zig/std/special/compiler_rt/truncXfYf2.zig

118 lines
4.8 KiB
Zig
Raw Normal View History

const std = @import("std");
pub extern fn __truncsfhf2(a: f32) u16 {
return @bitCast(u16, truncXfYf2(f16, f32, a));
}
pub extern fn __trunctfsf2(a: f128) f32 {
return truncXfYf2(f32, f128, a);
}
pub extern fn __trunctfdf2(a: f128) f64 {
return truncXfYf2(f64, f128, a);
}
inline fn truncXfYf2(comptime dst_t: type, comptime src_t: type, a: src_t) dst_t {
const src_rep_t = @IntType(false, @typeInfo(src_t).Float.bits);
const dst_rep_t = @IntType(false, @typeInfo(dst_t).Float.bits);
const srcSigBits = std.math.floatMantissaBits(src_t);
const dstSigBits = std.math.floatMantissaBits(dst_t);
const SrcShift = std.math.Log2Int(src_rep_t);
const DstShift = std.math.Log2Int(dst_rep_t);
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const srcBits = src_t.bit_count;
const srcExpBits = srcBits - srcSigBits - 1;
const srcInfExp = (1 << srcExpBits) - 1;
const srcExpBias = srcInfExp >> 1;
const srcMinNormal = 1 << srcSigBits;
const srcSignificandMask = srcMinNormal - 1;
const srcInfinity = srcInfExp << srcSigBits;
const srcSignMask = 1 << (srcSigBits + srcExpBits);
const srcAbsMask = srcSignMask - 1;
const roundMask = (1 << (srcSigBits - dstSigBits)) - 1;
const halfway = 1 << (srcSigBits - dstSigBits - 1);
const srcQNaN = 1 << (srcSigBits - 1);
const srcNaNCode = srcQNaN - 1;
const dstBits = dst_t.bit_count;
const dstExpBits = dstBits - dstSigBits - 1;
const dstInfExp = (1 << dstExpBits) - 1;
const dstExpBias = dstInfExp >> 1;
const underflowExponent = srcExpBias + 1 - dstExpBias;
const overflowExponent = srcExpBias + dstInfExp - dstExpBias;
const underflow = underflowExponent << srcSigBits;
const overflow = overflowExponent << srcSigBits;
const dstQNaN = 1 << (dstSigBits - 1);
const dstNaNCode = dstQNaN - 1;
// Break a into a sign and representation of the absolute value
const aRep: src_rep_t = @bitCast(src_rep_t, a);
const aAbs: src_rep_t = aRep & srcAbsMask;
const sign: src_rep_t = aRep & srcSignMask;
var absResult: dst_rep_t = undefined;
if (aAbs -% underflow < aAbs -% overflow) {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
absResult = @truncate(dst_rep_t, aAbs >> (srcSigBits - dstSigBits));
absResult -%= dst_rep_t(srcExpBias - dstExpBias) << dstSigBits;
const roundBits: src_rep_t = aAbs & roundMask;
if (roundBits > halfway) {
// Round to nearest
absResult += 1;
} else if (roundBits == halfway) {
// Ties to even
absResult += absResult & 1;
}
} else if (aAbs > srcInfinity) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
absResult = @intCast(dst_rep_t, dstInfExp) << dstSigBits;
absResult |= dstQNaN;
absResult |= @intCast(dst_rep_t, ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode);
} else if (aAbs >= overflow) {
// a overflows to infinity.
absResult = @intCast(dst_rep_t, dstInfExp) << dstSigBits;
} else {
// a underflows on conversion to the destination type or is an exact
// zero. The result may be a denormal or zero. Extract the exponent
// to get the shift amount for the denormalization.
const aExp = @intCast(u32, aAbs >> srcSigBits);
const shift = @intCast(u32, srcExpBias - dstExpBias - aExp + 1);
const significand: src_rep_t = (aRep & srcSignificandMask) | srcMinNormal;
// Right shift by the denormalization amount with sticky.
if (shift > srcSigBits) {
absResult = 0;
} else {
const sticky: src_rep_t = significand << @intCast(SrcShift, srcBits - shift);
const denormalizedSignificand: src_rep_t = significand >> @intCast(SrcShift, shift) | sticky;
absResult = @intCast(dst_rep_t, denormalizedSignificand >> (srcSigBits - dstSigBits));
const roundBits: src_rep_t = denormalizedSignificand & roundMask;
if (roundBits > halfway) {
// Round to nearest
absResult += 1;
} else if (roundBits == halfway) {
// Ties to even
absResult += absResult & 1;
}
}
}
const result: dst_rep_t align(@alignOf(dst_t)) = absResult | @truncate(dst_rep_t, sign >> @intCast(SrcShift, srcBits - dstBits));
return @bitCast(dst_t, result);
}
test "import truncXfYf2" {
_ = @import("truncXfYf2_test.zig");
}