Added support for vector wrapping mult and sub

* I also merged the code that generates ir for add, sub, and mult
master
Jimmi Holst Christensen 2019-02-05 11:00:32 +01:00 committed by Andrew Kelley
parent 06be65a602
commit 4010f6a11d
2 changed files with 58 additions and 81 deletions

View File

@ -2582,6 +2582,8 @@ static LLVMValueRef gen_rem(CodeGen *g, bool want_runtime_safety, bool want_fast
} }
typedef LLVMValueRef (*BuildBinOpFunc)(LLVMBuilderRef, LLVMValueRef, LLVMValueRef, const char *);
static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutable *executable, static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutable *executable,
IrInstructionBinOp *bin_op_instruction) IrInstructionBinOp *bin_op_instruction)
{ {
@ -2640,50 +2642,71 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutable *executable,
} else { } else {
zig_unreachable(); zig_unreachable();
} }
case IrBinOpMult:
case IrBinOpMultWrap:
case IrBinOpAdd: case IrBinOpAdd:
case IrBinOpAddWrap: case IrBinOpAddWrap:
case IrBinOpSub:
case IrBinOpSubWrap: {
// These are lookup table using the AddSubMul enum as the lookup.
// If AddSubMul ever changes, then these tables will be out of
// date.
static const BuildBinOpFunc float_op[3] = { LLVMBuildFAdd, LLVMBuildFSub, LLVMBuildFMul };
static const BuildBinOpFunc wrap_op[3] = { LLVMBuildAdd, LLVMBuildSub, LLVMBuildMul };
static const BuildBinOpFunc signed_op[3] = { LLVMBuildNSWAdd, LLVMBuildNSWSub, LLVMBuildNSWMul };
static const BuildBinOpFunc unsigned_op[3] = { LLVMBuildNUWAdd, LLVMBuildNUWSub, LLVMBuildNUWMul };
bool is_vector = type_entry->id == ZigTypeIdVector;
bool is_wrapping = (op_id == IrBinOpSubWrap || op_id == IrBinOpAddWrap || op_id == IrBinOpMultWrap);
AddSubMul add_sub_mul =
op_id == IrBinOpAdd || op_id == IrBinOpAddWrap ? AddSubMulAdd :
op_id == IrBinOpSub || op_id == IrBinOpSubWrap ? AddSubMulSub :
AddSubMulMul;
// The code that is generated for vectors and scalars are the same,
// so we can just set type_entry to the vectors elem_type an avoid
// a lot of repeated code.
if (is_vector)
type_entry = type_entry->data.vector.elem_type;
if (type_entry->id == ZigTypeIdPointer) { if (type_entry->id == ZigTypeIdPointer) {
assert(type_entry->data.pointer.ptr_len == PtrLenUnknown); assert(type_entry->data.pointer.ptr_len == PtrLenUnknown);
LLVMValueRef subscript_value;
if (is_vector)
zig_panic("TODO: Implement vector operations on pointers.");
switch (add_sub_mul) {
case AddSubMulAdd:
subscript_value = op2_value;
break;
case AddSubMulSub:
subscript_value = LLVMBuildNeg(g->builder, op2_value, "");
break;
case AddSubMulMul:
zig_unreachable();
}
// TODO runtime safety // TODO runtime safety
return LLVMBuildInBoundsGEP(g->builder, op1_value, &op2_value, 1, ""); return LLVMBuildInBoundsGEP(g->builder, op1_value, &subscript_value, 1, "");
} else if (type_entry->id == ZigTypeIdFloat) { } else if (type_entry->id == ZigTypeIdFloat) {
ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &bin_op_instruction->base)); ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &bin_op_instruction->base));
return LLVMBuildFAdd(g->builder, op1_value, op2_value, ""); return float_op[add_sub_mul](g->builder, op1_value, op2_value, "");
} else if (type_entry->id == ZigTypeIdInt) { } else if (type_entry->id == ZigTypeIdInt) {
bool is_wrapping = (op_id == IrBinOpAddWrap);
if (is_wrapping) { if (is_wrapping) {
return LLVMBuildAdd(g->builder, op1_value, op2_value, ""); return wrap_op[add_sub_mul](g->builder, op1_value, op2_value, "");
} else if (want_runtime_safety) { } else if (want_runtime_safety) {
return gen_overflow_op(g, type_entry, AddSubMulAdd, op1_value, op2_value); if (is_vector)
zig_panic("TODO: Implement runtime safety vector operations.");
return gen_overflow_op(g, type_entry, add_sub_mul, op1_value, op2_value);
} else if (type_entry->data.integral.is_signed) { } else if (type_entry->data.integral.is_signed) {
return LLVMBuildNSWAdd(g->builder, op1_value, op2_value, ""); return signed_op[add_sub_mul](g->builder, op1_value, op2_value, "");
} else { } else {
return LLVMBuildNUWAdd(g->builder, op1_value, op2_value, ""); return unsigned_op[add_sub_mul](g->builder, op1_value, op2_value, "");
}
} else if (type_entry->id == ZigTypeIdVector) {
ZigType *elem_type = type_entry->data.vector.elem_type;
if (elem_type->id == ZigTypeIdFloat) {
ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &bin_op_instruction->base));
return LLVMBuildFAdd(g->builder, op1_value, op2_value, "");
} else if (elem_type->id == ZigTypeIdPointer) {
zig_panic("TODO codegen for pointers in vectors");
} else if (elem_type->id == ZigTypeIdInt) {
bool is_wrapping = (op_id == IrBinOpAddWrap);
if (is_wrapping) {
return LLVMBuildAdd(g->builder, op1_value, op2_value, "");
} else if (want_runtime_safety) {
zig_panic("TODO runtime safety for vector integer addition");
} else if (elem_type->data.integral.is_signed) {
return LLVMBuildNSWAdd(g->builder, op1_value, op2_value, "");
} else {
return LLVMBuildNUWAdd(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
} }
} else { } else {
zig_unreachable(); zig_unreachable();
} }
}
case IrBinOpBinOr: case IrBinOpBinOr:
return LLVMBuildOr(g->builder, op1_value, op2_value, ""); return LLVMBuildOr(g->builder, op1_value, op2_value, "");
case IrBinOpBinXor: case IrBinOpBinXor:
@ -2728,49 +2751,6 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, IrExecutable *executable,
return ZigLLVMBuildLShrExact(g->builder, op1_value, op2_casted, ""); return ZigLLVMBuildLShrExact(g->builder, op1_value, op2_casted, "");
} }
} }
case IrBinOpSub:
case IrBinOpSubWrap:
if (type_entry->id == ZigTypeIdPointer) {
assert(type_entry->data.pointer.ptr_len == PtrLenUnknown);
// TODO runtime safety
LLVMValueRef subscript_value = LLVMBuildNeg(g->builder, op2_value, "");
return LLVMBuildInBoundsGEP(g->builder, op1_value, &subscript_value, 1, "");
} else if (type_entry->id == ZigTypeIdFloat) {
ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &bin_op_instruction->base));
return LLVMBuildFSub(g->builder, op1_value, op2_value, "");
} else if (type_entry->id == ZigTypeIdInt) {
bool is_wrapping = (op_id == IrBinOpSubWrap);
if (is_wrapping) {
return LLVMBuildSub(g->builder, op1_value, op2_value, "");
} else if (want_runtime_safety) {
return gen_overflow_op(g, type_entry, AddSubMulSub, op1_value, op2_value);
} else if (type_entry->data.integral.is_signed) {
return LLVMBuildNSWSub(g->builder, op1_value, op2_value, "");
} else {
return LLVMBuildNUWSub(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpMult:
case IrBinOpMultWrap:
if (type_entry->id == ZigTypeIdFloat) {
ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, &bin_op_instruction->base));
return LLVMBuildFMul(g->builder, op1_value, op2_value, "");
} else if (type_entry->id == ZigTypeIdInt) {
bool is_wrapping = (op_id == IrBinOpMultWrap);
if (is_wrapping) {
return LLVMBuildMul(g->builder, op1_value, op2_value, "");
} else if (want_runtime_safety) {
return gen_overflow_op(g, type_entry, AddSubMulMul, op1_value, op2_value);
} else if (type_entry->data.integral.is_signed) {
return LLVMBuildNSWMul(g->builder, op1_value, op2_value, "");
} else {
return LLVMBuildNUWMul(g->builder, op1_value, op2_value, "");
}
} else {
zig_unreachable();
}
case IrBinOpDivUnspecified: case IrBinOpDivUnspecified:
return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base), return gen_div(g, want_runtime_safety, ir_want_fast_math(g, &bin_op_instruction->base),
op1_value, op2_value, type_entry, DivKindFloat); op1_value, op2_value, type_entry, DivKindFloat);

View File

@ -1,20 +1,17 @@
const std = @import("std"); const std = @import("std");
const mem = std.mem;
const assertOrPanic = std.debug.assertOrPanic; const assertOrPanic = std.debug.assertOrPanic;
test "implicit array to vector and vector to array" { test "vector wrap operators" {
const S = struct { const S = struct {
fn doTheTest() void { fn doTheTest() void {
var v: @Vector(4, i32) = [4]i32{10, 20, 30, 40}; const v: @Vector(4, i32) = [4]i32{ 10, 20, 30, 40 };
const x: @Vector(4, i32) = [4]i32{1, 2, 3, 4}; const x: @Vector(4, i32) = [4]i32{ 1, 2, 3, 4 };
v +%= x; assertOrPanic(mem.eql(i32, ([4]i32)(v +% x), [4]i32{ 11, 22, 33, 44 }));
const result: [4]i32 = v; assertOrPanic(mem.eql(i32, ([4]i32)(v -% x), [4]i32{ 9, 18, 27, 36 }));
assertOrPanic(result[0] == 11); assertOrPanic(mem.eql(i32, ([4]i32)(v *% x), [4]i32{ 10, 40, 90, 160 }));
assertOrPanic(result[1] == 22);
assertOrPanic(result[2] == 33);
assertOrPanic(result[3] == 44);
} }
}; };
S.doTheTest(); S.doTheTest();
comptime S.doTheTest(); comptime S.doTheTest();
} }