);
if (q != qp) {
break;
}
var t = A - q * C;
A = C;
C = t;
t = B - q * D;
B = D;
D = t;
t = xh - q * yh;
xh = yh;
yh = t;
}
if (B == 0) {
// T = x % y, r is unused
try Int.divTrunc(r, &T, x, y);
debug.assert(T.positive);
x.swap(&y);
y.swap(&T);
} else {
var storage: [8]Limb = undefined;
const Ap = FixedIntFromSignedDoubleLimb(A, storage[0..2]);
const Bp = FixedIntFromSignedDoubleLimb(B, storage[2..4]);
const Cp = FixedIntFromSignedDoubleLimb(C, storage[4..6]);
const Dp = FixedIntFromSignedDoubleLimb(D, storage[6..8]);
// T = Ax + By
try r.mul(x, Ap);
try T.mul(y, Bp);
try T.add(r.*, T);
// u = Cx + Dy, r as u
try x.mul(x, Cp);
try r.mul(y, Dp);
try r.add(x, r.*);
x.swap(&T);
y.swap(r);
}
}
// euclidean algorithm
debug.assert(x.cmp(y) >= 0);
while (!y.eqZero()) {
try Int.divTrunc(&T, r, x, y);
x.swap(&y);
y.swap(r);
}
r.swap(&x);
}
test "big.rational gcd non-one small" {
var a = try Int.initSet(al, 17);
var b = try Int.initSet(al, 97);
var r = try Int.init(al);
try gcd(&r, a, b);
debug.assert((try r.to(u32)) == 1);
}
test "big.rational gcd non-one small" {
var a = try Int.initSet(al, 4864);
var b = try Int.initSet(al, 3458);
var r = try Int.init(al);
try gcd(&r, a, b);
debug.assert((try r.to(u32)) == 38);
}
test "big.rational gcd non-one large" {
var a = try Int.initSet(al, 0xffffffffffffffff);
var b = try Int.initSet(al, 0xffffffffffffffff7777);
var r = try Int.init(al);
try gcd(&r, a, b);
debug.assert((try r.to(u32)) == 4369);
}
test "big.rational gcd large multi-limb result" {
var a = try Int.initSet(al, 0x12345678123456781234567812345678123456781234567812345678);
var b = try Int.initSet(al, 0x12345671234567123456712345671234567123456712345671234567);
var r = try Int.init(al);
try gcd(&r, a, b);
debug.assert((try r.to(u256)) == 0xf000000ff00000fff0000ffff000fffff00ffffff1);
}
fn extractLowBits(a: Int, comptime T: type) T {
debug.assert(@typeId(T) == builtin.TypeId.Int);
if (T.bit_count <= Limb.bit_count) {
return @truncate(T, a.limbs[0]);
} else {
var r: T = 0;
comptime var i: usize = 0;
// Remainder is always 0 since if T.bit_count >= Limb.bit_count -> Limb | T and both
// are powers of two.
inline while (i < T.bit_count / Limb.bit_count) : (i += 1) {
r |= math.shl(T, a.limbs[i], i * Limb.bit_count);
}
return r;
}
}
test "big.rational extractLowBits" {
var a = try Int.initSet(al, 0x11112222333344441234567887654321);
const a1 = extractLowBits(a, u8);
debug.assert(a1 == 0x21);
const a2 = extractLowBits(a, u16);
debug.assert(a2 == 0x4321);
const a3 = extractLowBits(a, u32);
debug.assert(a3 == 0x87654321);
const a4 = extractLowBits(a, u64);
debug.assert(a4 == 0x1234567887654321);
const a5 = extractLowBits(a, u128);
debug.assert(a5 == 0x11112222333344441234567887654321);
}
test "big.rational set" {
var a = try Rational.init(al);
try a.setInt(5);
debug.assert((try a.p.to(u32)) == 5);
debug.assert((try a.q.to(u32)) == 1);
try a.setRatio(7, 3);
debug.assert((try a.p.to(u32)) == 7);
debug.assert((try a.q.to(u32)) == 3);
try a.setRatio(9, 3);
debug.assert((try a.p.to(i32)) == 3);
debug.assert((try a.q.to(i32)) == 1);
try a.setRatio(-9, 3);
debug.assert((try a.p.to(i32)) == -3);
debug.assert((try a.q.to(i32)) == 1);
try a.setRatio(9, -3);
debug.assert((try a.p.to(i32)) == -3);
debug.assert((try a.q.to(i32)) == 1);
try a.setRatio(-9, -3);
debug.assert((try a.p.to(i32)) == 3);
debug.assert((try a.q.to(i32)) == 1);
}
test "big.rational setFloat" {
var a = try Rational.init(al);
try a.setFloat(f64, 2.5);
debug.assert((try a.p.to(i32)) == 5);
debug.assert((try a.q.to(i32)) == 2);
try a.setFloat(f32, -2.5);
debug.assert((try a.p.to(i32)) == -5);
debug.assert((try a.q.to(i32)) == 2);
try a.setFloat(f32, 3.141593);
// = 3.14159297943115234375
debug.assert((try a.p.to(u32)) == 3294199);
debug.assert((try a.q.to(u32)) == 1048576);
try a.setFloat(f64, 72.141593120712409172417410926841290461290467124);
// = 72.1415931207124145885245525278151035308837890625
debug.assert((try a.p.to(u128)) == 5076513310880537);
debug.assert((try a.q.to(u128)) == 70368744177664);
}
test "big.rational setFloatString" {
var a = try Rational.init(al);
try a.setFloatString("72.14159312071241458852455252781510353");
// = 72.1415931207124145885245525278151035308837890625
debug.assert((try a.p.to(u128)) == 7214159312071241458852455252781510353);
debug.assert((try a.q.to(u128)) == 100000000000000000000000000000000000);
}
test "big.rational toFloat" {
var a = try Rational.init(al);
// = 3.14159297943115234375
try a.setRatio(3294199, 1048576);
debug.assert((try a.toFloat(f64)) == 3.14159297943115234375);
// = 72.1415931207124145885245525278151035308837890625
try a.setRatio(5076513310880537, 70368744177664);
debug.assert((try a.toFloat(f64)) == 72.141593120712409172417410926841290461290467124);
}
test "big.rational set/to Float round-trip" {
// toFloat allocates memory in a loop so we need to free it
var buf: [512 * 1024]u8 = undefined;
var fixed = std.heap.FixedBufferAllocator.init(buf[0..]);
var a = try Rational.init(&fixed.allocator);
var prng = std.rand.DefaultPrng.init(0x5EED);
var i: usize = 0;
while (i < 512) : (i += 1) {
const r = prng.random.float(f64);
try a.setFloat(f64, r);
debug.assert((try a.toFloat(f64)) == r);
}
}
test "big.rational copy" {
var a = try Rational.init(al);
const b = try Int.initSet(al, 5);
try a.copyInt(b);
debug.assert((try a.p.to(u32)) == 5);
debug.assert((try a.q.to(u32)) == 1);
const c = try Int.initSet(al, 7);
const d = try Int.initSet(al, 3);
try a.copyRatio(c, d);
debug.assert((try a.p.to(u32)) == 7);
debug.assert((try a.q.to(u32)) == 3);
const e = try Int.initSet(al, 9);
const f = try Int.initSet(al, 3);
try a.copyRatio(e, f);
debug.assert((try a.p.to(u32)) == 3);
debug.assert((try a.q.to(u32)) == 1);
}
test "big.rational negate" {
var a = try Rational.init(al);
try a.setInt(-50);
debug.assert((try a.p.to(i32)) == -50);
debug.assert((try a.q.to(i32)) == 1);
a.negate();
debug.assert((try a.p.to(i32)) == 50);
debug.assert((try a.q.to(i32)) == 1);
a.negate();
debug.assert((try a.p.to(i32)) == -50);
debug.assert((try a.q.to(i32)) == 1);
}
test "big.rational abs" {
var a = try Rational.init(al);
try a.setInt(-50);
debug.assert((try a.p.to(i32)) == -50);
debug.assert((try a.q.to(i32)) == 1);
a.abs();
debug.assert((try a.p.to(i32)) == 50);
debug.assert((try a.q.to(i32)) == 1);
a.abs();
debug.assert((try a.p.to(i32)) == 50);
debug.assert((try a.q.to(i32)) == 1);
}
test "big.rational swap" {
var a = try Rational.init(al);
var b = try Rational.init(al);
try a.setRatio(50, 23);
try b.setRatio(17, 3);
debug.assert((try a.p.to(u32)) == 50);
debug.assert((try a.q.to(u32)) == 23);
debug.assert((try b.p.to(u32)) == 17);
debug.assert((try b.q.to(u32)) == 3);
a.swap(&b);
debug.assert((try a.p.to(u32)) == 17);
debug.assert((try a.q.to(u32)) == 3);
debug.assert((try b.p.to(u32)) == 50);
debug.assert((try b.q.to(u32)) == 23);
}
test "big.rational cmp" {
var a = try Rational.init(al);
var b = try Rational.init(al);
try a.setRatio(500, 231);
try b.setRatio(18903, 8584);
debug.assert((try a.cmp(b)) < 0);
try a.setRatio(890, 10);
try b.setRatio(89, 1);
debug.assert((try a.cmp(b)) == 0);
}
test "big.rational add single-limb" {
var a = try Rational.init(al);
var b = try Rational.init(al);
try a.setRatio(500, 231);
try b.setRatio(18903, 8584);
debug.assert((try a.cmp(b)) < 0);
try a.setRatio(890, 10);
try b.setRatio(89, 1);
debug.assert((try a.cmp(b)) == 0);
}
test "big.rational add" {
var a = try Rational.init(al);
var b = try Rational.init(al);
var r = try Rational.init(al);
try a.setRatio(78923, 23341);
try b.setRatio(123097, 12441414);
try a.add(a, b);
try r.setRatio(984786924199, 290395044174);
debug.assert((try a.cmp(r)) == 0);
}
test "big.rational sub" {
var a = try Rational.init(al);
var b = try Rational.init(al);
var r = try Rational.init(al);
try a.setRatio(78923, 23341);
try b.setRatio(123097, 12441414);
try a.sub(a, b);
try r.setRatio(979040510045, 290395044174);
debug.assert((try a.cmp(r)) == 0);
}
test "big.rational mul" {
var a = try Rational.init(al);
var b = try Rational.init(al);
var r = try Rational.init(al);
try a.setRatio(78923, 23341);
try b.setRatio(123097, 12441414);
try a.mul(a, b);
try r.setRatio(571481443, 17082061422);
debug.assert((try a.cmp(r)) == 0);
}
test "big.rational div" {
var a = try Rational.init(al);
var b = try Rational.init(al);
var r = try Rational.init(al);
try a.setRatio(78923, 23341);
try b.setRatio(123097, 12441414);
try a.div(a, b);
try r.setRatio(75531824394, 221015929);
debug.assert((try a.cmp(r)) == 0);
}
test "big.rational div" {
var a = try Rational.init(al);
var r = try Rational.init(al);
try a.setRatio(78923, 23341);
a.invert();
try r.setRatio(23341, 78923);
debug.assert((try a.cmp(r)) == 0);
try a.setRatio(-78923, 23341);
a.invert();
try r.setRatio(-23341, 78923);
debug.assert((try a.cmp(r)) == 0);
}