Merge remote-tracking branch 'origin/master' into llvm8

master
Andrew Kelley 2019-01-08 16:50:16 -05:00
commit 027a0c46ae
14 changed files with 365 additions and 26 deletions

View File

@ -5316,6 +5316,18 @@ comptime {
</p>
{#header_close#}
{#header_open|@bitreverse#}
<pre>{#syntax#}@bitreverse(comptime T: type, value: T) T{#endsyntax#}</pre>
<p>{#syntax#}T{#endsyntax#} accepts any integer type.</p>
<p>
Reverses the bitpattern of an integer value, including the sign bit if applicable.
</p>
<p>
For example 0b10110110 ({#syntax#}u8 = 182{#endsyntax#}, {#syntax#}i8 = -74{#endsyntax#})
becomes 0b01101101 ({#syntax#}u8 = 109{#endsyntax#}, {#syntax#}i8 = 109{#endsyntax#}).
</p>
{#header_close#}
{#header_open|@byteOffsetOf#}
<pre>{#syntax#}@byteOffsetOf(comptime T: type, comptime field_name: [] const u8) comptime_int{#endsyntax#}</pre>
<p>

View File

@ -1166,6 +1166,7 @@ struct ZigTypeFn {
FnGenParamInfo *gen_param_info;
LLVMTypeRef raw_type_ref;
ZigLLVMDIType *raw_di_type;
ZigType *bound_fn_parent;
};
@ -1415,6 +1416,7 @@ enum BuiltinFnId {
BuiltinFnIdAtomicRmw,
BuiltinFnIdAtomicLoad,
BuiltinFnIdBswap,
BuiltinFnIdBitReverse,
};
struct BuiltinFnEntry {
@ -1488,6 +1490,7 @@ enum ZigLLVMFnId {
ZigLLVMFnIdCeil,
ZigLLVMFnIdSqrt,
ZigLLVMFnIdBswap,
ZigLLVMFnIdBitReverse,
};
enum AddSubMul {
@ -1520,6 +1523,9 @@ struct ZigLLVMFnKey {
struct {
uint32_t bit_count;
} bswap;
struct {
uint32_t bit_count;
} bit_reverse;
} data;
};
@ -2162,6 +2168,7 @@ enum IrInstructionId {
IrInstructionIdMarkErrRetTracePtr,
IrInstructionIdSqrt,
IrInstructionIdBswap,
IrInstructionIdBitReverse,
IrInstructionIdErrSetCast,
IrInstructionIdToBytes,
IrInstructionIdFromBytes,
@ -3262,6 +3269,13 @@ struct IrInstructionBswap {
IrInstruction *op;
};
struct IrInstructionBitReverse {
IrInstruction base;
IrInstruction *type;
IrInstruction *op;
};
static const size_t slice_ptr_index = 0;
static const size_t slice_len_index = 1;

View File

@ -1220,7 +1220,10 @@ ZigType *get_fn_type(CodeGen *g, FnTypeId *fn_type_id) {
fn_type->data.fn.raw_type_ref = LLVMFunctionType(gen_return_type->type_ref,
gen_param_types.items, (unsigned int)gen_param_types.length, fn_type_id->is_var_args);
fn_type->type_ref = LLVMPointerType(fn_type->data.fn.raw_type_ref, 0);
fn_type->di_type = ZigLLVMCreateSubroutineType(g->dbuilder, param_di_types.items, (int)param_di_types.length, 0);
fn_type->data.fn.raw_di_type = ZigLLVMCreateSubroutineType(g->dbuilder, param_di_types.items, (int)param_di_types.length, 0);
fn_type->di_type = ZigLLVMCreateDebugPointerType(g->dbuilder, fn_type->data.fn.raw_di_type,
LLVMStoreSizeOfType(g->target_data_ref, fn_type->type_ref),
LLVMABIAlignmentOfType(g->target_data_ref, fn_type->type_ref), "");
}
g->fn_type_table.put(&fn_type->data.fn.fn_type_id, fn_type);
@ -6121,6 +6124,8 @@ uint32_t zig_llvm_fn_key_hash(ZigLLVMFnKey x) {
return (uint32_t)(x.data.floating.bit_count) * (uint32_t)2225366385;
case ZigLLVMFnIdBswap:
return (uint32_t)(x.data.bswap.bit_count) * (uint32_t)3661994335;
case ZigLLVMFnIdBitReverse:
return (uint32_t)(x.data.bit_reverse.bit_count) * (uint32_t)2621398431;
case ZigLLVMFnIdOverflowArithmetic:
return ((uint32_t)(x.data.overflow_arithmetic.bit_count) * 87135777) +
((uint32_t)(x.data.overflow_arithmetic.add_sub_mul) * 31640542) +
@ -6141,6 +6146,8 @@ bool zig_llvm_fn_key_eql(ZigLLVMFnKey a, ZigLLVMFnKey b) {
return a.data.pop_count.bit_count == b.data.pop_count.bit_count;
case ZigLLVMFnIdBswap:
return a.data.bswap.bit_count == b.data.bswap.bit_count;
case ZigLLVMFnIdBitReverse:
return a.data.bit_reverse.bit_count == b.data.bit_reverse.bit_count;
case ZigLLVMFnIdFloor:
case ZigLLVMFnIdCeil:
case ZigLLVMFnIdSqrt:

View File

@ -1722,3 +1722,4 @@ void bigint_incr(BigInt *x) {
bigint_add(x, &copy, &one);
}

View File

@ -649,7 +649,7 @@ static ZigLLVMDIScope *get_di_scope(CodeGen *g, Scope *scope) {
ZigLLVMDISubprogram *subprogram = ZigLLVMCreateFunction(g->dbuilder,
fn_di_scope, buf_ptr(&fn_table_entry->symbol_name), "",
import->di_file, line_number,
fn_table_entry->type_entry->di_type, is_internal_linkage,
fn_table_entry->type_entry->data.fn.raw_di_type, is_internal_linkage,
is_definition, scope_line, flags, is_optimized, nullptr);
scope->di_scope = ZigLLVMSubprogramToScope(subprogram);
@ -3789,6 +3789,11 @@ static LLVMValueRef get_int_builtin_fn(CodeGen *g, ZigType *int_type, BuiltinFnI
n_args = 1;
key.id = ZigLLVMFnIdBswap;
key.data.bswap.bit_count = (uint32_t)int_type->data.integral.bit_count;
} else if (fn_id == BuiltinFnIdBitReverse) {
fn_name = "bitreverse";
n_args = 1;
key.id = ZigLLVMFnIdBitReverse;
key.data.bit_reverse.bit_count = (uint32_t)int_type->data.integral.bit_count;
} else {
zig_unreachable();
}
@ -5096,6 +5101,14 @@ static LLVMValueRef ir_render_bswap(CodeGen *g, IrExecutable *executable, IrInst
return LLVMBuildTrunc(g->builder, shifted, int_type->type_ref, "");
}
static LLVMValueRef ir_render_bit_reverse(CodeGen *g, IrExecutable *executable, IrInstructionBitReverse *instruction) {
LLVMValueRef op = ir_llvm_value(g, instruction->op);
ZigType *int_type = instruction->base.value.type;
assert(int_type->id == ZigTypeIdInt);
LLVMValueRef fn_val = get_int_builtin_fn(g, instruction->base.value.type, BuiltinFnIdBitReverse);
return LLVMBuildCall(g->builder, fn_val, &op, 1, "");
}
static void set_debug_location(CodeGen *g, IrInstruction *instruction) {
AstNode *source_node = instruction->source_node;
Scope *scope = instruction->scope;
@ -5335,6 +5348,8 @@ static LLVMValueRef ir_render_instruction(CodeGen *g, IrExecutable *executable,
return ir_render_sqrt(g, executable, (IrInstructionSqrt *)instruction);
case IrInstructionIdBswap:
return ir_render_bswap(g, executable, (IrInstructionBswap *)instruction);
case IrInstructionIdBitReverse:
return ir_render_bit_reverse(g, executable, (IrInstructionBitReverse *)instruction);
}
zig_unreachable();
}
@ -6758,6 +6773,7 @@ static void define_builtin_fns(CodeGen *g) {
create_builtin_fn(g, BuiltinFnIdFromBytes, "bytesToSlice", 2);
create_builtin_fn(g, BuiltinFnIdThis, "This", 0);
create_builtin_fn(g, BuiltinFnIdBswap, "bswap", 2);
create_builtin_fn(g, BuiltinFnIdBitReverse, "bitreverse", 2);
}
static const char *bool_to_str(bool b) {

View File

@ -861,6 +861,10 @@ static constexpr IrInstructionId ir_instruction_id(IrInstructionBswap *) {
return IrInstructionIdBswap;
}
static constexpr IrInstructionId ir_instruction_id(IrInstructionBitReverse *) {
return IrInstructionIdBitReverse;
}
static constexpr IrInstructionId ir_instruction_id(IrInstructionCheckRuntimeScope *) {
return IrInstructionIdCheckRuntimeScope;
}
@ -2721,6 +2725,17 @@ static IrInstruction *ir_build_bswap(IrBuilder *irb, Scope *scope, AstNode *sour
return &instruction->base;
}
static IrInstruction *ir_build_bit_reverse(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *type, IrInstruction *op) {
IrInstructionBitReverse *instruction = ir_build_instruction<IrInstructionBitReverse>(irb, scope, source_node);
instruction->type = type;
instruction->op = op;
if (type != nullptr) ir_ref_instruction(type, irb->current_basic_block);
ir_ref_instruction(op, irb->current_basic_block);
return &instruction->base;
}
static IrInstruction *ir_build_check_runtime_scope(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *scope_is_comptime, IrInstruction *is_comptime) {
IrInstructionCheckRuntimeScope *instruction = ir_build_instruction<IrInstructionCheckRuntimeScope>(irb, scope, source_node);
instruction->scope_is_comptime = scope_is_comptime;
@ -3646,7 +3661,7 @@ static IrInstruction *ir_gen_builtin_fn_call(IrBuilder *irb, Scope *scope, AstNo
Buf *name = fn_ref_expr->data.symbol_expr.symbol;
auto entry = irb->codegen->builtin_fn_table.maybe_get(name);
if (!entry) {
if (!entry) { // new built in not found
add_node_error(irb->codegen, node,
buf_sprintf("invalid builtin function: '%s'", buf_ptr(name)));
return irb->codegen->invalid_instruction;
@ -4720,6 +4735,21 @@ static IrInstruction *ir_gen_builtin_fn_call(IrBuilder *irb, Scope *scope, AstNo
IrInstruction *result = ir_build_bswap(irb, scope, node, arg0_value, arg1_value);
return ir_lval_wrap(irb, scope, result, lval);
}
case BuiltinFnIdBitReverse:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope);
if (arg0_value == irb->codegen->invalid_instruction)
return arg0_value;
AstNode *arg1_node = node->data.fn_call_expr.params.at(1);
IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope);
if (arg1_value == irb->codegen->invalid_instruction)
return arg1_value;
IrInstruction *result = ir_build_bit_reverse(irb, scope, node, arg0_value, arg1_value);
return ir_lval_wrap(irb, scope, result, lval);
}
}
zig_unreachable();
}
@ -14547,8 +14577,7 @@ static IrInstruction *ir_analyze_container_field_ptr(IrAnalyze *ira, Buf *field_
return ira->codegen->invalid_instruction;
if (type_is_invalid(struct_val->type))
return ira->codegen->invalid_instruction;
ConstExprValue *field_val = &struct_val->data.x_struct.fields[field->src_index];
ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, field_val->type,
ZigType *ptr_type = get_pointer_to_type_extra(ira->codegen, field->type_entry,
is_const, is_volatile, PtrLenSingle, align_bytes,
(uint32_t)(ptr_bit_offset + field->bit_offset_in_host),
(uint32_t)host_int_bytes_for_result_type);
@ -16853,16 +16882,12 @@ static void ensure_field_index(ZigType *type, const char *field_name, size_t ind
static ZigType *ir_type_info_get_type(IrAnalyze *ira, const char *type_name, ZigType *root) {
Error err;
static ConstExprValue *type_info_var = nullptr; // TODO oops this global variable made it past code review
static ZigType *type_info_type = nullptr; // TODO oops this global variable made it past code review
if (type_info_var == nullptr) {
type_info_var = get_builtin_value(ira->codegen, "TypeInfo");
assert(type_info_var->type->id == ZigTypeIdMetaType);
ConstExprValue *type_info_var = get_builtin_value(ira->codegen, "TypeInfo");
assert(type_info_var->type->id == ZigTypeIdMetaType);
assertNoError(ensure_complete_type(ira->codegen, type_info_var->data.x_type));
assertNoError(ensure_complete_type(ira->codegen, type_info_var->data.x_type));
type_info_type = type_info_var->data.x_type;
assert(type_info_type->id == ZigTypeIdUnion);
}
ZigType *type_info_type = type_info_var->data.x_type;
assert(type_info_type->id == ZigTypeIdUnion);
if (type_name == nullptr && root == nullptr)
return type_info_type;
@ -17075,12 +17100,7 @@ static Error ir_make_type_info_defs(IrAnalyze *ira, ConstExprValue *out_val, Sco
ensure_field_index(fn_def_val->type, "return_type", 7);
fn_def_fields[7].special = ConstValSpecialStatic;
fn_def_fields[7].type = ira->codegen->builtin_types.entry_type;
if (fn_entry->src_implicit_return_type != nullptr)
fn_def_fields[7].data.x_type = fn_entry->src_implicit_return_type;
else if (fn_entry->type_entry->data.fn.gen_return_type != nullptr)
fn_def_fields[7].data.x_type = fn_entry->type_entry->data.fn.gen_return_type;
else
fn_def_fields[7].data.x_type = fn_entry->type_entry->data.fn.fn_type_id.return_type;
fn_def_fields[7].data.x_type = fn_entry->type_entry->data.fn.fn_type_id.return_type;
// arg_names: [][] const u8
ensure_field_index(fn_def_val->type, "arg_names", 8);
size_t fn_arg_count = fn_entry->variable_list.length;
@ -20150,8 +20170,29 @@ static Error buf_read_value_bytes(IrAnalyze *ira, AstNode *source_node, uint8_t
val->data.x_ptr.data.hard_coded_addr.addr = bigint_as_unsigned(&bn);
return ErrorNone;
}
case ZigTypeIdArray:
zig_panic("TODO buf_read_value_bytes array type");
case ZigTypeIdArray: {
uint64_t elem_size = type_size(ira->codegen, val->type->data.array.child_type);
size_t len = val->type->data.array.len;
switch (val->data.x_array.special) {
case ConstArraySpecialNone:
val->data.x_array.data.s_none.elements = create_const_vals(len);
for (size_t i = 0; i < len; i++) {
ConstExprValue *elem = &val->data.x_array.data.s_none.elements[i];
elem->special = ConstValSpecialStatic;
elem->type = val->type->data.array.child_type;
if ((err = buf_read_value_bytes(ira, source_node, buf + (elem_size * i), elem)))
return err;
}
break;
case ConstArraySpecialUndef:
zig_panic("TODO buf_read_value_bytes ConstArraySpecialUndef array type");
case ConstArraySpecialBuf:
zig_panic("TODO buf_read_value_bytes ConstArraySpecialBuf array type");
}
return ErrorNone;
}
case ZigTypeIdStruct:
switch (val->type->data.structure.layout) {
case ContainerLayoutAuto: {
@ -20333,6 +20374,7 @@ static IrInstruction *ir_analyze_instruction_int_to_ptr(IrAnalyze *ira, IrInstru
IrInstruction *result = ir_const(ira, &instruction->base, dest_type);
result->value.data.x_ptr.special = ConstPtrSpecialHardCodedAddr;
result->value.data.x_ptr.mut = ConstPtrMutRuntimeVar;
result->value.data.x_ptr.data.hard_coded_addr.addr = bigint_as_unsigned(&val->data.x_bigint);
return result;
}
@ -21115,6 +21157,69 @@ static IrInstruction *ir_analyze_instruction_bswap(IrAnalyze *ira, IrInstruction
return result;
}
static IrInstruction *ir_analyze_instruction_bit_reverse(IrAnalyze *ira, IrInstructionBitReverse *instruction) {
ZigType *int_type = ir_resolve_type(ira, instruction->type->child);
if (type_is_invalid(int_type))
return ira->codegen->invalid_instruction;
IrInstruction *op = instruction->op->child;
if (type_is_invalid(op->value.type))
return ira->codegen->invalid_instruction;
if (int_type->id != ZigTypeIdInt) {
ir_add_error(ira, instruction->type,
buf_sprintf("expected integer type, found '%s'", buf_ptr(&int_type->name)));
return ira->codegen->invalid_instruction;
}
IrInstruction *casted_op = ir_implicit_cast(ira, op, int_type);
if (type_is_invalid(casted_op->value.type))
return ira->codegen->invalid_instruction;
if (int_type->data.integral.bit_count == 0) {
IrInstruction *result = ir_const(ira, &instruction->base, int_type);
bigint_init_unsigned(&result->value.data.x_bigint, 0);
return result;
}
if (instr_is_comptime(casted_op)) {
ConstExprValue *val = ir_resolve_const(ira, casted_op, UndefBad);
if (!val)
return ira->codegen->invalid_instruction;
IrInstruction *result = ir_const(ira, &instruction->base, int_type);
size_t num_bits = int_type->data.integral.bit_count;
size_t buf_size = (num_bits + 7) / 8;
uint8_t *comptime_buf = allocate_nonzero<uint8_t>(buf_size);
uint8_t *result_buf = allocate_nonzero<uint8_t>(buf_size);
memset(comptime_buf,0,buf_size);
memset(result_buf,0,buf_size);
bigint_write_twos_complement(&val->data.x_bigint,comptime_buf,num_bits,ira->codegen->is_big_endian);
size_t bit_i = 0;
size_t bit_rev_i = num_bits - 1;
for (; bit_i < num_bits; bit_i++, bit_rev_i--) {
if (comptime_buf[bit_i / 8] & (1 << (bit_i % 8))) {
result_buf[bit_rev_i / 8] |= (1 << (bit_rev_i % 8));
}
}
bigint_read_twos_complement(&result->value.data.x_bigint,
result_buf,
int_type->data.integral.bit_count,
ira->codegen->is_big_endian,
int_type->data.integral.is_signed);
return result;
}
IrInstruction *result = ir_build_bit_reverse(&ira->new_irb, instruction->base.scope,
instruction->base.source_node, nullptr, casted_op);
result->value.type = int_type;
return result;
}
static IrInstruction *ir_analyze_instruction_enum_to_int(IrAnalyze *ira, IrInstructionEnumToInt *instruction) {
Error err;
@ -21453,6 +21558,8 @@ static IrInstruction *ir_analyze_instruction_nocast(IrAnalyze *ira, IrInstructio
return ir_analyze_instruction_sqrt(ira, (IrInstructionSqrt *)instruction);
case IrInstructionIdBswap:
return ir_analyze_instruction_bswap(ira, (IrInstructionBswap *)instruction);
case IrInstructionIdBitReverse:
return ir_analyze_instruction_bit_reverse(ira, (IrInstructionBitReverse *)instruction);
case IrInstructionIdIntToErr:
return ir_analyze_instruction_int_to_err(ira, (IrInstructionIntToErr *)instruction);
case IrInstructionIdErrToInt:
@ -21675,6 +21782,7 @@ bool ir_has_side_effects(IrInstruction *instruction) {
case IrInstructionIdPromiseResultType:
case IrInstructionIdSqrt:
case IrInstructionIdBswap:
case IrInstructionIdBitReverse:
case IrInstructionIdAtomicLoad:
case IrInstructionIdIntCast:
case IrInstructionIdFloatCast:

View File

@ -1335,6 +1335,18 @@ static void ir_print_bswap(IrPrint *irp, IrInstructionBswap *instruction) {
fprintf(irp->f, ")");
}
static void ir_print_bit_reverse(IrPrint *irp, IrInstructionBitReverse *instruction) {
fprintf(irp->f, "@bitreverse(");
if (instruction->type != nullptr) {
ir_print_other_instruction(irp, instruction->type);
} else {
fprintf(irp->f, "null");
}
fprintf(irp->f, ",");
ir_print_other_instruction(irp, instruction->op);
fprintf(irp->f, ")");
}
static void ir_print_instruction(IrPrint *irp, IrInstruction *instruction) {
ir_print_prefix(irp, instruction);
switch (instruction->id) {
@ -1751,6 +1763,9 @@ static void ir_print_instruction(IrPrint *irp, IrInstruction *instruction) {
case IrInstructionIdBswap:
ir_print_bswap(irp, (IrInstructionBswap *)instruction);
break;
case IrInstructionIdBitReverse:
ir_print_bit_reverse(irp, (IrInstructionBitReverse *)instruction);
break;
case IrInstructionIdAtomicLoad:
ir_print_atomic_load(irp, (IrInstructionAtomicLoad *)instruction);
break;

View File

@ -22,6 +22,8 @@ pub extern "c" fn openat(fd: c_int, path: ?[*]const u8, flags: c_int) c_int;
pub extern "c" fn setgid(ruid: c_uint, euid: c_uint) c_int;
pub extern "c" fn setuid(uid: c_uint) c_int;
pub extern "c" fn kill(pid: c_int, sig: c_int) c_int;
pub extern "c" fn clock_gettime(clk_id: c_int, tp: *timespec) c_int;
pub extern "c" fn clock_getres(clk_id: c_int, tp: *timespec) c_int;
/// Renamed from `kevent` to `Kevent` to avoid conflict with function name.
pub const Kevent = extern struct {
@ -91,3 +93,28 @@ pub const dirent = extern struct {
d_pad1: u16,
d_name: [256]u8,
};
pub const in_port_t = u16;
pub const sa_family_t = u16;
pub const sockaddr = extern union {
in: sockaddr_in,
in6: sockaddr_in6,
};
pub const sockaddr_in = extern struct {
len: u8,
family: sa_family_t,
port: in_port_t,
addr: [16]u8,
zero: [8]u8,
};
pub const sockaddr_in6 = extern struct {
len: u8,
family: sa_family_t,
port: in_port_t,
flowinfo: u32,
addr: [16]u8,
scope_id: u32,
};

View File

@ -26,6 +26,21 @@ pub const PROT_READ = 1;
pub const PROT_WRITE = 2;
pub const PROT_EXEC = 4;
pub const CLOCK_REALTIME = 0;
pub const CLOCK_VIRTUAL = 1;
pub const CLOCK_PROF = 2;
pub const CLOCK_MONOTONIC = 4;
pub const CLOCK_UPTIME = 5;
pub const CLOCK_UPTIME_PRECISE = 7;
pub const CLOCK_UPTIME_FAST = 8;
pub const CLOCK_REALTIME_PRECISE = 9;
pub const CLOCK_REALTIME_FAST = 10;
pub const CLOCK_MONOTONIC_PRECISE = 11;
pub const CLOCK_MONOTONIC_FAST = 12;
pub const CLOCK_SECOND = 13;
pub const CLOCK_THREAD_CPUTIME_ID = 14;
pub const CLOCK_PROCESS_CPUTIME_ID = 15;
pub const MAP_FAILED = maxInt(usize);
pub const MAP_SHARED = 0x0001;
pub const MAP_PRIVATE = 0x0002;
@ -510,6 +525,10 @@ pub const TIOCGPKT = 0x80045438;
pub const TIOCGPTLCK = 0x80045439;
pub const TIOCGEXCL = 0x80045440;
pub const sockaddr = c.sockaddr;
pub const sockaddr_in = c.sockaddr_in;
pub const sockaddr_in6 = c.sockaddr_in6;
fn unsigned(s: i32) u32 {
return @bitCast(u32, s);
}
@ -699,6 +718,14 @@ pub fn nanosleep(req: *const timespec, rem: ?*timespec) usize {
return errnoWrap(c.nanosleep(req, rem));
}
pub fn clock_gettime(clk_id: i32, tp: *timespec) usize {
return errnoWrap(c.clock_gettime(clk_id, tp));
}
pub fn clock_getres(clk_id: i32, tp: *timespec) usize {
return errnoWrap(c.clock_getres(clk_id, tp));
}
pub fn setuid(uid: u32) usize {
return errnoWrap(c.setuid(uid));
}

View File

@ -61,7 +61,7 @@ pub fn timestamp() u64 {
/// Get the posix timestamp, UTC, in milliseconds
pub const milliTimestamp = switch (builtin.os) {
Os.windows => milliTimestampWindows,
Os.linux => milliTimestampPosix,
Os.linux, Os.freebsd => milliTimestampPosix,
Os.macosx, Os.ios => milliTimestampDarwin,
else => @compileError("Unsupported OS"),
};
@ -179,7 +179,7 @@ pub const Timer = struct {
debug.assert(err != windows.FALSE);
self.start_time = @intCast(u64, start_time);
},
Os.linux => {
Os.linux, Os.freebsd => {
//On Linux, seccomp can do arbitrary things to our ability to call
// syscalls, including return any errno value it wants and
// inconsistently throwing errors. Since we can't account for
@ -215,7 +215,7 @@ pub const Timer = struct {
var clock = clockNative() - self.start_time;
return switch (builtin.os) {
Os.windows => @divFloor(clock * ns_per_s, self.frequency),
Os.linux => clock,
Os.linux, Os.freebsd => clock,
Os.macosx, Os.ios => @divFloor(clock * self.frequency.numer, self.frequency.denom),
else => @compileError("Unsupported OS"),
};
@ -236,7 +236,7 @@ pub const Timer = struct {
const clockNative = switch (builtin.os) {
Os.windows => clockWindows,
Os.linux => clockLinux,
Os.linux, Os.freebsd => clockLinux,
Os.macosx, Os.ios => clockDarwin,
else => @compileError("Unsupported OS"),
};

View File

@ -9,6 +9,7 @@ comptime {
_ = @import("cases/bitcast.zig");
_ = @import("cases/bool.zig");
_ = @import("cases/bswap.zig");
_ = @import("cases/bitreverse.zig");
_ = @import("cases/bugs/1076.zig");
_ = @import("cases/bugs/1111.zig");
_ = @import("cases/bugs/1277.zig");

81
test/cases/bitreverse.zig Normal file
View File

@ -0,0 +1,81 @@
const std = @import("std");
const assert = std.debug.assert;
const minInt = std.math.minInt;
test "@bitreverse" {
comptime testBitReverse();
testBitReverse();
}
fn testBitReverse() void {
// using comptime_ints, unsigned
assert(@bitreverse(u0, 0) == 0);
assert(@bitreverse(u5, 0x12) == 0x9);
assert(@bitreverse(u8, 0x12) == 0x48);
assert(@bitreverse(u16, 0x1234) == 0x2c48);
assert(@bitreverse(u24, 0x123456) == 0x6a2c48);
assert(@bitreverse(u32, 0x12345678) == 0x1e6a2c48);
assert(@bitreverse(u40, 0x123456789a) == 0x591e6a2c48);
assert(@bitreverse(u48, 0x123456789abc) == 0x3d591e6a2c48);
assert(@bitreverse(u56, 0x123456789abcde) == 0x7b3d591e6a2c48);
assert(@bitreverse(u64, 0x123456789abcdef1) == 0x8f7b3d591e6a2c48);
assert(@bitreverse(u128, 0x123456789abcdef11121314151617181) == 0x818e868a828c84888f7b3d591e6a2c48);
// using runtime uints, unsigned
var num0: u0 = 0;
assert(@bitreverse(u0, num0) == 0);
var num5: u5 = 0x12;
assert(@bitreverse(u5, num5) == 0x9);
var num8: u8 = 0x12;
assert(@bitreverse(u8, num8) == 0x48);
var num16: u16 = 0x1234;
assert(@bitreverse(u16, num16) == 0x2c48);
var num24: u24 = 0x123456;
assert(@bitreverse(u24, num24) == 0x6a2c48);
var num32: u32 = 0x12345678;
assert(@bitreverse(u32, num32) == 0x1e6a2c48);
var num40: u40 = 0x123456789a;
assert(@bitreverse(u40, num40) == 0x591e6a2c48);
var num48: u48 = 0x123456789abc;
assert(@bitreverse(u48, num48) == 0x3d591e6a2c48);
var num56: u56 = 0x123456789abcde;
assert(@bitreverse(u56, num56) == 0x7b3d591e6a2c48);
var num64: u64 = 0x123456789abcdef1;
assert(@bitreverse(u64, num64) == 0x8f7b3d591e6a2c48);
var num128: u128 = 0x123456789abcdef11121314151617181;
assert(@bitreverse(u128, num128) == 0x818e868a828c84888f7b3d591e6a2c48);
// using comptime_ints, signed, positive
assert(@bitreverse(i0, 0) == 0);
assert(@bitreverse(i8, @bitCast(i8, u8(0x92))) == @bitCast(i8, u8( 0x49)));
assert(@bitreverse(i16, @bitCast(i16, u16(0x1234))) == @bitCast(i16, u16( 0x2c48)));
assert(@bitreverse(i24, @bitCast(i24, u24(0x123456))) == @bitCast(i24, u24( 0x6a2c48)));
assert(@bitreverse(i32, @bitCast(i32, u32(0x12345678))) == @bitCast(i32, u32( 0x1e6a2c48)));
assert(@bitreverse(i40, @bitCast(i40, u40(0x123456789a))) == @bitCast(i40, u40( 0x591e6a2c48)));
assert(@bitreverse(i48, @bitCast(i48, u48(0x123456789abc))) == @bitCast(i48, u48( 0x3d591e6a2c48)));
assert(@bitreverse(i56, @bitCast(i56, u56(0x123456789abcde))) == @bitCast(i56, u56( 0x7b3d591e6a2c48)));
assert(@bitreverse(i64, @bitCast(i64, u64(0x123456789abcdef1))) == @bitCast(i64,u64(0x8f7b3d591e6a2c48)));
assert(@bitreverse(i128, @bitCast(i128,u128(0x123456789abcdef11121314151617181))) == @bitCast(i128,u128(0x818e868a828c84888f7b3d591e6a2c48)));
// using comptime_ints, signed, negative. Compare to runtime ints returned from llvm.
var neg5: i5 = minInt(i5) + 1;
assert(@bitreverse(i5, minInt(i5) + 1) == @bitreverse(i5, neg5));
var neg8: i8 = -18;
assert(@bitreverse(i8, -18) == @bitreverse(i8, neg8));
var neg16: i16 = -32694;
assert(@bitreverse(i16, -32694) == @bitreverse(i16, neg16));
var neg24: i24 = -6773785;
assert(@bitreverse(i24, -6773785) == @bitreverse(i24, neg24));
var neg32: i32 = -16773785;
assert(@bitreverse(i32, -16773785) == @bitreverse(i32, neg32));
var neg40: i40 = minInt(i40) + 12345;
assert(@bitreverse(i40, minInt(i40) + 12345) == @bitreverse(i40, neg40));
var neg48: i48 = minInt(i48) + 12345;
assert(@bitreverse(i48, minInt(i48) + 12345) == @bitreverse(i48, neg48));
var neg56: i56 = minInt(i56) + 12345;
assert(@bitreverse(i56, minInt(i56) + 12345) == @bitreverse(i56, neg56));
var neg64: i64 = minInt(i64) + 12345;
assert(@bitreverse(i64, minInt(i64) + 12345) == @bitreverse(i64, neg64));
var neg128: i128 = minInt(i128) + 12345;
assert(@bitreverse(i128, minInt(i128) + 12345) == @bitreverse(i128, neg128));
}

View File

@ -11,3 +11,17 @@ fn randomAddressToFunction() void {
var addr: usize = 0xdeadbeef;
var ptr = @intToPtr(fn () void, addr);
}
test "mutate through ptr initialized with constant intToPtr value" {
forceCompilerAnalyzeBranchHardCodedPtrDereference(false);
}
fn forceCompilerAnalyzeBranchHardCodedPtrDereference(x: bool) void {
const hardCodedP = @intToPtr(*volatile u8, 0xdeadbeef);
if (x) {
hardCodedP.* = hardCodedP.* | 10;
} else {
return;
}
}

View File

@ -34,3 +34,19 @@ fn testReinterpretBytesAsExternStruct() void {
var val = ptr.c;
assertOrPanic(val == 5);
}
test "reinterpret struct field at comptime" {
const numLittle = comptime Bytes.init(0x12345678);
assertOrPanic(std.mem.eql(u8, []u8{ 0x78, 0x56, 0x34, 0x12 }, numLittle.bytes));
}
const Bytes = struct {
bytes: [4]u8,
pub fn init(v: u32) Bytes {
var res: Bytes = undefined;
@ptrCast(*align(1) u32, &res.bytes).* = v;
return res;
}
};