use wyhash in std's hashmap, and improve autoHash to handle more types and behave more correctly
parent
6150da3df9
commit
5bd407b278
264
std/hash_map.zig
264
std/hash_map.zig
|
@ -4,6 +4,8 @@ const assert = debug.assert;
|
|||
const testing = std.testing;
|
||||
const math = std.math;
|
||||
const mem = std.mem;
|
||||
const meta = std.meta;
|
||||
const wyhash = std.hash.wyhash;
|
||||
const Allocator = mem.Allocator;
|
||||
const builtin = @import("builtin");
|
||||
|
||||
|
@ -448,15 +450,17 @@ test "iterator hash map" {
|
|||
try reset_map.putNoClobber(2, 22);
|
||||
try reset_map.putNoClobber(3, 33);
|
||||
|
||||
// TODO this test depends on the hashing algorithm, because it assumes the
|
||||
// order of the elements in the hashmap. This should not be the case.
|
||||
var keys = [_]i32{
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
};
|
||||
var values = [_]i32{
|
||||
11,
|
||||
33,
|
||||
22,
|
||||
11,
|
||||
};
|
||||
|
||||
var it = reset_map.iterator();
|
||||
|
@ -518,8 +522,8 @@ pub fn getTrivialEqlFn(comptime K: type) (fn (K, K) bool) {
|
|||
pub fn getAutoHashFn(comptime K: type) (fn (K) u32) {
|
||||
return struct {
|
||||
fn hash(key: K) u32 {
|
||||
comptime var rng = comptime std.rand.DefaultPrng.init(0);
|
||||
return autoHash(key, &rng.random, u32);
|
||||
const h = autoHash(key, 0);
|
||||
return @truncate(u32, h);
|
||||
}
|
||||
}.hash;
|
||||
}
|
||||
|
@ -527,114 +531,192 @@ pub fn getAutoHashFn(comptime K: type) (fn (K) u32) {
|
|||
pub fn getAutoEqlFn(comptime K: type) (fn (K, K) bool) {
|
||||
return struct {
|
||||
fn eql(a: K, b: K) bool {
|
||||
return autoEql(a, b);
|
||||
return meta.eql(a, b);
|
||||
}
|
||||
}.eql;
|
||||
}
|
||||
|
||||
// TODO improve these hash functions
|
||||
pub fn autoHash(key: var, comptime rng: *std.rand.Random, comptime HashInt: type) HashInt {
|
||||
switch (@typeInfo(@typeOf(key))) {
|
||||
/// Provides generic hashing for any eligible type.
|
||||
/// Only hashes `key` itself, pointers are not followed.
|
||||
/// The underlying hashing algorithm is wyhash.
|
||||
pub fn autoHash(key: var, seed: u64) u64 {
|
||||
// We use the fact that wyhash takes an input seed to "chain" hasing when the
|
||||
// key has multiple parts that are not necessarily contiguous in memory.
|
||||
const Key = @typeOf(key);
|
||||
switch (@typeInfo(Key)) {
|
||||
builtin.TypeId.NoReturn,
|
||||
builtin.TypeId.Opaque,
|
||||
builtin.TypeId.Undefined,
|
||||
builtin.TypeId.ArgTuple,
|
||||
builtin.TypeId.Void,
|
||||
builtin.TypeId.Null,
|
||||
builtin.TypeId.BoundFn,
|
||||
builtin.TypeId.ComptimeFloat,
|
||||
builtin.TypeId.ComptimeInt,
|
||||
builtin.TypeId.Type,
|
||||
builtin.TypeId.EnumLiteral,
|
||||
=> @compileError("cannot hash this type"),
|
||||
|
||||
builtin.TypeId.Void,
|
||||
builtin.TypeId.Null,
|
||||
=> return 0,
|
||||
builtin.TypeId.Int => return wyhash(std.mem.asBytes(&key), seed),
|
||||
|
||||
builtin.TypeId.Int => |info| {
|
||||
const unsigned_x = @bitCast(@IntType(false, info.bits), key);
|
||||
if (info.bits <= HashInt.bit_count) {
|
||||
return HashInt(unsigned_x) ^ comptime rng.scalar(HashInt);
|
||||
} else {
|
||||
return @truncate(HashInt, unsigned_x ^ comptime rng.scalar(@typeOf(unsigned_x)));
|
||||
builtin.TypeId.Float => |info| return autoHash(@bitCast(@IntType(false, info.bits), key), seed),
|
||||
|
||||
builtin.TypeId.Bool => return autoHash(@boolToInt(key), seed),
|
||||
builtin.TypeId.Enum => return autoHash(@enumToInt(key), seed),
|
||||
builtin.TypeId.ErrorSet => return autoHash(@errorToInt(key), seed),
|
||||
builtin.TypeId.Promise, builtin.TypeId.Fn => return autoHash(@ptrToInt(key), seed),
|
||||
|
||||
builtin.TypeId.Pointer => |info| return switch (info.size) {
|
||||
builtin.TypeInfo.Pointer.Size.One,
|
||||
builtin.TypeInfo.Pointer.Size.Many,
|
||||
builtin.TypeInfo.Pointer.Size.C,
|
||||
=> return autoHash(@ptrToInt(key), seed),
|
||||
|
||||
builtin.TypeInfo.Pointer.Size.Slice => return autoHash(key.len, autoHash(key.ptr, seed)),
|
||||
},
|
||||
|
||||
builtin.TypeId.Optional => return if (key) |k| autoHash(k, seed) else 0,
|
||||
|
||||
builtin.TypeId.Array => {
|
||||
// TODO detect via a trait when Key has no padding bits to
|
||||
// hash it as an array of bytes.
|
||||
// Otherwise, hash every element.
|
||||
var s = seed;
|
||||
for (key) |element| {
|
||||
// We reuse the hash of the previous element as the seed for the
|
||||
// next one so that they're dependant.
|
||||
s = autoHash(element, s);
|
||||
}
|
||||
return s;
|
||||
},
|
||||
|
||||
builtin.TypeId.Float => |info| {
|
||||
return autoHash(@bitCast(@IntType(false, info.bits), key), rng, HashInt);
|
||||
builtin.TypeId.Vector => |info| {
|
||||
// If there's no unused bits in the child type, we can just hash
|
||||
// this as an array of bytes.
|
||||
if (info.child.bit_count % 8 == 0) {
|
||||
return wyhash(mem.asBytes(&key), seed);
|
||||
}
|
||||
|
||||
// Otherwise, hash every element.
|
||||
var s = seed;
|
||||
// TODO remove the copy to an array once field access is done.
|
||||
const array: [info.len]info.child = key;
|
||||
comptime var i: u32 = 0;
|
||||
inline while (i < info.len) : (i += 1) {
|
||||
s = autoHash(array[i], s);
|
||||
}
|
||||
return s;
|
||||
},
|
||||
builtin.TypeId.Bool => return autoHash(@boolToInt(key), rng, HashInt),
|
||||
builtin.TypeId.Enum => return autoHash(@enumToInt(key), rng, HashInt),
|
||||
builtin.TypeId.ErrorSet => return autoHash(@errorToInt(key), rng, HashInt),
|
||||
builtin.TypeId.Promise, builtin.TypeId.Fn => return autoHash(@ptrToInt(key), rng, HashInt),
|
||||
|
||||
builtin.TypeId.BoundFn,
|
||||
builtin.TypeId.ComptimeFloat,
|
||||
builtin.TypeId.ComptimeInt,
|
||||
builtin.TypeId.Type,
|
||||
builtin.TypeId.EnumLiteral,
|
||||
=> return 0,
|
||||
builtin.TypeId.Struct => |info| {
|
||||
// TODO detect via a trait when Key has no padding bits to
|
||||
// hash it as an array of bytes.
|
||||
// Otherwise, hash every field.
|
||||
var s = seed;
|
||||
inline for (info.fields) |field| {
|
||||
// We reuse the hash of the previous field as the seed for the
|
||||
// next one so that they're dependant.
|
||||
s = autoHash(@field(key, field.name), s);
|
||||
}
|
||||
return s;
|
||||
},
|
||||
|
||||
builtin.TypeId.Pointer => |info| switch (info.size) {
|
||||
builtin.TypeInfo.Pointer.Size.One => @compileError("TODO auto hash for single item pointers"),
|
||||
builtin.TypeInfo.Pointer.Size.Many => @compileError("TODO auto hash for many item pointers"),
|
||||
builtin.TypeInfo.Pointer.Size.C => @compileError("TODO auto hash C pointers"),
|
||||
builtin.TypeInfo.Pointer.Size.Slice => {
|
||||
const interval = std.math.max(1, key.len / 256);
|
||||
var i: usize = 0;
|
||||
var h = comptime rng.scalar(HashInt);
|
||||
while (i < key.len) : (i += interval) {
|
||||
h ^= autoHash(key[i], rng, HashInt);
|
||||
builtin.TypeId.Union => |info| {
|
||||
if (info.tag_type) |tag_type| {
|
||||
const tag = meta.activeTag(key);
|
||||
const s = autoHash(tag, seed);
|
||||
inline for (info.fields) |field| {
|
||||
const enum_field = field.enum_field.?;
|
||||
if (enum_field.value == @enumToInt(tag)) {
|
||||
return autoHash(@field(key, enum_field.name), s);
|
||||
}
|
||||
}
|
||||
return h;
|
||||
},
|
||||
unreachable;
|
||||
} else @compileError("cannot hash untagged union type: " ++ @typeName(Key) ++ ", provide your own hash function");
|
||||
},
|
||||
|
||||
builtin.TypeId.Optional => @compileError("TODO auto hash for optionals"),
|
||||
builtin.TypeId.Array => @compileError("TODO auto hash for arrays"),
|
||||
builtin.TypeId.Vector => @compileError("TODO auto hash for vectors"),
|
||||
builtin.TypeId.Struct => @compileError("TODO auto hash for structs"),
|
||||
builtin.TypeId.Union => @compileError("TODO auto hash for unions"),
|
||||
builtin.TypeId.ErrorUnion => @compileError("TODO auto hash for unions"),
|
||||
builtin.TypeId.ErrorUnion => {
|
||||
return autoHash(key catch |err| return autoHash(err, seed), seed);
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn autoEql(a: var, b: @typeOf(a)) bool {
|
||||
switch (@typeInfo(@typeOf(a))) {
|
||||
builtin.TypeId.NoReturn,
|
||||
builtin.TypeId.Opaque,
|
||||
builtin.TypeId.Undefined,
|
||||
builtin.TypeId.ArgTuple,
|
||||
=> @compileError("cannot test equality of this type"),
|
||||
builtin.TypeId.Void,
|
||||
builtin.TypeId.Null,
|
||||
=> return true,
|
||||
builtin.TypeId.Bool,
|
||||
builtin.TypeId.Int,
|
||||
builtin.TypeId.Float,
|
||||
builtin.TypeId.ComptimeFloat,
|
||||
builtin.TypeId.ComptimeInt,
|
||||
builtin.TypeId.EnumLiteral,
|
||||
builtin.TypeId.Promise,
|
||||
builtin.TypeId.Enum,
|
||||
builtin.TypeId.BoundFn,
|
||||
builtin.TypeId.Fn,
|
||||
builtin.TypeId.ErrorSet,
|
||||
builtin.TypeId.Type,
|
||||
=> return a == b,
|
||||
|
||||
builtin.TypeId.Pointer => |info| switch (info.size) {
|
||||
builtin.TypeInfo.Pointer.Size.One => @compileError("TODO auto eql for single item pointers"),
|
||||
builtin.TypeInfo.Pointer.Size.Many => @compileError("TODO auto eql for many item pointers"),
|
||||
builtin.TypeInfo.Pointer.Size.C => @compileError("TODO auto eql for C pointers"),
|
||||
builtin.TypeInfo.Pointer.Size.Slice => {
|
||||
if (a.len != b.len) return false;
|
||||
for (a) |a_item, i| {
|
||||
if (!autoEql(a_item, b[i])) return false;
|
||||
}
|
||||
return true;
|
||||
},
|
||||
},
|
||||
|
||||
builtin.TypeId.Optional => @compileError("TODO auto eql for optionals"),
|
||||
builtin.TypeId.Array => @compileError("TODO auto eql for arrays"),
|
||||
builtin.TypeId.Struct => @compileError("TODO auto eql for structs"),
|
||||
builtin.TypeId.Union => @compileError("TODO auto eql for unions"),
|
||||
builtin.TypeId.ErrorUnion => @compileError("TODO auto eql for unions"),
|
||||
builtin.TypeId.Vector => @compileError("TODO auto eql for vectors"),
|
||||
}
|
||||
test "autoHash slice" {
|
||||
const array1 = try std.heap.direct_allocator.create([6]u32);
|
||||
defer std.heap.direct_allocator.destroy(array1);
|
||||
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
||||
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
|
||||
const a = array1[0..];
|
||||
const b = array2[0..];
|
||||
const c = array1[0..3];
|
||||
testing.expect(autoHash(a, 0) == autoHash(a, 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(array1, 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(b, 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(c, 0));
|
||||
}
|
||||
|
||||
test "autoHash optional" {
|
||||
const a: ?u32 = 123;
|
||||
const b: ?u32 = null;
|
||||
testing.expectEqual(autoHash(a, 0), autoHash(u32(123), 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(b, 0));
|
||||
testing.expectEqual(autoHash(b, 0), 0);
|
||||
}
|
||||
|
||||
test "autoHash array" {
|
||||
const a = [_]u32{ 1, 2, 3 };
|
||||
const h = autoHash(a, 0);
|
||||
testing.expectEqual(h, autoHash(u32(3), autoHash(u32(2), autoHash(u32(1), 0))));
|
||||
}
|
||||
|
||||
test "autoHash struct" {
|
||||
const Foo = struct {
|
||||
a: u32 = 1,
|
||||
b: u32 = 2,
|
||||
c: u32 = 3,
|
||||
};
|
||||
const f = Foo{};
|
||||
const h = autoHash(f, 0);
|
||||
testing.expectEqual(h, autoHash(u32(3), autoHash(u32(2), autoHash(u32(1), 0))));
|
||||
}
|
||||
|
||||
test "autoHash union" {
|
||||
const Foo = union(enum) {
|
||||
A: u32,
|
||||
B: f32,
|
||||
C: u32,
|
||||
};
|
||||
|
||||
const a = Foo{ .A = 18 };
|
||||
var b = Foo{ .B = 12.34 };
|
||||
const c = Foo{ .C = 18 };
|
||||
testing.expect(autoHash(a, 0) == autoHash(a, 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(b, 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(c, 0));
|
||||
|
||||
b = Foo{ .A = 18 };
|
||||
testing.expect(autoHash(a, 0) == autoHash(b, 0));
|
||||
}
|
||||
|
||||
test "autoHash vector" {
|
||||
const a: @Vector(4, u32) = [_]u32{ 1, 2, 3, 4 };
|
||||
const b: @Vector(4, u32) = [_]u32{ 1, 2, 3, 5 };
|
||||
const c: @Vector(4, u31) = [_]u31{ 1, 2, 3, 4 };
|
||||
testing.expect(autoHash(a, 0) == autoHash(a, 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(b, 0));
|
||||
testing.expect(autoHash(a, 0) != autoHash(c, 0));
|
||||
}
|
||||
|
||||
test "autoHash error union" {
|
||||
const Errors = error{Test};
|
||||
const Foo = struct {
|
||||
a: u32 = 1,
|
||||
b: u32 = 2,
|
||||
c: u32 = 3,
|
||||
};
|
||||
const f = Foo{};
|
||||
const g: Errors!Foo = Errors.Test;
|
||||
testing.expect(autoHash(f, 0) != autoHash(g, 0));
|
||||
testing.expect(autoHash(f, 0) == autoHash(Foo{}, 0));
|
||||
testing.expect(autoHash(g, 0) == autoHash(Errors.Test, 0));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue