parent
e2dc63644a
commit
54ffcf95a8
140
src/codegen.cpp
140
src/codegen.cpp
@ -2591,12 +2591,7 @@ static LLVMValueRef gen_overflow_shr_op(CodeGen *g, ZigType *type_entry,
|
||||
}
|
||||
|
||||
static LLVMValueRef gen_float_op(CodeGen *g, LLVMValueRef val, ZigType *type_entry, BuiltinFnId op) {
|
||||
if ((op == BuiltinFnIdCeil ||
|
||||
op == BuiltinFnIdFloor) &&
|
||||
type_entry->id == ZigTypeIdInt)
|
||||
return val;
|
||||
assert(type_entry->id == ZigTypeIdFloat);
|
||||
|
||||
assert(type_entry->id == ZigTypeIdFloat || type_entry->id == ZigTypeIdVector);
|
||||
LLVMValueRef floor_fn = get_float_fn(g, type_entry, ZigLLVMFnIdFloatOp, op);
|
||||
return LLVMBuildCall(g->builder, floor_fn, &val, 1, "");
|
||||
}
|
||||
@ -2612,6 +2607,21 @@ static LLVMValueRef bigint_to_llvm_const(LLVMTypeRef type_ref, BigInt *bigint) {
|
||||
if (bigint->digit_count == 0) {
|
||||
return LLVMConstNull(type_ref);
|
||||
}
|
||||
|
||||
if (LLVMGetTypeKind(type_ref) == LLVMVectorTypeKind) {
|
||||
const unsigned vector_len = LLVMGetVectorSize(type_ref);
|
||||
LLVMTypeRef elem_type = LLVMGetElementType(type_ref);
|
||||
|
||||
LLVMValueRef *values = heap::c_allocator.allocate_nonzero<LLVMValueRef>(vector_len);
|
||||
// Create a vector with all the elements having the same value
|
||||
for (unsigned i = 0; i < vector_len; i++) {
|
||||
values[i] = bigint_to_llvm_const(elem_type, bigint);
|
||||
}
|
||||
LLVMValueRef result = LLVMConstVector(values, vector_len);
|
||||
heap::c_allocator.deallocate(values, vector_len);
|
||||
return result;
|
||||
}
|
||||
|
||||
LLVMValueRef unsigned_val;
|
||||
if (bigint->digit_count == 1) {
|
||||
unsigned_val = LLVMConstInt(type_ref, bigint_ptr(bigint)[0], false);
|
||||
@ -2625,22 +2635,40 @@ static LLVMValueRef bigint_to_llvm_const(LLVMTypeRef type_ref, BigInt *bigint) {
|
||||
}
|
||||
}
|
||||
|
||||
// Collapses a <N x i1> vector into a single i1 whose value is 1 iff all the
|
||||
// vector elements are 1
|
||||
static LLVMValueRef scalarize_cmp_result(CodeGen *g, LLVMValueRef val) {
|
||||
assert(LLVMGetTypeKind(LLVMTypeOf(val)) == LLVMVectorTypeKind);
|
||||
LLVMTypeRef scalar_type = LLVMIntType(LLVMGetVectorSize(LLVMTypeOf(val)));
|
||||
LLVMValueRef all_ones = LLVMConstAllOnes(scalar_type);
|
||||
LLVMValueRef casted = LLVMBuildBitCast(g->builder, val, scalar_type, "");
|
||||
return LLVMBuildICmp(g->builder, LLVMIntEQ, casted, all_ones, "");
|
||||
}
|
||||
|
||||
static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast_math,
|
||||
LLVMValueRef val1, LLVMValueRef val2,
|
||||
ZigType *type_entry, DivKind div_kind)
|
||||
LLVMValueRef val1, LLVMValueRef val2, ZigType *operand_type, DivKind div_kind)
|
||||
{
|
||||
ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ?
|
||||
operand_type->data.vector.elem_type : operand_type;
|
||||
|
||||
ZigLLVMSetFastMath(g->builder, want_fast_math);
|
||||
|
||||
LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, type_entry));
|
||||
if (want_runtime_safety && (want_fast_math || type_entry->id != ZigTypeIdFloat)) {
|
||||
LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, operand_type));
|
||||
if (want_runtime_safety && (want_fast_math || scalar_type->id != ZigTypeIdFloat)) {
|
||||
// Safety check: divisor != 0
|
||||
LLVMValueRef is_zero_bit;
|
||||
if (type_entry->id == ZigTypeIdInt) {
|
||||
if (scalar_type->id == ZigTypeIdInt) {
|
||||
is_zero_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, zero, "");
|
||||
} else if (type_entry->id == ZigTypeIdFloat) {
|
||||
} else if (scalar_type->id == ZigTypeIdFloat) {
|
||||
is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, "");
|
||||
} else {
|
||||
zig_unreachable();
|
||||
}
|
||||
|
||||
if (operand_type->id == ZigTypeIdVector) {
|
||||
is_zero_bit = scalarize_cmp_result(g, is_zero_bit);
|
||||
}
|
||||
|
||||
LLVMBasicBlockRef div_zero_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivZeroFail");
|
||||
LLVMBasicBlockRef div_zero_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivZeroOk");
|
||||
LLVMBuildCondBr(g->builder, is_zero_bit, div_zero_fail_block, div_zero_ok_block);
|
||||
@ -2650,16 +2678,21 @@ static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, div_zero_ok_block);
|
||||
|
||||
if (type_entry->id == ZigTypeIdInt && type_entry->data.integral.is_signed) {
|
||||
LLVMValueRef neg_1_value = LLVMConstInt(get_llvm_type(g, type_entry), -1, true);
|
||||
// Safety check: check for overflow (dividend = minInt and divisor = -1)
|
||||
if (scalar_type->id == ZigTypeIdInt && scalar_type->data.integral.is_signed) {
|
||||
LLVMValueRef neg_1_value = LLVMConstAllOnes(get_llvm_type(g, operand_type));
|
||||
BigInt int_min_bi = {0};
|
||||
eval_min_max_value_int(g, type_entry, &int_min_bi, false);
|
||||
LLVMValueRef int_min_value = bigint_to_llvm_const(get_llvm_type(g, type_entry), &int_min_bi);
|
||||
eval_min_max_value_int(g, scalar_type, &int_min_bi, false);
|
||||
LLVMValueRef int_min_value = bigint_to_llvm_const(get_llvm_type(g, operand_type), &int_min_bi);
|
||||
|
||||
LLVMBasicBlockRef overflow_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivOverflowFail");
|
||||
LLVMBasicBlockRef overflow_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivOverflowOk");
|
||||
LLVMValueRef num_is_int_min = LLVMBuildICmp(g->builder, LLVMIntEQ, val1, int_min_value, "");
|
||||
LLVMValueRef den_is_neg_1 = LLVMBuildICmp(g->builder, LLVMIntEQ, val2, neg_1_value, "");
|
||||
LLVMValueRef overflow_fail_bit = LLVMBuildAnd(g->builder, num_is_int_min, den_is_neg_1, "");
|
||||
if (operand_type->id == ZigTypeIdVector) {
|
||||
overflow_fail_bit = scalarize_cmp_result(g, overflow_fail_bit);
|
||||
}
|
||||
LLVMBuildCondBr(g->builder, overflow_fail_bit, overflow_fail_block, overflow_ok_block);
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, overflow_fail_block);
|
||||
@ -2669,18 +2702,22 @@ static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast
|
||||
}
|
||||
}
|
||||
|
||||
if (type_entry->id == ZigTypeIdFloat) {
|
||||
if (scalar_type->id == ZigTypeIdFloat) {
|
||||
LLVMValueRef result = LLVMBuildFDiv(g->builder, val1, val2, "");
|
||||
switch (div_kind) {
|
||||
case DivKindFloat:
|
||||
return result;
|
||||
case DivKindExact:
|
||||
if (want_runtime_safety) {
|
||||
LLVMValueRef floored = gen_float_op(g, result, type_entry, BuiltinFnIdFloor);
|
||||
// Safety check: a / b == floor(a / b)
|
||||
LLVMValueRef floored = gen_float_op(g, result, operand_type, BuiltinFnIdFloor);
|
||||
|
||||
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk");
|
||||
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail");
|
||||
LLVMValueRef ok_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, floored, result, "");
|
||||
|
||||
if (operand_type->id == ZigTypeIdVector) {
|
||||
ok_bit = scalarize_cmp_result(g, ok_bit);
|
||||
}
|
||||
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, fail_block);
|
||||
@ -2695,54 +2732,61 @@ static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast
|
||||
LLVMBasicBlockRef gez_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivTruncGEZero");
|
||||
LLVMBasicBlockRef end_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivTruncEnd");
|
||||
LLVMValueRef ltz = LLVMBuildFCmp(g->builder, LLVMRealOLT, val1, zero, "");
|
||||
if (operand_type->id == ZigTypeIdVector) {
|
||||
ltz = scalarize_cmp_result(g, ltz);
|
||||
}
|
||||
LLVMBuildCondBr(g->builder, ltz, ltz_block, gez_block);
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, ltz_block);
|
||||
LLVMValueRef ceiled = gen_float_op(g, result, type_entry, BuiltinFnIdCeil);
|
||||
LLVMValueRef ceiled = gen_float_op(g, result, operand_type, BuiltinFnIdCeil);
|
||||
LLVMBasicBlockRef ceiled_end_block = LLVMGetInsertBlock(g->builder);
|
||||
LLVMBuildBr(g->builder, end_block);
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, gez_block);
|
||||
LLVMValueRef floored = gen_float_op(g, result, type_entry, BuiltinFnIdFloor);
|
||||
LLVMValueRef floored = gen_float_op(g, result, operand_type, BuiltinFnIdFloor);
|
||||
LLVMBasicBlockRef floored_end_block = LLVMGetInsertBlock(g->builder);
|
||||
LLVMBuildBr(g->builder, end_block);
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, end_block);
|
||||
LLVMValueRef phi = LLVMBuildPhi(g->builder, get_llvm_type(g, type_entry), "");
|
||||
LLVMValueRef phi = LLVMBuildPhi(g->builder, get_llvm_type(g, operand_type), "");
|
||||
LLVMValueRef incoming_values[] = { ceiled, floored };
|
||||
LLVMBasicBlockRef incoming_blocks[] = { ceiled_end_block, floored_end_block };
|
||||
LLVMAddIncoming(phi, incoming_values, incoming_blocks, 2);
|
||||
return phi;
|
||||
}
|
||||
case DivKindFloor:
|
||||
return gen_float_op(g, result, type_entry, BuiltinFnIdFloor);
|
||||
return gen_float_op(g, result, operand_type, BuiltinFnIdFloor);
|
||||
}
|
||||
zig_unreachable();
|
||||
}
|
||||
|
||||
assert(type_entry->id == ZigTypeIdInt);
|
||||
assert(scalar_type->id == ZigTypeIdInt);
|
||||
|
||||
switch (div_kind) {
|
||||
case DivKindFloat:
|
||||
zig_unreachable();
|
||||
case DivKindTrunc:
|
||||
if (type_entry->data.integral.is_signed) {
|
||||
if (scalar_type->data.integral.is_signed) {
|
||||
return LLVMBuildSDiv(g->builder, val1, val2, "");
|
||||
} else {
|
||||
return LLVMBuildUDiv(g->builder, val1, val2, "");
|
||||
}
|
||||
case DivKindExact:
|
||||
if (want_runtime_safety) {
|
||||
// Safety check: a % b == 0
|
||||
LLVMValueRef remainder_val;
|
||||
if (type_entry->data.integral.is_signed) {
|
||||
if (scalar_type->data.integral.is_signed) {
|
||||
remainder_val = LLVMBuildSRem(g->builder, val1, val2, "");
|
||||
} else {
|
||||
remainder_val = LLVMBuildURem(g->builder, val1, val2, "");
|
||||
}
|
||||
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, "");
|
||||
|
||||
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk");
|
||||
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail");
|
||||
LLVMValueRef ok_bit = LLVMBuildICmp(g->builder, LLVMIntEQ, remainder_val, zero, "");
|
||||
if (operand_type->id == ZigTypeIdVector) {
|
||||
ok_bit = scalarize_cmp_result(g, ok_bit);
|
||||
}
|
||||
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, fail_block);
|
||||
@ -2750,14 +2794,14 @@ static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast
|
||||
|
||||
LLVMPositionBuilderAtEnd(g->builder, ok_block);
|
||||
}
|
||||
if (type_entry->data.integral.is_signed) {
|
||||
if (scalar_type->data.integral.is_signed) {
|
||||
return LLVMBuildExactSDiv(g->builder, val1, val2, "");
|
||||
} else {
|
||||
return LLVMBuildExactUDiv(g->builder, val1, val2, "");
|
||||
}
|
||||
case DivKindFloor:
|
||||
{
|
||||
if (!type_entry->data.integral.is_signed) {
|
||||
if (!scalar_type->data.integral.is_signed) {
|
||||
return LLVMBuildUDiv(g->builder, val1, val2, "");
|
||||
}
|
||||
// const d = @divTrunc(a, b);
|
||||
@ -2784,22 +2828,30 @@ enum RemKind {
|
||||
};
|
||||
|
||||
static LLVMValueRef gen_rem(CodeGen *g, bool want_runtime_safety, bool want_fast_math,
|
||||
LLVMValueRef val1, LLVMValueRef val2,
|
||||
ZigType *type_entry, RemKind rem_kind)
|
||||
LLVMValueRef val1, LLVMValueRef val2, ZigType *operand_type, RemKind rem_kind)
|
||||
{
|
||||
ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ?
|
||||
operand_type->data.vector.elem_type : operand_type;
|
||||
|
||||
ZigLLVMSetFastMath(g->builder, want_fast_math);
|
||||
|
||||
LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, type_entry));
|
||||
LLVMValueRef zero = LLVMConstNull(get_llvm_type(g, operand_type));
|
||||
if (want_runtime_safety) {
|
||||
// Safety check: divisor != 0
|
||||
LLVMValueRef is_zero_bit;
|
||||
if (type_entry->id == ZigTypeIdInt) {
|
||||
LLVMIntPredicate pred = type_entry->data.integral.is_signed ? LLVMIntSLE : LLVMIntEQ;
|
||||
if (scalar_type->id == ZigTypeIdInt) {
|
||||
LLVMIntPredicate pred = scalar_type->data.integral.is_signed ? LLVMIntSLE : LLVMIntEQ;
|
||||
is_zero_bit = LLVMBuildICmp(g->builder, pred, val2, zero, "");
|
||||
} else if (type_entry->id == ZigTypeIdFloat) {
|
||||
} else if (scalar_type->id == ZigTypeIdFloat) {
|
||||
is_zero_bit = LLVMBuildFCmp(g->builder, LLVMRealOEQ, val2, zero, "");
|
||||
} else {
|
||||
zig_unreachable();
|
||||
}
|
||||
|
||||
if (operand_type->id == ZigTypeIdVector) {
|
||||
is_zero_bit = scalarize_cmp_result(g, is_zero_bit);
|
||||
}
|
||||
|
||||
LLVMBasicBlockRef rem_zero_ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemZeroOk");
|
||||
LLVMBasicBlockRef rem_zero_fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "RemZeroFail");
|
||||
LLVMBuildCondBr(g->builder, is_zero_bit, rem_zero_fail_block, rem_zero_ok_block);
|
||||
@ -2810,7 +2862,7 @@ static LLVMValueRef gen_rem(CodeGen *g, bool want_runtime_safety, bool want_fast
|
||||
LLVMPositionBuilderAtEnd(g->builder, rem_zero_ok_block);
|
||||
}
|
||||
|
||||
if (type_entry->id == ZigTypeIdFloat) {
|
||||
if (scalar_type->id == ZigTypeIdFloat) {
|
||||
if (rem_kind == RemKindRem) {
|
||||
return LLVMBuildFRem(g->builder, val1, val2, "");
|
||||
} else {
|
||||
@ -2821,8 +2873,8 @@ static LLVMValueRef gen_rem(CodeGen *g, bool want_runtime_safety, bool want_fast
|
||||
return LLVMBuildSelect(g->builder, ltz, c, a, "");
|
||||
}
|
||||
} else {
|
||||
assert(type_entry->id == ZigTypeIdInt);
|
||||
if (type_entry->data.integral.is_signed) {
|
||||
assert(scalar_type->id == ZigTypeIdInt);
|
||||
if (scalar_type->data.integral.is_signed) {
|
||||
if (rem_kind == RemKindRem) {
|
||||
return LLVMBuildSRem(g->builder, val1, val2, "");
|
||||
} else {
|
||||
@ -3010,22 +3062,22 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutableGen *executable,
|
||||
}
|
||||
case IrBinOpDivUnspecified:
|
||||
return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base),
|
||||
op1_value, op2_value, scalar_type, DivKindFloat);
|
||||
op1_value, op2_value, operand_type, DivKindFloat);
|
||||
case IrBinOpDivExact:
|
||||
return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base),
|
||||
op1_value, op2_value, scalar_type, DivKindExact);
|
||||
op1_value, op2_value, operand_type, DivKindExact);
|
||||
case IrBinOpDivTrunc:
|
||||
return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base),
|
||||
op1_value, op2_value, scalar_type, DivKindTrunc);
|
||||
op1_value, op2_value, operand_type, DivKindTrunc);
|
||||
case IrBinOpDivFloor:
|
||||
return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base),
|
||||
op1_value, op2_value, scalar_type, DivKindFloor);
|
||||
op1_value, op2_value, operand_type, DivKindFloor);
|
||||
case IrBinOpRemRem:
|
||||
return gen_rem(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base),
|
||||
op1_value, op2_value, scalar_type, RemKindRem);
|
||||
op1_value, op2_value, operand_type, RemKindRem);
|
||||
case IrBinOpRemMod:
|
||||
return gen_rem(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base),
|
||||
op1_value, op2_value, scalar_type, RemKindMod);
|
||||
op1_value, op2_value, operand_type, RemKindMod);
|
||||
}
|
||||
zig_unreachable();
|
||||
}
|
||||
|
286
src/ir.cpp
286
src/ir.cpp
@ -16943,6 +16943,7 @@ static bool ok_float_op(IrBinOp op) {
|
||||
case IrBinOpDivExact:
|
||||
case IrBinOpRemRem:
|
||||
case IrBinOpRemMod:
|
||||
case IrBinOpRemUnspecified:
|
||||
return true;
|
||||
|
||||
case IrBinOpBoolOr:
|
||||
@ -16963,7 +16964,6 @@ static bool ok_float_op(IrBinOp op) {
|
||||
case IrBinOpAddWrap:
|
||||
case IrBinOpSubWrap:
|
||||
case IrBinOpMultWrap:
|
||||
case IrBinOpRemUnspecified:
|
||||
case IrBinOpArrayCat:
|
||||
case IrBinOpArrayMult:
|
||||
return false;
|
||||
@ -16991,6 +16991,31 @@ static bool is_pointer_arithmetic_allowed(ZigType *lhs_type, IrBinOp op) {
|
||||
zig_unreachable();
|
||||
}
|
||||
|
||||
static bool value_cmp_zero_any(ZigValue *value, Cmp predicate) {
|
||||
assert(value->special == ConstValSpecialStatic);
|
||||
|
||||
switch (value->type->id) {
|
||||
case ZigTypeIdComptimeInt:
|
||||
case ZigTypeIdInt:
|
||||
return bigint_cmp_zero(&value->data.x_bigint) == predicate;
|
||||
case ZigTypeIdComptimeFloat:
|
||||
case ZigTypeIdFloat:
|
||||
if (float_is_nan(value))
|
||||
return false;
|
||||
return float_cmp_zero(value) == predicate;
|
||||
case ZigTypeIdVector: {
|
||||
for (size_t i = 0; i < value->type->data.vector.len; i++) {
|
||||
ZigValue *scalar_val = &value->data.x_array.data.s_none.elements[i];
|
||||
if (!value_cmp_zero_any(scalar_val, predicate))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
default:
|
||||
zig_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruction) {
|
||||
Error err;
|
||||
|
||||
@ -17096,127 +17121,13 @@ static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruc
|
||||
if (type_is_invalid(resolved_type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
bool is_int = resolved_type->id == ZigTypeIdInt || resolved_type->id == ZigTypeIdComptimeInt;
|
||||
bool is_float = resolved_type->id == ZigTypeIdFloat || resolved_type->id == ZigTypeIdComptimeFloat;
|
||||
bool is_signed_div = (
|
||||
(resolved_type->id == ZigTypeIdInt && resolved_type->data.integral.is_signed) ||
|
||||
resolved_type->id == ZigTypeIdFloat ||
|
||||
(resolved_type->id == ZigTypeIdComptimeFloat &&
|
||||
((bigfloat_cmp_zero(&op1->value->data.x_bigfloat) != CmpGT) !=
|
||||
(bigfloat_cmp_zero(&op2->value->data.x_bigfloat) != CmpGT))) ||
|
||||
(resolved_type->id == ZigTypeIdComptimeInt &&
|
||||
((bigint_cmp_zero(&op1->value->data.x_bigint) != CmpGT) !=
|
||||
(bigint_cmp_zero(&op2->value->data.x_bigint) != CmpGT)))
|
||||
);
|
||||
if (op_id == IrBinOpDivUnspecified && is_int) {
|
||||
if (is_signed_div) {
|
||||
bool ok = false;
|
||||
if (instr_is_comptime(op1) && instr_is_comptime(op2)) {
|
||||
ZigValue *op1_val = ir_resolve_const(ira, op1, UndefBad);
|
||||
if (op1_val == nullptr)
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
ZigType *scalar_type = (resolved_type->id == ZigTypeIdVector) ?
|
||||
resolved_type->data.vector.elem_type : resolved_type;
|
||||
|
||||
ZigValue *op2_val = ir_resolve_const(ira, op2, UndefBad);
|
||||
if (op2_val == nullptr)
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
bool is_int = scalar_type->id == ZigTypeIdInt || scalar_type->id == ZigTypeIdComptimeInt;
|
||||
bool is_float = scalar_type->id == ZigTypeIdFloat || scalar_type->id == ZigTypeIdComptimeFloat;
|
||||
|
||||
if (bigint_cmp_zero(&op2_val->data.x_bigint) == CmpEQ) {
|
||||
// the division by zero error will be caught later, but we don't have a
|
||||
// division function ambiguity problem.
|
||||
op_id = IrBinOpDivTrunc;
|
||||
ok = true;
|
||||
} else {
|
||||
BigInt trunc_result;
|
||||
BigInt floor_result;
|
||||
bigint_div_trunc(&trunc_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint);
|
||||
bigint_div_floor(&floor_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint);
|
||||
if (bigint_cmp(&trunc_result, &floor_result) == CmpEQ) {
|
||||
ok = true;
|
||||
op_id = IrBinOpDivTrunc;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!ok) {
|
||||
ir_add_error(ira, &instruction->base.base,
|
||||
buf_sprintf("division with '%s' and '%s': signed integers must use @divTrunc, @divFloor, or @divExact",
|
||||
buf_ptr(&op1->value->type->name),
|
||||
buf_ptr(&op2->value->type->name)));
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
} else {
|
||||
op_id = IrBinOpDivTrunc;
|
||||
}
|
||||
} else if (op_id == IrBinOpRemUnspecified) {
|
||||
if (is_signed_div && (is_int || is_float)) {
|
||||
bool ok = false;
|
||||
if (instr_is_comptime(op1) && instr_is_comptime(op2)) {
|
||||
ZigValue *op1_val = ir_resolve_const(ira, op1, UndefBad);
|
||||
if (op1_val == nullptr)
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
if (is_int) {
|
||||
ZigValue *op2_val = ir_resolve_const(ira, op2, UndefBad);
|
||||
if (op2_val == nullptr)
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
if (bigint_cmp_zero(&op2->value->data.x_bigint) == CmpEQ) {
|
||||
// the division by zero error will be caught later, but we don't
|
||||
// have a remainder function ambiguity problem
|
||||
ok = true;
|
||||
} else {
|
||||
BigInt rem_result;
|
||||
BigInt mod_result;
|
||||
bigint_rem(&rem_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint);
|
||||
bigint_mod(&mod_result, &op1_val->data.x_bigint, &op2_val->data.x_bigint);
|
||||
ok = bigint_cmp(&rem_result, &mod_result) == CmpEQ;
|
||||
}
|
||||
} else {
|
||||
IrInstGen *casted_op2 = ir_implicit_cast(ira, op2, resolved_type);
|
||||
if (type_is_invalid(casted_op2->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
ZigValue *op2_val = ir_resolve_const(ira, casted_op2, UndefBad);
|
||||
if (op2_val == nullptr)
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
if (float_cmp_zero(casted_op2->value) == CmpEQ) {
|
||||
// the division by zero error will be caught later, but we don't
|
||||
// have a remainder function ambiguity problem
|
||||
ok = true;
|
||||
} else {
|
||||
ZigValue rem_result = {};
|
||||
ZigValue mod_result = {};
|
||||
float_rem(&rem_result, op1_val, op2_val);
|
||||
float_mod(&mod_result, op1_val, op2_val);
|
||||
ok = float_cmp(&rem_result, &mod_result) == CmpEQ;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!ok) {
|
||||
ir_add_error(ira, &instruction->base.base,
|
||||
buf_sprintf("remainder division with '%s' and '%s': signed integers and floats must use @rem or @mod",
|
||||
buf_ptr(&op1->value->type->name),
|
||||
buf_ptr(&op2->value->type->name)));
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
}
|
||||
op_id = IrBinOpRemRem;
|
||||
}
|
||||
|
||||
bool ok = false;
|
||||
if (is_int) {
|
||||
ok = true;
|
||||
} else if (is_float && ok_float_op(op_id)) {
|
||||
ok = true;
|
||||
} else if (resolved_type->id == ZigTypeIdVector) {
|
||||
ZigType *elem_type = resolved_type->data.vector.elem_type;
|
||||
if (elem_type->id == ZigTypeIdInt || elem_type->id == ZigTypeIdComptimeInt) {
|
||||
ok = true;
|
||||
} else if ((elem_type->id == ZigTypeIdFloat || elem_type->id == ZigTypeIdComptimeFloat) && ok_float_op(op_id)) {
|
||||
ok = true;
|
||||
}
|
||||
}
|
||||
if (!ok) {
|
||||
if (!is_int && !(is_float && ok_float_op(op_id))) {
|
||||
AstNode *source_node = instruction->base.base.source_node;
|
||||
ir_add_error_node(ira, source_node,
|
||||
buf_sprintf("invalid operands to binary expression: '%s' and '%s'",
|
||||
@ -17225,16 +17136,6 @@ static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruc
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
|
||||
if (resolved_type->id == ZigTypeIdComptimeInt) {
|
||||
if (op_id == IrBinOpAddWrap) {
|
||||
op_id = IrBinOpAdd;
|
||||
} else if (op_id == IrBinOpSubWrap) {
|
||||
op_id = IrBinOpSub;
|
||||
} else if (op_id == IrBinOpMultWrap) {
|
||||
op_id = IrBinOpMult;
|
||||
}
|
||||
}
|
||||
|
||||
IrInstGen *casted_op1 = ir_implicit_cast(ira, op1, resolved_type);
|
||||
if (type_is_invalid(casted_op1->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
@ -17243,17 +17144,142 @@ static IrInstGen *ir_analyze_bin_op_math(IrAnalyze *ira, IrInstSrcBinOp *instruc
|
||||
if (type_is_invalid(casted_op2->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
// Comptime integers have no fixed size
|
||||
if (scalar_type->id == ZigTypeIdComptimeInt) {
|
||||
if (op_id == IrBinOpAddWrap) {
|
||||
op_id = IrBinOpAdd;
|
||||
} else if (op_id == IrBinOpSubWrap) {
|
||||
op_id = IrBinOpSub;
|
||||
} else if (op_id == IrBinOpMultWrap) {
|
||||
op_id = IrBinOpMult;
|
||||
}
|
||||
}
|
||||
|
||||
if (instr_is_comptime(casted_op1) && instr_is_comptime(casted_op2)) {
|
||||
ZigValue *op1_val = ir_resolve_const(ira, casted_op1, UndefBad);
|
||||
if (op1_val == nullptr)
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
ZigValue *op2_val = ir_resolve_const(ira, casted_op2, UndefBad);
|
||||
if (op2_val == nullptr)
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
// Promote division with negative numbers to signed
|
||||
bool is_signed_div = value_cmp_zero_any(op1_val, CmpLT) ||
|
||||
value_cmp_zero_any(op2_val, CmpLT);
|
||||
|
||||
if (op_id == IrBinOpDivUnspecified && is_int) {
|
||||
// Default to truncating division and check if it's valid for the
|
||||
// given operands if signed
|
||||
op_id = IrBinOpDivTrunc;
|
||||
|
||||
if (is_signed_div) {
|
||||
bool ok = false;
|
||||
|
||||
if (value_cmp_zero_any(op2_val, CmpEQ)) {
|
||||
// the division by zero error will be caught later, but we don't have a
|
||||
// division function ambiguity problem.
|
||||
ok = true;
|
||||
} else {
|
||||
IrInstGen *trunc_val = ir_analyze_math_op(ira, &instruction->base.base, resolved_type,
|
||||
op1_val, IrBinOpDivTrunc, op2_val);
|
||||
if (type_is_invalid(trunc_val->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
IrInstGen *floor_val = ir_analyze_math_op(ira, &instruction->base.base, resolved_type,
|
||||
op1_val, IrBinOpDivFloor, op2_val);
|
||||
if (type_is_invalid(floor_val->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
IrInstGen *cmp_val = ir_analyze_bin_op_cmp_numeric(ira, &instruction->base.base,
|
||||
trunc_val, floor_val, IrBinOpCmpEq);
|
||||
if (type_is_invalid(cmp_val->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
// We can "upgrade" the operator only if trunc(a/b) == floor(a/b)
|
||||
if (!ir_resolve_bool(ira, cmp_val, &ok))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
ir_add_error(ira, &instruction->base.base,
|
||||
buf_sprintf("division with '%s' and '%s': signed integers must use @divTrunc, @divFloor, or @divExact",
|
||||
buf_ptr(&op1->value->type->name),
|
||||
buf_ptr(&op2->value->type->name)));
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
}
|
||||
} else if (op_id == IrBinOpRemUnspecified) {
|
||||
op_id = IrBinOpRemRem;
|
||||
|
||||
if (is_signed_div) {
|
||||
bool ok = false;
|
||||
|
||||
if (value_cmp_zero_any(op2_val, CmpEQ)) {
|
||||
// the division by zero error will be caught later, but we don't have a
|
||||
// division function ambiguity problem.
|
||||
ok = true;
|
||||
} else {
|
||||
IrInstGen *rem_val = ir_analyze_math_op(ira, &instruction->base.base, resolved_type,
|
||||
op1_val, IrBinOpRemRem, op2_val);
|
||||
if (type_is_invalid(rem_val->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
IrInstGen *mod_val = ir_analyze_math_op(ira, &instruction->base.base, resolved_type,
|
||||
op1_val, IrBinOpRemMod, op2_val);
|
||||
if (type_is_invalid(mod_val->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
IrInstGen *cmp_val = ir_analyze_bin_op_cmp_numeric(ira, &instruction->base.base,
|
||||
rem_val, mod_val, IrBinOpCmpEq);
|
||||
if (type_is_invalid(cmp_val->value->type))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
|
||||
// We can "upgrade" the operator only if mod(a,b) == rem(a,b)
|
||||
if (!ir_resolve_bool(ira, cmp_val, &ok))
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
ir_add_error(ira, &instruction->base.base,
|
||||
buf_sprintf("remainder division with '%s' and '%s': signed integers and floats must use @rem or @mod",
|
||||
buf_ptr(&op1->value->type->name),
|
||||
buf_ptr(&op2->value->type->name)));
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ir_analyze_math_op(ira, &instruction->base.base, resolved_type, op1_val, op_id, op2_val);
|
||||
}
|
||||
|
||||
const bool is_signed_div =
|
||||
(scalar_type->id == ZigTypeIdInt && scalar_type->data.integral.is_signed) ||
|
||||
scalar_type->id == ZigTypeIdFloat;
|
||||
|
||||
// Warn the user to use the proper operators here
|
||||
if (op_id == IrBinOpDivUnspecified && is_int) {
|
||||
op_id = IrBinOpDivTrunc;
|
||||
|
||||
if (is_signed_div) {
|
||||
ir_add_error(ira, &instruction->base.base,
|
||||
buf_sprintf("division with '%s' and '%s': signed integers must use @divTrunc, @divFloor, or @divExact",
|
||||
buf_ptr(&op1->value->type->name),
|
||||
buf_ptr(&op2->value->type->name)));
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
} else if (op_id == IrBinOpRemUnspecified) {
|
||||
op_id = IrBinOpRemRem;
|
||||
|
||||
if (is_signed_div) {
|
||||
ir_add_error(ira, &instruction->base.base,
|
||||
buf_sprintf("remainder division with '%s' and '%s': signed integers and floats must use @rem or @mod",
|
||||
buf_ptr(&op1->value->type->name),
|
||||
buf_ptr(&op2->value->type->name)));
|
||||
return ira->codegen->invalid_inst_gen;
|
||||
}
|
||||
}
|
||||
|
||||
return ir_build_bin_op_gen(ira, &instruction->base.base, resolved_type,
|
||||
op_id, casted_op1, casted_op2, instruction->safety_check_on);
|
||||
}
|
||||
|
@ -276,3 +276,78 @@ test "vector comparison operators" {
|
||||
S.doTheTest();
|
||||
comptime S.doTheTest();
|
||||
}
|
||||
|
||||
test "vector division operators" {
|
||||
const S = struct {
|
||||
fn doTheTestDiv(comptime T: type, x: @Vector(4, T), y: @Vector(4, T)) void {
|
||||
if (!comptime std.meta.trait.isSignedInt(T)) {
|
||||
const d0 = x / y;
|
||||
for (@as([4]T, d0)) |v, i| {
|
||||
expectEqual(x[i] / y[i], v);
|
||||
}
|
||||
}
|
||||
const d1 = @divExact(x, y);
|
||||
for (@as([4]T, d1)) |v, i| {
|
||||
expectEqual(@divExact(x[i], y[i]), v);
|
||||
}
|
||||
const d2 = @divFloor(x, y);
|
||||
for (@as([4]T, d2)) |v, i| {
|
||||
expectEqual(@divFloor(x[i], y[i]), v);
|
||||
}
|
||||
const d3 = @divTrunc(x, y);
|
||||
for (@as([4]T, d3)) |v, i| {
|
||||
expectEqual(@divTrunc(x[i], y[i]), v);
|
||||
}
|
||||
}
|
||||
|
||||
fn doTheTestMod(comptime T: type, x: @Vector(4, T), y: @Vector(4, T)) void {
|
||||
if ((!comptime std.meta.trait.isSignedInt(T)) and @typeInfo(T) != .Float) {
|
||||
const r0 = x % y;
|
||||
for (@as([4]T, r0)) |v, i| {
|
||||
expectEqual(x[i] % y[i], v);
|
||||
}
|
||||
}
|
||||
const r1 = @mod(x, y);
|
||||
for (@as([4]T, r1)) |v, i| {
|
||||
expectEqual(@mod(x[i], y[i]), v);
|
||||
}
|
||||
const r2 = @rem(x, y);
|
||||
for (@as([4]T, r2)) |v, i| {
|
||||
expectEqual(@rem(x[i], y[i]), v);
|
||||
}
|
||||
}
|
||||
|
||||
fn doTheTest() void {
|
||||
doTheTestDiv(f16, [4]f16{ 4.0, -4.0, 4.0, -4.0 }, [4]f16{ 1.0, 2.0, -1.0, -2.0 });
|
||||
doTheTestDiv(f32, [4]f32{ 4.0, -4.0, 4.0, -4.0 }, [4]f32{ 1.0, 2.0, -1.0, -2.0 });
|
||||
doTheTestDiv(f64, [4]f64{ 4.0, -4.0, 4.0, -4.0 }, [4]f64{ 1.0, 2.0, -1.0, -2.0 });
|
||||
|
||||
doTheTestMod(f16, [4]f16{ 4.0, -4.0, 4.0, -4.0 }, [4]f16{ 1.0, 2.0, 0.5, 3.0 });
|
||||
doTheTestMod(f32, [4]f32{ 4.0, -4.0, 4.0, -4.0 }, [4]f32{ 1.0, 2.0, 0.5, 3.0 });
|
||||
doTheTestMod(f64, [4]f64{ 4.0, -4.0, 4.0, -4.0 }, [4]f64{ 1.0, 2.0, 0.5, 3.0 });
|
||||
|
||||
doTheTestDiv(i8, [4]i8{ 4, -4, 4, -4 }, [4]i8{ 1, 2, -1, -2 });
|
||||
doTheTestDiv(i16, [4]i16{ 4, -4, 4, -4 }, [4]i16{ 1, 2, -1, -2 });
|
||||
doTheTestDiv(i32, [4]i32{ 4, -4, 4, -4 }, [4]i32{ 1, 2, -1, -2 });
|
||||
doTheTestDiv(i64, [4]i64{ 4, -4, 4, -4 }, [4]i64{ 1, 2, -1, -2 });
|
||||
|
||||
doTheTestMod(i8, [4]i8{ 4, -4, 4, -4 }, [4]i8{ 1, 2, 4, 8 });
|
||||
doTheTestMod(i16, [4]i16{ 4, -4, 4, -4 }, [4]i16{ 1, 2, 4, 8 });
|
||||
doTheTestMod(i32, [4]i32{ 4, -4, 4, -4 }, [4]i32{ 1, 2, 4, 8 });
|
||||
doTheTestMod(i64, [4]i64{ 4, -4, 4, -4 }, [4]i64{ 1, 2, 4, 8 });
|
||||
|
||||
doTheTestDiv(u8, [4]u8{ 1, 2, 4, 8 }, [4]u8{ 1, 1, 2, 4 });
|
||||
doTheTestDiv(u16, [4]u16{ 1, 2, 4, 8 }, [4]u16{ 1, 1, 2, 4 });
|
||||
doTheTestDiv(u32, [4]u32{ 1, 2, 4, 8 }, [4]u32{ 1, 1, 2, 4 });
|
||||
doTheTestDiv(u64, [4]u64{ 1, 2, 4, 8 }, [4]u64{ 1, 1, 2, 4 });
|
||||
|
||||
doTheTestMod(u8, [4]u8{ 1, 2, 4, 8 }, [4]u8{ 1, 1, 2, 4 });
|
||||
doTheTestMod(u16, [4]u16{ 1, 2, 4, 8 }, [4]u16{ 1, 1, 2, 4 });
|
||||
doTheTestMod(u32, [4]u32{ 1, 2, 4, 8 }, [4]u32{ 1, 1, 2, 4 });
|
||||
doTheTestMod(u64, [4]u64{ 1, 2, 4, 8 }, [4]u64{ 1, 1, 2, 4 });
|
||||
}
|
||||
};
|
||||
|
||||
S.doTheTest();
|
||||
comptime S.doTheTest();
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user