zig/lib/std/heap.zig

927 lines
36 KiB
Zig
Raw Normal View History

2019-03-02 13:46:04 -08:00
const std = @import("std.zig");
const root = @import("root");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const os = std.os;
const builtin = @import("builtin");
const c = std.c;
const maxInt = std.math.maxInt;
pub const LoggingAllocator = @import("heap/logging_allocator.zig").LoggingAllocator;
pub const loggingAllocator = @import("heap/logging_allocator.zig").loggingAllocator;
rework self-hosted compiler for incremental builds * introduce std.ArrayListUnmanaged for when you have the allocator stored elsewhere * move std.heap.ArenaAllocator implementation to its own file. extract the main state into std.heap.ArenaAllocator.State, which can be stored as an alternative to storing the entire ArenaAllocator, saving 24 bytes per ArenaAllocator on 64 bit targets. * std.LinkedList.Node pointer field now defaults to being null initialized. * Rework self-hosted compiler Package API * Delete almost all the bitrotted self-hosted compiler code. The only bit rotted code left is in main.zig and compilation.zig * Add call instruction to ZIR * self-hosted compiler ir API and link API are reworked to support a long-running compiler that incrementally updates declarations * Introduce the concept of scopes to ZIR semantic analysis * ZIR text format supports referencing named decls that are declared later in the file * Figure out how memory management works for the long-running compiler and incremental compilation. The main roots are top level declarations. There is a table of decls. The key is a cryptographic hash of the fully qualified decl name. Each decl has an arena allocator where all of the memory related to that decl is stored. Each code block has its own arena allocator for the lifetime of the block. Values that want to survive when going out of scope in a block must get copied into the outer block. Finally, values must get copied into the Decl arena to be long-lived. * Delete the unused MemoryCell struct. Instead, comptime pointers are based on references to Decl structs. * Figure out how caching works. Each Decl will store a set of other Decls which must be recompiled when it changes. This branch is still work-in-progress; this commit breaks the build.
2020-05-09 23:05:54 -07:00
pub const ArenaAllocator = @import("heap/arena_allocator.zig").ArenaAllocator;
const Allocator = mem.Allocator;
2020-04-17 13:15:36 -07:00
usingnamespace if (comptime @hasDecl(c, "malloc_size")) struct {
pub const supports_malloc_size = true;
pub const malloc_size = c.malloc_size;
} else if (comptime @hasDecl(c, "malloc_usable_size")) struct {
pub const supports_malloc_size = true;
pub const malloc_size = c.malloc_usable_size;
} else struct {
pub const supports_malloc_size = false;
};
pub const c_allocator = &c_allocator_state;
var c_allocator_state = Allocator{
2020-04-17 13:15:36 -07:00
.allocFn = cAlloc,
.resizeFn = cResize,
};
2020-04-17 13:15:36 -07:00
fn cAlloc(self: *Allocator, len: usize, ptr_align: u29, len_align: u29) Allocator.Error![]u8 {
assert(ptr_align <= @alignOf(c_longdouble));
const ptr = @ptrCast([*]u8, c.malloc(len) orelse return error.OutOfMemory);
if (len_align == 0) {
return ptr[0..len];
}
const full_len = init: {
if (supports_malloc_size) {
2020-04-17 13:15:36 -07:00
const s = malloc_size(ptr);
assert(s >= len);
break :init s;
}
break :init len;
};
return ptr[0..mem.alignBackwardAnyAlign(full_len, len_align)];
}
2020-04-17 13:15:36 -07:00
fn cResize(self: *Allocator, buf: []u8, new_len: usize, len_align: u29) Allocator.Error!usize {
if (new_len == 0) {
c.free(buf.ptr);
return 0;
}
if (new_len <= buf.len) {
return mem.alignAllocLen(buf.len, new_len, len_align);
}
if (supports_malloc_size) {
2020-04-17 13:15:36 -07:00
const full_len = malloc_size(buf.ptr);
if (new_len <= full_len) {
return mem.alignAllocLen(full_len, new_len, len_align);
}
}
return error.OutOfMemory;
}
/// This allocator makes a syscall directly for every allocation and free.
/// Thread-safe and lock-free.
pub const page_allocator = if (std.Target.current.isWasm())
&wasm_page_allocator_state
else if (std.Target.current.os.tag == .freestanding)
root.os.heap.page_allocator
else
&page_allocator_state;
var page_allocator_state = Allocator{
2020-04-17 13:15:36 -07:00
.allocFn = PageAllocator.alloc,
.resizeFn = PageAllocator.resize,
};
var wasm_page_allocator_state = Allocator{
2020-04-17 13:15:36 -07:00
.allocFn = WasmPageAllocator.alloc,
.resizeFn = WasmPageAllocator.resize,
};
pub const direct_allocator = @compileError("deprecated; use std.heap.page_allocator");
2020-04-17 13:15:36 -07:00
/// Verifies that the adjusted length will still map to the full length
pub fn alignPageAllocLen(full_len: usize, len: usize, len_align: u29) usize {
const aligned_len = mem.alignAllocLen(full_len, len, len_align);
assert(mem.alignForward(aligned_len, mem.page_size) == full_len);
return aligned_len;
}
const PageAllocator = struct {
2020-04-17 13:15:36 -07:00
fn alloc(allocator: *Allocator, n: usize, alignment: u29, len_align: u29) error{OutOfMemory}![]u8 {
assert(n > 0);
const alignedLen = mem.alignForward(n, mem.page_size);
if (builtin.os.tag == .windows) {
2019-05-25 10:07:44 -07:00
const w = os.windows;
// Although officially it's at least aligned to page boundary,
// Windows is known to reserve pages on a 64K boundary. It's
// even more likely that the requested alignment is <= 64K than
// 4K, so we're just allocating blindly and hoping for the best.
// see https://devblogs.microsoft.com/oldnewthing/?p=42223
const addr = w.VirtualAlloc(
null,
2020-04-17 13:15:36 -07:00
alignedLen,
2019-05-25 10:07:44 -07:00
w.MEM_COMMIT | w.MEM_RESERVE,
w.PAGE_READWRITE,
) catch return error.OutOfMemory;
// If the allocation is sufficiently aligned, use it.
if (@ptrToInt(addr) & (alignment - 1) == 0) {
2020-04-17 13:15:36 -07:00
return @ptrCast([*]u8, addr)[0..alignPageAllocLen(alignedLen, n, len_align)];
2019-05-25 10:07:44 -07:00
}
// If it wasn't, actually do an explicitely aligned allocation.
w.VirtualFree(addr, 0, w.MEM_RELEASE);
2020-04-17 13:15:36 -07:00
const alloc_size = n + alignment - mem.page_size;
2019-05-25 10:07:44 -07:00
2020-04-17 13:15:36 -07:00
while (true) {
2019-05-25 10:07:44 -07:00
// Reserve a range of memory large enough to find a sufficiently
// aligned address.
const reserved_addr = w.VirtualAlloc(
null,
2019-05-25 10:07:44 -07:00
alloc_size,
w.MEM_RESERVE,
w.PAGE_NOACCESS,
) catch return error.OutOfMemory;
const aligned_addr = mem.alignForward(@ptrToInt(reserved_addr), alignment);
// Release the reserved pages (not actually used).
w.VirtualFree(reserved_addr, 0, w.MEM_RELEASE);
// At this point, it is possible that another thread has
// obtained some memory space that will cause the next
// VirtualAlloc call to fail. To handle this, we will retry
// until it succeeds.
2019-05-26 21:48:56 -07:00
const ptr = w.VirtualAlloc(
2019-05-25 10:07:44 -07:00
@intToPtr(*c_void, aligned_addr),
2020-04-17 13:15:36 -07:00
alignedLen,
w.MEM_COMMIT | w.MEM_RESERVE,
w.PAGE_READWRITE,
2019-05-25 10:07:44 -07:00
) catch continue;
2019-05-26 21:48:56 -07:00
2020-04-17 13:15:36 -07:00
return @ptrCast([*]u8, ptr)[0..alignPageAllocLen(alignedLen, n, len_align)];
}
2019-05-25 10:07:44 -07:00
}
2020-04-17 13:15:36 -07:00
const maxDropLen = alignment - std.math.min(alignment, mem.page_size);
const allocLen = if (maxDropLen <= alignedLen - n) alignedLen
else mem.alignForward(alignedLen + maxDropLen, mem.page_size);
2019-05-26 16:56:37 -07:00
const slice = os.mmap(
2019-05-25 10:07:44 -07:00
null,
2020-04-17 13:15:36 -07:00
allocLen,
2019-05-25 10:07:44 -07:00
os.PROT_READ | os.PROT_WRITE,
os.MAP_PRIVATE | os.MAP_ANONYMOUS,
-1,
0,
) catch return error.OutOfMemory;
2020-04-17 13:15:36 -07:00
assert(mem.isAligned(@ptrToInt(slice.ptr), mem.page_size));
2019-05-25 10:07:44 -07:00
2019-05-26 16:56:37 -07:00
const aligned_addr = mem.alignForward(@ptrToInt(slice.ptr), alignment);
2019-05-25 10:07:44 -07:00
// Unmap the extra bytes that were only requested in order to guarantee
// that the range of memory we were provided had a proper alignment in
// it somewhere. The extra bytes could be at the beginning, or end, or both.
2020-04-17 13:15:36 -07:00
const dropLen = aligned_addr - @ptrToInt(slice.ptr);
if (dropLen != 0) {
os.munmap(slice[0..dropLen]);
2019-05-25 10:07:44 -07:00
}
2020-04-17 13:15:36 -07:00
// Unmap extra pages
const alignedBufferLen = allocLen - dropLen;
if (alignedBufferLen > alignedLen) {
os.munmap(@alignCast(mem.page_size, @intToPtr([*]u8, aligned_addr))[alignedLen..alignedBufferLen]);
}
2019-05-25 10:07:44 -07:00
2020-04-17 13:15:36 -07:00
return @intToPtr([*]u8, aligned_addr)[0..alignPageAllocLen(alignedLen, n, len_align)];
}
2020-04-17 13:15:36 -07:00
fn resize(allocator: *Allocator, buf_unaligned: []u8, new_size: usize, len_align: u29) Allocator.Error!usize {
const new_size_aligned = mem.alignForward(new_size, mem.page_size);
if (builtin.os.tag == .windows) {
2019-05-25 10:07:44 -07:00
const w = os.windows;
if (new_size == 0) {
// From the docs:
// "If the dwFreeType parameter is MEM_RELEASE, this parameter
// must be 0 (zero). The function frees the entire region that
// is reserved in the initial allocation call to VirtualAlloc."
// So we can only use MEM_RELEASE when actually releasing the
// whole allocation.
2020-04-17 13:15:36 -07:00
w.VirtualFree(buf_unaligned.ptr, 0, w.MEM_RELEASE);
return 0;
}
if (new_size < buf_unaligned.len) {
const base_addr = @ptrToInt(buf_unaligned.ptr);
const old_addr_end = base_addr + buf_unaligned.len;
const new_addr_end = mem.alignForward(base_addr + new_size, mem.page_size);
if (old_addr_end > new_addr_end) {
2019-05-25 10:07:44 -07:00
// For shrinking that is not releasing, we will only
// decommit the pages not needed anymore.
w.VirtualFree(
2020-04-17 13:15:36 -07:00
@intToPtr(*c_void, new_addr_end),
old_addr_end - new_addr_end,
2019-05-25 10:07:44 -07:00
w.MEM_DECOMMIT,
);
}
2020-04-17 13:15:36 -07:00
return alignPageAllocLen(new_size_aligned, new_size, len_align);
2019-05-25 10:07:44 -07:00
}
2020-04-17 13:15:36 -07:00
if (new_size == buf_unaligned.len) {
return alignPageAllocLen(new_size_aligned, new_size, len_align);
2019-05-25 10:07:44 -07:00
}
2020-04-17 13:15:36 -07:00
// new_size > buf_unaligned.len not implemented
return error.OutOfMemory;
}
2019-05-25 10:07:44 -07:00
2020-04-17 13:15:36 -07:00
const buf_aligned_len = mem.alignForward(buf_unaligned.len, mem.page_size);
if (new_size_aligned == buf_aligned_len)
return alignPageAllocLen(new_size_aligned, new_size, len_align);
2019-05-25 10:07:44 -07:00
2020-04-17 13:15:36 -07:00
if (new_size_aligned < buf_aligned_len) {
const ptr = @intToPtr([*]align(mem.page_size) u8, @ptrToInt(buf_unaligned.ptr) + new_size_aligned);
os.munmap(ptr[0 .. buf_aligned_len - new_size_aligned]);
if (new_size_aligned == 0)
return 0;
return alignPageAllocLen(new_size_aligned, new_size, len_align);
}
2020-04-17 13:15:36 -07:00
// TODO: call mremap
return error.OutOfMemory;
}
};
const WasmPageAllocator = struct {
comptime {
2019-12-06 14:03:15 -08:00
if (!std.Target.current.isWasm()) {
@compileError("WasmPageAllocator is only available for wasm32 arch");
}
}
2019-12-05 15:59:43 -08:00
const PageStatus = enum(u1) {
used = 0,
free = 1,
2019-12-05 19:54:57 -08:00
pub const none_free: u8 = 0;
2019-12-05 15:59:43 -08:00
};
2019-11-27 16:46:42 -08:00
const FreeBlock = struct {
2019-12-05 16:28:32 -08:00
data: []u128,
2019-12-04 19:41:01 -08:00
const Io = std.packed_int_array.PackedIntIo(u1, .Little);
2019-11-27 19:19:08 -08:00
fn totalPages(self: FreeBlock) usize {
2019-12-05 19:54:57 -08:00
return self.data.len * 128;
}
fn isInitialized(self: FreeBlock) bool {
return self.data.len > 0;
2019-12-04 19:21:54 -08:00
}
2019-12-05 16:28:32 -08:00
fn getBit(self: FreeBlock, idx: usize) PageStatus {
2019-12-04 19:41:01 -08:00
const bit_offset = 0;
return @intToEnum(PageStatus, Io.get(mem.sliceAsBytes(self.data), idx, bit_offset));
2019-11-27 19:19:08 -08:00
}
2019-12-05 16:28:32 -08:00
fn setBits(self: FreeBlock, start_idx: usize, len: usize, val: PageStatus) void {
2019-12-04 19:41:01 -08:00
const bit_offset = 0;
2019-12-03 15:41:05 -08:00
var i: usize = 0;
while (i < len) : (i += 1) {
Io.set(mem.sliceAsBytes(self.data), start_idx + i, bit_offset, @enumToInt(val));
}
2019-12-03 15:41:05 -08:00
}
2019-12-04 16:12:25 -08:00
// Use '0xFFFFFFFF' as a _missing_ sentinel
// This saves ~50 bytes compared to returning a nullable
// We can guarantee that conventional memory never gets this big,
2019-12-04 19:21:54 -08:00
// and wasm32 would not be able to address this memory (32 GB > usize).
2019-12-04 16:12:25 -08:00
// Revisit if this is settled: https://github.com/ziglang/zig/issues/3806
const not_found = std.math.maxInt(usize);
2019-12-05 16:28:32 -08:00
fn useRecycled(self: FreeBlock, num_pages: usize) usize {
2019-12-03 21:49:56 -08:00
@setCold(true);
2019-12-05 16:28:32 -08:00
for (self.data) |segment, i| {
2019-12-03 15:24:50 -08:00
const spills_into_next = @bitCast(i128, segment) < 0;
const has_enough_bits = @popCount(u128, segment) >= num_pages;
if (!spills_into_next and !has_enough_bits) continue;
2019-11-27 20:02:54 -08:00
2019-12-03 15:24:50 -08:00
var j: usize = i * 128;
2019-12-03 21:49:56 -08:00
while (j < (i + 1) * 128) : (j += 1) {
var count: usize = 0;
2019-12-05 15:59:43 -08:00
while (j + count < self.totalPages() and self.getBit(j + count) == .free) {
2019-12-03 21:49:56 -08:00
count += 1;
if (count >= num_pages) {
2019-12-05 15:59:43 -08:00
self.setBits(j, num_pages, .used);
2019-12-04 16:12:25 -08:00
return j;
2019-12-02 10:26:14 -08:00
}
2019-11-27 20:02:54 -08:00
}
2019-12-03 21:49:56 -08:00
j += count;
2019-11-27 20:02:54 -08:00
}
}
2019-12-04 16:12:25 -08:00
return not_found;
}
2019-12-05 16:28:32 -08:00
fn recycle(self: FreeBlock, start_idx: usize, len: usize) void {
2019-12-05 15:59:43 -08:00
self.setBits(start_idx, len, .free);
}
2019-11-27 16:46:42 -08:00
};
2019-12-05 19:54:57 -08:00
var _conventional_data = [_]u128{0} ** 16;
// Marking `conventional` as const saves ~40 bytes
const conventional = FreeBlock{ .data = &_conventional_data };
2019-12-05 16:28:32 -08:00
var extended = FreeBlock{ .data = &[_]u128{} };
2019-12-04 16:12:25 -08:00
fn extendedOffset() usize {
return conventional.totalPages();
}
2019-11-27 16:46:42 -08:00
fn nPages(memsize: usize) usize {
2020-04-17 13:15:36 -07:00
return mem.alignForward(memsize, mem.page_size) / mem.page_size;
}
2020-04-17 13:15:36 -07:00
fn alloc(allocator: *Allocator, len: usize, alignment: u29, len_align: u29) error{OutOfMemory}![]u8 {
const page_count = nPages(len);
const page_idx = try allocPages(page_count);
return @intToPtr([*]u8, page_idx * mem.page_size)
[0..alignPageAllocLen(page_count * mem.page_size, len, len_align)];
}
fn allocPages(page_count: usize) !usize {
{
const idx = conventional.useRecycled(page_count);
if (idx != FreeBlock.not_found) {
return idx;
}
}
2020-04-17 13:15:36 -07:00
const idx = extended.useRecycled(page_count);
2019-12-04 16:12:25 -08:00
if (idx != FreeBlock.not_found) {
return idx + extendedOffset();
}
2020-06-02 05:08:58 -07:00
const prev_page_count = @wasmMemoryGrow(0, @intCast(u32, page_count));
2019-12-04 16:12:25 -08:00
if (prev_page_count <= 0) {
return error.OutOfMemory;
}
2019-12-04 16:12:25 -08:00
return @intCast(usize, prev_page_count);
}
2020-04-17 13:15:36 -07:00
fn freePages(start: usize, end: usize) void {
if (start < extendedOffset()) {
conventional.recycle(start, std.math.min(extendedOffset(), end) - start);
2019-12-02 10:26:14 -08:00
}
2020-04-17 13:15:36 -07:00
if (end > extendedOffset()) {
var new_end = end;
if (!extended.isInitialized()) {
// Steal the last page from the memory currently being recycled
// TODO: would it be better if we use the first page instead?
new_end -= 1;
extended.data = @intToPtr([*]u128, new_end * mem.page_size)[0 .. mem.page_size / @sizeOf(u128)];
// Since this is the first page being freed and we consume it, assume *nothing* is free.
mem.set(u128, extended.data, PageStatus.none_free);
}
const clamped_start = std.math.max(extendedOffset(), start);
extended.recycle(clamped_start - extendedOffset(), new_end - clamped_start);
}
}
2020-04-17 13:15:36 -07:00
fn resize(allocator: *Allocator, buf: []u8, new_len: usize, len_align: u29) error{OutOfMemory}!usize {
const aligned_len = mem.alignForward(buf.len, mem.page_size);
if (new_len > aligned_len) return error.OutOfMemory;
const current_n = nPages(aligned_len);
const new_n = nPages(new_len);
if (new_n != current_n) {
const base = nPages(@ptrToInt(buf.ptr));
freePages(base + new_n, base + current_n);
2019-11-27 16:46:42 -08:00
}
2020-04-17 13:15:36 -07:00
return if (new_len == 0) 0 else alignPageAllocLen(new_n * mem.page_size, new_len, len_align);
}
};
pub const HeapAllocator = switch (builtin.os.tag) {
.windows => struct {
allocator: Allocator,
heap_handle: ?HeapHandle,
const HeapHandle = os.windows.HANDLE;
pub fn init() HeapAllocator {
return HeapAllocator{
.allocator = Allocator{
2020-04-17 13:15:36 -07:00
.allocFn = alloc,
.resizeFn = resize,
},
.heap_handle = null,
};
}
pub fn deinit(self: *HeapAllocator) void {
if (self.heap_handle) |heap_handle| {
2019-05-26 22:35:58 -07:00
os.windows.HeapDestroy(heap_handle);
}
}
2020-04-17 13:15:36 -07:00
fn getRecordPtr(buf: []u8) *align(1) usize {
return @intToPtr(*align(1) usize, @ptrToInt(buf.ptr) + buf.len);
}
fn alloc(allocator: *Allocator, n: usize, ptr_align: u29, len_align: u29) error{OutOfMemory}![]u8 {
const self = @fieldParentPtr(HeapAllocator, "allocator", allocator);
2020-04-17 13:15:36 -07:00
const amt = n + ptr_align - 1 + @sizeOf(usize);
const optional_heap_handle = @atomicLoad(?HeapHandle, &self.heap_handle, builtin.AtomicOrder.SeqCst);
const heap_handle = optional_heap_handle orelse blk: {
const options = if (builtin.single_threaded) os.windows.HEAP_NO_SERIALIZE else 0;
2019-05-26 22:35:58 -07:00
const hh = os.windows.kernel32.HeapCreate(options, amt, 0) orelse return error.OutOfMemory;
const other_hh = @cmpxchgStrong(?HeapHandle, &self.heap_handle, null, hh, builtin.AtomicOrder.SeqCst, builtin.AtomicOrder.SeqCst) orelse break :blk hh;
2019-05-26 22:35:58 -07:00
os.windows.HeapDestroy(hh);
break :blk other_hh.?; // can't be null because of the cmpxchg
};
2019-05-26 22:35:58 -07:00
const ptr = os.windows.kernel32.HeapAlloc(heap_handle, 0, amt) orelse return error.OutOfMemory;
const root_addr = @ptrToInt(ptr);
2020-04-17 13:15:36 -07:00
const aligned_addr = mem.alignForward(root_addr, ptr_align);
const return_len = init: {
if (len_align == 0) break :init n;
const full_len = os.windows.kernel32.HeapSize(heap_handle, 0, ptr);
assert(full_len != std.math.maxInt(usize));
assert(full_len >= amt);
break :init mem.alignBackwardAnyAlign(full_len - (aligned_addr - root_addr), len_align);
};
2020-04-17 13:15:36 -07:00
const buf = @intToPtr([*]u8, aligned_addr)[0..return_len];
getRecordPtr(buf).* = root_addr;
return buf;
}
2020-04-17 13:15:36 -07:00
fn resize(allocator: *Allocator, buf: []u8, new_size: usize, len_align: u29) error{OutOfMemory}!usize {
const self = @fieldParentPtr(HeapAllocator, "allocator", allocator);
if (new_size == 0) {
2020-04-17 13:15:36 -07:00
os.windows.HeapFree(self.heap_handle.?, 0, @intToPtr(*c_void ,getRecordPtr(buf).*));
return 0;
}
2020-04-17 13:15:36 -07:00
const root_addr = getRecordPtr(buf).*;
const align_offset = @ptrToInt(buf.ptr) - root_addr;
const amt = align_offset + new_size + @sizeOf(usize);
2019-05-26 22:35:58 -07:00
const new_ptr = os.windows.kernel32.HeapReAlloc(
self.heap_handle.?,
2020-04-17 13:15:36 -07:00
os.windows.HEAP_REALLOC_IN_PLACE_ONLY,
@intToPtr(*c_void, root_addr),
amt,
) orelse return error.OutOfMemory;
2020-04-17 13:15:36 -07:00
assert(new_ptr == @intToPtr(*c_void, root_addr));
const return_len = init: {
if (len_align == 0) break :init new_size;
const full_len = os.windows.kernel32.HeapSize(self.heap_handle.?, 0, new_ptr);
assert(full_len != std.math.maxInt(usize));
assert(full_len >= amt);
break :init mem.alignBackwardAnyAlign(full_len - align_offset, len_align);
};
getRecordPtr(buf.ptr[0..return_len]).* = root_addr;
return return_len;
}
},
else => @compileError("Unsupported OS"),
};
2020-04-17 13:15:36 -07:00
fn sliceContainsPtr(container: []u8, ptr: [*]u8) bool {
return @ptrToInt(ptr) >= @ptrToInt(container.ptr) and
@ptrToInt(ptr) < (@ptrToInt(container.ptr) + container.len);
}
fn sliceContainsSlice(container: []u8, slice: []u8) bool {
return @ptrToInt(slice.ptr) >= @ptrToInt(container.ptr) and
(@ptrToInt(slice.ptr) + slice.len) <= (@ptrToInt(container.ptr) + container.len);
}
pub const FixedBufferAllocator = struct {
allocator: Allocator,
end_index: usize,
buffer: []u8,
pub fn init(buffer: []u8) FixedBufferAllocator {
return FixedBufferAllocator{
.allocator = Allocator{
2020-04-17 13:15:36 -07:00
.allocFn = alloc,
.resizeFn = resize,
},
.buffer = buffer,
.end_index = 0,
};
2017-11-05 09:27:56 -08:00
}
2020-04-17 13:15:36 -07:00
pub fn ownsPtr(self: *FixedBufferAllocator, ptr: [*]u8) bool {
return sliceContainsPtr(self.buffer, ptr);
}
pub fn ownsSlice(self: *FixedBufferAllocator, slice: []u8) bool {
return sliceContainsSlice(self.buffer, slice);
}
/// NOTE: this will not work in all cases, if the last allocation had an adjusted_index
/// then we won't be able to determine what the last allocation was. This is because
/// the alignForward operation done in alloc is not reverisible.
2020-04-17 13:15:36 -07:00
pub fn isLastAllocation(self: *FixedBufferAllocator, buf: []u8) bool {
return buf.ptr + buf.len == self.buffer.ptr + self.end_index;
}
fn alloc(allocator: *Allocator, n: usize, ptr_align: u29, len_align: u29) ![]u8 {
const self = @fieldParentPtr(FixedBufferAllocator, "allocator", allocator);
2020-04-17 13:15:36 -07:00
const aligned_addr = mem.alignForward(@ptrToInt(self.buffer.ptr) + self.end_index, ptr_align);
const adjusted_index = aligned_addr - @ptrToInt(self.buffer.ptr);
const new_end_index = adjusted_index + n;
if (new_end_index > self.buffer.len) {
return error.OutOfMemory;
}
const result = self.buffer[adjusted_index..new_end_index];
self.end_index = new_end_index;
return result;
}
2020-04-17 13:15:36 -07:00
fn resize(allocator: *Allocator, buf: []u8, new_size: usize, len_align: u29) Allocator.Error!usize {
const self = @fieldParentPtr(FixedBufferAllocator, "allocator", allocator);
2020-04-17 13:15:36 -07:00
assert(self.ownsSlice(buf)); // sanity check
if (!self.isLastAllocation(buf)) {
if (new_size > buf.len)
return error.OutOfMemory;
return if (new_size == 0) 0 else mem.alignAllocLen(buf.len, new_size, len_align);
}
2020-04-17 13:15:36 -07:00
if (new_size <= buf.len) {
const sub = buf.len - new_size;
self.end_index -= sub;
return if (new_size == 0) 0 else mem.alignAllocLen(buf.len - sub, new_size, len_align);
}
const add = new_size - buf.len;
2020-04-17 13:15:36 -07:00
if (add + self.end_index > self.buffer.len) {
return error.OutOfMemory;
}
self.end_index += add;
return new_size;
}
2019-09-15 18:35:01 -07:00
2019-09-21 08:42:26 -07:00
pub fn reset(self: *FixedBufferAllocator) void {
2019-09-15 18:35:01 -07:00
self.end_index = 0;
}
};
pub const ThreadSafeFixedBufferAllocator = blk: {
if (builtin.single_threaded) {
break :blk FixedBufferAllocator;
} else {
// lock free
break :blk struct {
allocator: Allocator,
end_index: usize,
buffer: []u8,
pub fn init(buffer: []u8) ThreadSafeFixedBufferAllocator {
return ThreadSafeFixedBufferAllocator{
.allocator = Allocator{
2020-04-17 13:15:36 -07:00
.allocFn = alloc,
.resizeFn = Allocator.noResize,
},
.buffer = buffer,
.end_index = 0,
};
}
2018-04-28 14:53:06 -07:00
2020-04-17 13:15:36 -07:00
fn alloc(allocator: *Allocator, n: usize, ptr_align: u29, len_align: u29) ![]u8 {
const self = @fieldParentPtr(ThreadSafeFixedBufferAllocator, "allocator", allocator);
var end_index = @atomicLoad(usize, &self.end_index, builtin.AtomicOrder.SeqCst);
while (true) {
const addr = @ptrToInt(self.buffer.ptr) + end_index;
2020-04-17 13:15:36 -07:00
const adjusted_addr = mem.alignForward(addr, ptr_align);
const adjusted_index = end_index + (adjusted_addr - addr);
const new_end_index = adjusted_index + n;
if (new_end_index > self.buffer.len) {
return error.OutOfMemory;
}
end_index = @cmpxchgWeak(usize, &self.end_index, end_index, new_end_index, builtin.AtomicOrder.SeqCst, builtin.AtomicOrder.SeqCst) orelse return self.buffer[adjusted_index..new_end_index];
}
}
2018-04-28 14:53:06 -07:00
pub fn reset(self: *ThreadSafeFixedBufferAllocator) void {
self.end_index = 0;
}
};
2018-04-28 14:53:06 -07:00
}
};
pub fn stackFallback(comptime size: usize, fallback_allocator: *Allocator) StackFallbackAllocator(size) {
return StackFallbackAllocator(size){
.buffer = undefined,
.fallback_allocator = fallback_allocator,
.fixed_buffer_allocator = undefined,
.allocator = Allocator{
2020-04-17 13:15:36 -07:00
.allocFn = StackFallbackAllocator(size).realloc,
.resizeFn = StackFallbackAllocator(size).resize,
},
};
}
pub fn StackFallbackAllocator(comptime size: usize) type {
return struct {
const Self = @This();
buffer: [size]u8,
allocator: Allocator,
fallback_allocator: *Allocator,
fixed_buffer_allocator: FixedBufferAllocator,
pub fn get(self: *Self) *Allocator {
self.fixed_buffer_allocator = FixedBufferAllocator.init(self.buffer[0..]);
return &self.allocator;
}
2020-04-17 13:15:36 -07:00
fn alloc(allocator: *Allocator, len: usize, ptr_align: u29, len_align: u29) error{OutOfMemory}![*]u8 {
const self = @fieldParentPtr(Self, "allocator", allocator);
2020-04-17 13:15:36 -07:00
return FixedBufferAllocator.alloc(&self.fixed_buffer_allocator, len, ptr_align) catch
return fallback_allocator.alloc(len, ptr_align);
}
2020-04-17 13:15:36 -07:00
fn resize(self: *Allocator, buf: []u8, new_len: usize, len_align: u29) error{OutOfMemory}!void {
const self = @fieldParentPtr(Self, "allocator", allocator);
2020-04-17 13:15:36 -07:00
if (self.fixed_buffer_allocator.ownsPtr(buf.ptr)) {
try self.fixed_buffer_allocator.callResizeFn(buf, new_len);
} else {
try self.fallback_allocator.callResizeFn(buf, new_len);
}
}
};
}
test "c_allocator" {
if (builtin.link_libc) {
var slice = try c_allocator.alloc(u8, 50);
defer c_allocator.free(slice);
slice = try c_allocator.realloc(slice, 100);
}
}
2019-12-05 19:54:57 -08:00
test "WasmPageAllocator internals" {
2019-12-06 14:03:15 -08:00
if (comptime std.Target.current.isWasm()) {
2020-04-17 13:15:36 -07:00
const conventional_memsize = WasmPageAllocator.conventional.totalPages() * mem.page_size;
const initial = try page_allocator.alloc(u8, mem.page_size);
std.debug.assert(@ptrToInt(initial.ptr) < conventional_memsize); // If this isn't conventional, the rest of these tests don't make sense. Also we have a serious memory leak in the test suite.
var inplace = try page_allocator.realloc(initial, 1);
testing.expectEqual(initial.ptr, inplace.ptr);
inplace = try page_allocator.realloc(inplace, 4);
testing.expectEqual(initial.ptr, inplace.ptr);
page_allocator.free(inplace);
const reuse = try page_allocator.alloc(u8, 1);
testing.expectEqual(initial.ptr, reuse.ptr);
page_allocator.free(reuse);
// This segment may span conventional and extended which has really complex rules so we're just ignoring it for now.
const padding = try page_allocator.alloc(u8, conventional_memsize);
page_allocator.free(padding);
const extended = try page_allocator.alloc(u8, conventional_memsize);
testing.expect(@ptrToInt(extended.ptr) >= conventional_memsize);
const use_small = try page_allocator.alloc(u8, 1);
testing.expectEqual(initial.ptr, use_small.ptr);
page_allocator.free(use_small);
inplace = try page_allocator.realloc(extended, 1);
testing.expectEqual(extended.ptr, inplace.ptr);
page_allocator.free(inplace);
const reuse_extended = try page_allocator.alloc(u8, conventional_memsize);
testing.expectEqual(extended.ptr, reuse_extended.ptr);
page_allocator.free(reuse_extended);
2019-12-05 19:54:57 -08:00
}
}
test "PageAllocator" {
const allocator = page_allocator;
try testAllocator(allocator);
try testAllocatorAligned(allocator, 16);
if (!std.Target.current.isWasm()) {
try testAllocatorLargeAlignment(allocator);
try testAllocatorAlignedShrink(allocator);
}
if (builtin.os.tag == .windows) {
// Trying really large alignment. As mentionned in the implementation,
// VirtualAlloc returns 64K aligned addresses. We want to make sure
// PageAllocator works beyond that, as it's not tested by
// `testAllocatorLargeAlignment`.
const slice = try allocator.alignedAlloc(u8, 1 << 20, 128);
slice[0] = 0x12;
slice[127] = 0x34;
allocator.free(slice);
}
}
test "HeapAllocator" {
if (builtin.os.tag == .windows) {
var heap_allocator = HeapAllocator.init();
defer heap_allocator.deinit();
const allocator = &heap_allocator.allocator;
try testAllocator(allocator);
try testAllocatorAligned(allocator, 16);
try testAllocatorLargeAlignment(allocator);
try testAllocatorAlignedShrink(allocator);
}
}
2019-06-21 22:13:10 -07:00
test "ArenaAllocator" {
var arena_allocator = ArenaAllocator.init(page_allocator);
2019-06-21 22:13:10 -07:00
defer arena_allocator.deinit();
try testAllocator(&arena_allocator.allocator);
try testAllocatorAligned(&arena_allocator.allocator, 16);
try testAllocatorLargeAlignment(&arena_allocator.allocator);
try testAllocatorAlignedShrink(&arena_allocator.allocator);
}
var test_fixed_buffer_allocator_memory: [800000 * @sizeOf(u64)]u8 = undefined;
test "FixedBufferAllocator" {
var fixed_buffer_allocator = mem.validationWrap(FixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]));
try testAllocator(&fixed_buffer_allocator.allocator);
try testAllocatorAligned(&fixed_buffer_allocator.allocator, 16);
try testAllocatorLargeAlignment(&fixed_buffer_allocator.allocator);
try testAllocatorAlignedShrink(&fixed_buffer_allocator.allocator);
}
2019-09-15 18:35:01 -07:00
test "FixedBufferAllocator.reset" {
var buf: [8]u8 align(@alignOf(u64)) = undefined;
2019-09-15 18:35:01 -07:00
var fba = FixedBufferAllocator.init(buf[0..]);
const X = 0xeeeeeeeeeeeeeeee;
const Y = 0xffffffffffffffff;
var x = try fba.allocator.create(u64);
x.* = X;
testing.expectError(error.OutOfMemory, fba.allocator.create(u64));
fba.reset();
var y = try fba.allocator.create(u64);
y.* = Y;
// we expect Y to have overwritten X.
testing.expect(x.* == y.*);
testing.expect(y.* == Y);
}
test "FixedBufferAllocator Reuse memory on realloc" {
var small_fixed_buffer: [10]u8 = undefined;
// check if we re-use the memory
{
var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
var slice0 = try fixed_buffer_allocator.allocator.alloc(u8, 5);
testing.expect(slice0.len == 5);
var slice1 = try fixed_buffer_allocator.allocator.realloc(slice0, 10);
testing.expect(slice1.ptr == slice0.ptr);
testing.expect(slice1.len == 10);
testing.expectError(error.OutOfMemory, fixed_buffer_allocator.allocator.realloc(slice1, 11));
}
// check that we don't re-use the memory if it's not the most recent block
{
var fixed_buffer_allocator = FixedBufferAllocator.init(small_fixed_buffer[0..]);
var slice0 = try fixed_buffer_allocator.allocator.alloc(u8, 2);
slice0[0] = 1;
slice0[1] = 2;
var slice1 = try fixed_buffer_allocator.allocator.alloc(u8, 2);
var slice2 = try fixed_buffer_allocator.allocator.realloc(slice0, 4);
testing.expect(slice0.ptr != slice2.ptr);
testing.expect(slice1.ptr != slice2.ptr);
testing.expect(slice2[0] == 1);
testing.expect(slice2[1] == 2);
}
}
2018-04-28 14:53:06 -07:00
test "ThreadSafeFixedBufferAllocator" {
var fixed_buffer_allocator = ThreadSafeFixedBufferAllocator.init(test_fixed_buffer_allocator_memory[0..]);
try testAllocator(&fixed_buffer_allocator.allocator);
try testAllocatorAligned(&fixed_buffer_allocator.allocator, 16);
2018-04-28 14:53:06 -07:00
try testAllocatorLargeAlignment(&fixed_buffer_allocator.allocator);
try testAllocatorAlignedShrink(&fixed_buffer_allocator.allocator);
2018-04-28 14:53:06 -07:00
}
2020-04-17 13:15:36 -07:00
fn testAllocator(base_allocator: *mem.Allocator) !void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
2020-04-17 13:15:36 -07:00
var slice = try allocator.alloc(*i32, 100);
testing.expect(slice.len == 100);
for (slice) |*item, i| {
item.* = try allocator.create(i32);
item.*.* = @intCast(i32, i);
}
slice = try allocator.realloc(slice, 20000);
testing.expect(slice.len == 20000);
for (slice[0..100]) |item, i| {
testing.expect(item.* == @intCast(i32, i));
allocator.destroy(item);
}
slice = allocator.shrink(slice, 50);
testing.expect(slice.len == 50);
slice = allocator.shrink(slice, 25);
testing.expect(slice.len == 25);
slice = allocator.shrink(slice, 0);
testing.expect(slice.len == 0);
slice = try allocator.realloc(slice, 10);
testing.expect(slice.len == 10);
allocator.free(slice);
}
2020-04-17 13:15:36 -07:00
fn testAllocatorAligned(base_allocator: *mem.Allocator, comptime alignment: u29) !void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
2020-04-17 13:15:36 -07:00
// initial
var slice = try allocator.alignedAlloc(u8, alignment, 10);
testing.expect(slice.len == 10);
// grow
slice = try allocator.realloc(slice, 100);
testing.expect(slice.len == 100);
// shrink
slice = allocator.shrink(slice, 10);
testing.expect(slice.len == 10);
// go to zero
slice = allocator.shrink(slice, 0);
testing.expect(slice.len == 0);
// realloc from zero
slice = try allocator.realloc(slice, 100);
testing.expect(slice.len == 100);
// shrink with shrink
slice = allocator.shrink(slice, 10);
testing.expect(slice.len == 10);
// shrink to zero
slice = allocator.shrink(slice, 0);
testing.expect(slice.len == 0);
}
2020-04-17 13:15:36 -07:00
fn testAllocatorLargeAlignment(base_allocator: *mem.Allocator) mem.Allocator.Error!void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
2020-04-17 13:15:36 -07:00
2018-05-28 17:23:55 -07:00
//Maybe a platform's page_size is actually the same as or
// very near usize?
2019-05-26 10:17:34 -07:00
if (mem.page_size << 2 > maxInt(usize)) return;
2020-04-28 18:10:09 -07:00
const USizeShift = std.meta.Int(false, std.math.log2(usize.bit_count));
const large_align = @as(u29, mem.page_size << 2);
var align_mask: usize = undefined;
_ = @shlWithOverflow(usize, ~@as(usize, 0), @as(USizeShift, @ctz(u29, large_align)), &align_mask);
var slice = try allocator.alignedAlloc(u8, large_align, 500);
testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = allocator.shrink(slice, 100);
testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = try allocator.realloc(slice, 5000);
testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = allocator.shrink(slice, 10);
testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
slice = try allocator.realloc(slice, 20000);
testing.expect(@ptrToInt(slice.ptr) & align_mask == @ptrToInt(slice.ptr));
allocator.free(slice);
}
2020-04-17 13:15:36 -07:00
fn testAllocatorAlignedShrink(base_allocator: *mem.Allocator) mem.Allocator.Error!void {
var validationAllocator = mem.validationWrap(base_allocator);
const allocator = &validationAllocator.allocator;
2020-04-17 13:15:36 -07:00
var debug_buffer: [1000]u8 = undefined;
const debug_allocator = &FixedBufferAllocator.init(&debug_buffer).allocator;
2019-05-26 10:17:34 -07:00
const alloc_size = mem.page_size * 2 + 50;
var slice = try allocator.alignedAlloc(u8, 16, alloc_size);
defer allocator.free(slice);
var stuff_to_free = std.ArrayList([]align(16) u8).init(debug_allocator);
// On Windows, VirtualAlloc returns addresses aligned to a 64K boundary,
// which is 16 pages, hence the 32. This test may require to increase
// the size of the allocations feeding the `allocator` parameter if they
// fail, because of this high over-alignment we want to have.
2019-05-26 10:17:34 -07:00
while (@ptrToInt(slice.ptr) == mem.alignForward(@ptrToInt(slice.ptr), mem.page_size * 32)) {
try stuff_to_free.append(slice);
slice = try allocator.alignedAlloc(u8, 16, alloc_size);
}
while (stuff_to_free.popOrNull()) |item| {
allocator.free(item);
}
slice[0] = 0x12;
slice[60] = 0x34;
// realloc to a smaller size but with a larger alignment
2019-05-26 10:17:34 -07:00
slice = try allocator.alignedRealloc(slice, mem.page_size * 32, alloc_size / 2);
testing.expect(slice[0] == 0x12);
testing.expect(slice[60] == 0x34);
}
test "heap" {
_ = @import("heap/logging_allocator.zig");
}