ocaml/lex/lexgen.ml

1195 lines
32 KiB
OCaml

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, *)
(* Luc Maranget, projet Moscova, *)
(* INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Compiling a lexer definition *)
open Syntax
open Printf
exception Memory_overflow
(* Deep abstract syntax for regular expressions *)
type ident = string * Syntax.location
type tag_info = {id : string ; start : bool ; action : int}
type regexp =
Empty
| Chars of int * bool
| Action of int
| Tag of tag_info
| Seq of regexp * regexp
| Alt of regexp * regexp
| Star of regexp
type tag_base = Start | End | Mem of int
type tag_addr = Sum of (tag_base * int)
type ident_info =
| Ident_string of bool * tag_addr * tag_addr
| Ident_char of bool * tag_addr
type t_env = (ident * ident_info) list
type ('args,'action) lexer_entry =
{ lex_name: string;
lex_regexp: regexp;
lex_mem_tags: int ;
lex_actions: (int * t_env * 'action) list }
type automata =
Perform of int * tag_action list
| Shift of automata_trans * (automata_move * memory_action list) array
and automata_trans =
No_remember
| Remember of int * tag_action list
and automata_move =
Backtrack
| Goto of int
and memory_action =
| Copy of int * int
| Set of int
and tag_action = SetTag of int * int | EraseTag of int
(* Representation of entry points *)
type ('args,'action) automata_entry =
{ auto_name: string;
auto_args: 'args ;
auto_mem_size : int ;
auto_initial_state: int * memory_action list;
auto_actions: (int * t_env * 'action) list }
(* A lot of sets and map structures *)
module Ints =
Set.Make(struct type t = int let compare (x:t) y = compare x y end)
let id_compare (id1,_) (id2,_) = String.compare id1 id2
let tag_compare t1 t2 = Pervasives.compare t1 t2
module Tags = Set.Make(struct type t = tag_info let compare = tag_compare end)
module TagMap =
Map.Make (struct type t = tag_info let compare = tag_compare end)
module IdSet =
Set.Make (struct type t = ident let compare = id_compare end)
module IdMap =
Map.Make (struct type t = ident let compare = id_compare end)
(*********************)
(* Variable cleaning *)
(*********************)
(* Silently eliminate nested variables *)
let rec do_remove_nested to_remove = function
| Bind (e,x) ->
if IdSet.mem x to_remove then
do_remove_nested to_remove e
else
Bind (do_remove_nested (IdSet.add x to_remove) e, x)
| Epsilon|Eof|Characters _ as e -> e
| Sequence (e1, e2) ->
Sequence
(do_remove_nested to_remove e1, do_remove_nested to_remove e2)
| Alternative (e1, e2) ->
Alternative
(do_remove_nested to_remove e1, do_remove_nested to_remove e2)
| Repetition e ->
Repetition (do_remove_nested to_remove e)
let remove_nested_as e = do_remove_nested IdSet.empty e
(*********************)
(* Variable analysis *)
(*********************)
(*
Optional variables.
A variable is optional when matching of regexp does not
implies it binds.
The typical case is:
("" | 'a' as x) -> optional
("" as x | 'a' as x) -> non-optional
*)
let stringset_delta s1 s2 =
IdSet.union
(IdSet.diff s1 s2)
(IdSet.diff s2 s1)
let rec find_all_vars = function
| Characters _|Epsilon|Eof ->
IdSet.empty
| Bind (e,x) ->
IdSet.add x (find_all_vars e)
| Sequence (e1,e2)|Alternative (e1,e2) ->
IdSet.union (find_all_vars e1) (find_all_vars e2)
| Repetition e -> find_all_vars e
let rec do_find_opt = function
| Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
| Bind (e,x) ->
let opt,all = do_find_opt e in
opt, IdSet.add x all
| Sequence (e1,e2) ->
let opt1,all1 = do_find_opt e1
and opt2,all2 = do_find_opt e2 in
IdSet.union opt1 opt2, IdSet.union all1 all2
| Alternative (e1,e2) ->
let opt1,all1 = do_find_opt e1
and opt2,all2 = do_find_opt e2 in
IdSet.union
(IdSet.union opt1 opt2)
(stringset_delta all1 all2),
IdSet.union all1 all2
| Repetition e ->
let r = find_all_vars e in
r,r
let find_optional e =
let r,_ = do_find_opt e in r
(*
Double variables
A variable is double when it can be bound more than once
in a single matching
The typical case is:
(e1 as x) (e2 as x)
*)
let rec do_find_double = function
| Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
| Bind (e,x) ->
let dbl,all = do_find_double e in
(if IdSet.mem x all then
IdSet.add x dbl
else
dbl),
IdSet.add x all
| Sequence (e1,e2) ->
let dbl1, all1 = do_find_double e1
and dbl2, all2 = do_find_double e2 in
IdSet.union
(IdSet.inter all1 all2)
(IdSet.union dbl1 dbl2),
IdSet.union all1 all2
| Alternative (e1,e2) ->
let dbl1, all1 = do_find_double e1
and dbl2, all2 = do_find_double e2 in
IdSet.union dbl1 dbl2,
IdSet.union all1 all2
| Repetition e ->
let r = find_all_vars e in
r,r
let find_double e = do_find_double e
(*
Type of variables:
A variable is bound to a char when all its occurences
bind a pattern of length 1.
The typical case is:
(_ as x) -> char
*)
let add_some x = function
| Some i -> Some (x+i)
| None -> None
let add_some_some x y = match x,y with
| Some i, Some j -> Some (i+j)
| _,_ -> None
let rec do_find_chars sz = function
| Epsilon|Eof -> IdSet.empty, IdSet.empty, sz
| Characters _ -> IdSet.empty, IdSet.empty, add_some 1 sz
| Bind (e,x) ->
let c,s,e_sz = do_find_chars (Some 0) e in
begin match e_sz with
| Some 1 ->
IdSet.add x c,s,add_some 1 sz
| _ ->
c, IdSet.add x s, add_some_some sz e_sz
end
| Sequence (e1,e2) ->
let c1,s1,sz1 = do_find_chars sz e1 in
let c2,s2,sz2 = do_find_chars sz1 e2 in
IdSet.union c1 c2,
IdSet.union s1 s2,
sz2
| Alternative (e1,e2) ->
let c1,s1,sz1 = do_find_chars sz e1
and c2,s2,sz2 = do_find_chars sz e2 in
IdSet.union c1 c2,
IdSet.union s1 s2,
(if sz1 = sz2 then sz1 else None)
| Repetition e -> do_find_chars None e
let find_chars e =
let c,s,_ = do_find_chars (Some 0) e in
IdSet.diff c s
(*******************************)
(* From shallow to deep syntax *)
(*******************************)
let chars = ref ([] : Cset.t list)
let chars_count = ref 0
let rec encode_regexp char_vars act = function
Epsilon -> Empty
| Characters cl ->
let n = !chars_count in
chars := cl :: !chars;
incr chars_count;
Chars(n,false)
| Eof ->
let n = !chars_count in
chars := Cset.eof :: !chars;
incr chars_count;
Chars(n,true)
| Sequence(r1,r2) ->
let r1 = encode_regexp char_vars act r1 in
let r2 = encode_regexp char_vars act r2 in
Seq (r1, r2)
| Alternative(r1,r2) ->
let r1 = encode_regexp char_vars act r1 in
let r2 = encode_regexp char_vars act r2 in
Alt(r1, r2)
| Repetition r ->
let r = encode_regexp char_vars act r in
Star r
| Bind (r,((name,_) as x)) ->
let r = encode_regexp char_vars act r in
if IdSet.mem x char_vars then
Seq (Tag {id=name ; start=true ; action=act},r)
else
Seq (Tag {id=name ; start=true ; action=act},
Seq (r, Tag {id=name ; start=false ; action=act}))
(* Optimisation,
Static optimization :
Replace tags by offsets relative to the beginning
or end of matched string.
Dynamic optimization:
Replace some non-optional, non-double tags by offsets w.r.t
a previous similar tag.
*)
let incr_pos = function
| None -> None
| Some i -> Some (i+1)
let decr_pos = function
| None -> None
| Some i -> Some (i-1)
let opt = true
let mk_seq r1 r2 = match r1,r2 with
| Empty,_ -> r2
| _,Empty -> r1
| _,_ -> Seq (r1,r2)
let add_pos p i = match p with
| Some (Sum (a,n)) -> Some (Sum (a,n+i))
| None -> None
let mem_name name id_set =
IdSet.exists (fun (id_name,_) -> name = id_name) id_set
let opt_regexp all_vars char_vars optional_vars double_vars r =
(* From removed tags to their addresses *)
let env = Hashtbl.create 17 in
(* First static optimizations, from start position *)
let rec size_forward pos = function
| Empty|Chars (_,true)|Tag _ -> Some pos
| Chars (_,false) -> Some (pos+1)
| Seq (r1,r2) ->
begin match size_forward pos r1 with
| None -> None
| Some pos -> size_forward pos r2
end
| Alt (r1,r2) ->
let pos1 = size_forward pos r1
and pos2 = size_forward pos r2 in
if pos1=pos2 then pos1 else None
| Star _ -> None
| Action _ -> assert false in
let rec simple_forward pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,Some pos
else begin
Hashtbl.add env (n.id,n.start) (Sum (Start, pos)) ;
Empty,Some pos
end
| Empty -> r, Some pos
| Chars (_,is_eof) ->
r,Some (if is_eof then pos else pos+1)
| Seq (r1,r2) ->
let r1,pos = simple_forward pos r1 in
begin match pos with
| None -> mk_seq r1 r2,None
| Some pos ->
let r2,pos = simple_forward pos r2 in
mk_seq r1 r2,pos
end
| Alt (r1,r2) ->
let pos1 = size_forward pos r1
and pos2 = size_forward pos r2 in
r,(if pos1=pos2 then pos1 else None)
| Star _ -> r,None
| Action _ -> assert false in
(* Then static optimizations, from end position *)
let rec size_backward pos = function
| Empty|Chars (_,true)|Tag _ -> Some pos
| Chars (_,false) -> Some (pos-1)
| Seq (r1,r2) ->
begin match size_backward pos r2 with
| None -> None
| Some pos -> size_backward pos r1
end
| Alt (r1,r2) ->
let pos1 = size_backward pos r1
and pos2 = size_backward pos r2 in
if pos1=pos2 then pos1 else None
| Star _ -> None
| Action _ -> assert false in
let rec simple_backward pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,Some pos
else begin
Hashtbl.add env (n.id,n.start) (Sum (End, pos)) ;
Empty,Some pos
end
| Empty -> r,Some pos
| Chars (_,is_eof) ->
r,Some (if is_eof then pos else pos-1)
| Seq (r1,r2) ->
let r2,pos = simple_backward pos r2 in
begin match pos with
| None -> mk_seq r1 r2,None
| Some pos ->
let r1,pos = simple_backward pos r1 in
mk_seq r1 r2,pos
end
| Alt (r1,r2) ->
let pos1 = size_backward pos r1
and pos2 = size_backward pos r2 in
r,(if pos1=pos2 then pos1 else None)
| Star _ -> r,None
| Action _ -> assert false in
let r =
if opt then
let r,_ = simple_forward 0 r in
let r,_ = simple_backward 0 r in
r
else
r in
let loc_count = ref 0 in
let get_tag_addr t =
try
Hashtbl.find env t
with
| Not_found ->
let n = !loc_count in
incr loc_count ;
Hashtbl.add env t (Sum (Mem n,0)) ;
Sum (Mem n,0) in
let rec alloc_exp pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,pos
else begin match pos with
| Some a ->
Hashtbl.add env (n.id,n.start) a ;
Empty,pos
| None ->
let a = get_tag_addr (n.id,n.start) in
r,Some a
end
| Empty -> r,pos
| Chars (_,is_eof) -> r,(if is_eof then pos else add_pos pos 1)
| Seq (r1,r2) ->
let r1,pos = alloc_exp pos r1 in
let r2,pos = alloc_exp pos r2 in
mk_seq r1 r2,pos
| Alt (_,_) ->
let off = size_forward 0 r in
begin match off with
| Some i -> r,add_pos pos i
| None -> r,None
end
| Star _ -> r,None
| Action _ -> assert false in
let r,_ = alloc_exp None r in
let m =
IdSet.fold
(fun ((name,_) as x) r ->
let v =
if IdSet.mem x char_vars then
Ident_char
(IdSet.mem x optional_vars, get_tag_addr (name,true))
else
Ident_string
(IdSet.mem x optional_vars,
get_tag_addr (name,true),
get_tag_addr (name,false)) in
(x,v)::r)
all_vars [] in
m,r, !loc_count
let encode_casedef casedef =
let r =
List.fold_left
(fun (reg,actions,count,ntags) (expr, act) ->
let expr = remove_nested_as expr in
let char_vars = find_chars expr in
let r = encode_regexp char_vars count expr
and opt_vars = find_optional expr
and double_vars,all_vars = find_double expr in
let m,r,loc_ntags =
opt_regexp all_vars char_vars opt_vars double_vars r in
Alt(reg, Seq(r, Action count)),
(count, m ,act) :: actions,
(succ count),
max loc_ntags ntags)
(Empty, [], 0, 0)
casedef in
r
let encode_lexdef def =
chars := [];
chars_count := 0;
let entry_list =
List.map
(fun {name=entry_name; args=args; shortest=shortest; clauses=casedef} ->
let (re,actions,_,ntags) = encode_casedef casedef in
{ lex_name = entry_name;
lex_regexp = re;
lex_mem_tags = ntags ;
lex_actions = List.rev actions },args,shortest)
def in
let chr = Array.of_list (List.rev !chars) in
chars := [];
(chr, entry_list)
(* To generate directly a NFA from a regular expression.
Confer Aho-Sethi-Ullman, dragon book, chap. 3
Extension to tagged automata.
Confer
Ville Larikari
'NFAs with Tagged Transitions, their Conversion to Deterministic
Automata and Application to Regular Expressions'.
Symposium on String Processing and Information Retrieval (SPIRE 2000),
http://kouli.iki.fi/~vlaurika/spire2000-tnfa.ps
(See also)
http://kouli.iki.fi/~vlaurika/regex-submatch.ps.gz
*)
type t_transition =
OnChars of int
| ToAction of int
type transition = t_transition * Tags.t
let trans_compare (t1,tags1) (t2,tags2) =
match Pervasives.compare t1 t2 with
| 0 -> Tags.compare tags1 tags2
| r -> r
module TransSet =
Set.Make(struct type t = transition let compare = trans_compare end)
let rec nullable = function
| Empty|Tag _ -> true
| Chars (_,_)|Action _ -> false
| Seq(r1,r2) -> nullable r1 && nullable r2
| Alt(r1,r2) -> nullable r1 || nullable r2
| Star r -> true
let rec emptymatch = function
| Empty | Chars (_,_) | Action _ -> Tags.empty
| Tag t -> Tags.add t Tags.empty
| Seq (r1,r2) -> Tags.union (emptymatch r1) (emptymatch r2)
| Alt(r1,r2) ->
if nullable r1 then
emptymatch r1
else
emptymatch r2
| Star r ->
if nullable r then
emptymatch r
else
Tags.empty
let addtags transs tags =
TransSet.fold
(fun (t,tags_t) r -> TransSet.add (t, Tags.union tags tags_t) r)
transs TransSet.empty
let rec firstpos = function
Empty|Tag _ -> TransSet.empty
| Chars (pos,_) -> TransSet.add (OnChars pos,Tags.empty) TransSet.empty
| Action act -> TransSet.add (ToAction act,Tags.empty) TransSet.empty
| Seq(r1,r2) ->
if nullable r1 then
TransSet.union (firstpos r1) (addtags (firstpos r2) (emptymatch r1))
else
firstpos r1
| Alt(r1,r2) -> TransSet.union (firstpos r1) (firstpos r2)
| Star r -> firstpos r
(* Berry-sethi followpos *)
let followpos size entry_list =
let v = Array.create size TransSet.empty in
let rec fill s = function
| Empty|Action _|Tag _ -> ()
| Chars (n,_) -> v.(n) <- s
| Alt (r1,r2) ->
fill s r1 ; fill s r2
| Seq (r1,r2) ->
fill
(if nullable r2 then
TransSet.union (firstpos r2) (addtags s (emptymatch r2))
else
(firstpos r2))
r1 ;
fill s r2
| Star r ->
fill (TransSet.union (firstpos r) s) r in
List.iter (fun (entry,_,_) -> fill TransSet.empty entry.lex_regexp)
entry_list;
v
(************************)
(* The algorithm itself *)
(************************)
let no_action = max_int
module StateSet =
Set.Make (struct type t = t_transition let compare = Pervasives.compare end)
module MemMap =
Map.Make (struct type t = int
let compare (x:t) y = Pervasives.compare x y end)
type 'a dfa_state =
{final : int * ('a * int TagMap.t) ;
others : ('a * int TagMap.t) MemMap.t}
let dtag oc t =
fprintf oc "%s<%s>" t.id (if t.start then "s" else "e")
let dmem_map dp ds m =
MemMap.iter
(fun k x ->
eprintf "%d -> " k ; dp x ; ds ())
m
and dtag_map dp ds m =
TagMap.iter
(fun t x ->
dtag stderr t ; eprintf " -> " ; dp x ; ds ())
m
let dstate {final=(act,(_,m)) ; others=o} =
if act <> no_action then begin
eprintf "final=%d " act ;
dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m ;
prerr_endline ""
end ;
dmem_map
(fun (_,m) ->
dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m)
(fun () -> prerr_endline "")
o
let dfa_state_empty =
{final=(no_action, (max_int,TagMap.empty)) ;
others=MemMap.empty}
and dfa_state_is_empty {final=(act,_) ; others=o} =
act = no_action &&
o = MemMap.empty
(* A key is an abstraction on a dfa state,
two states with the same key can be made the same by
copying some memory cells into others *)
module StateSetSet =
Set.Make (struct type t = StateSet.t let compare = StateSet.compare end)
type t_equiv = {tag:tag_info ; equiv:StateSetSet.t}
module MemKey =
Set.Make
(struct
type t = t_equiv
let compare e1 e2 = match Pervasives.compare e1.tag e2.tag with
| 0 -> StateSetSet.compare e1.equiv e2.equiv
| r -> r
end)
type dfa_key = {kstate : StateSet.t ; kmem : MemKey.t}
(* Map a state to its key *)
let env_to_class m =
let env1 =
MemMap.fold
(fun _ (tag,s) r ->
try
let ss = TagMap.find tag r in
let r = TagMap.remove tag r in
TagMap.add tag (StateSetSet.add s ss) r
with
| Not_found ->
TagMap.add tag (StateSetSet.add s StateSetSet.empty) r)
m TagMap.empty in
TagMap.fold
(fun tag ss r -> MemKey.add {tag=tag ; equiv=ss} r)
env1 MemKey.empty
(* trans is nfa_state, m is associated memory map *)
let inverse_mem_map trans m r =
TagMap.fold
(fun tag addr r ->
try
let otag,s = MemMap.find addr r in
assert (tag = otag) ;
let r = MemMap.remove addr r in
MemMap.add addr (tag,StateSet.add trans s) r
with
| Not_found ->
MemMap.add addr (tag,StateSet.add trans StateSet.empty) r)
m r
let inverse_mem_map_other n (_,m) r = inverse_mem_map (OnChars n) m r
let get_key {final=(act,(_,m_act)) ; others=o} =
let env =
MemMap.fold inverse_mem_map_other
o
(if act = no_action then MemMap.empty
else inverse_mem_map (ToAction act) m_act MemMap.empty) in
let state_key =
MemMap.fold (fun n _ r -> StateSet.add (OnChars n) r) o
(if act=no_action then StateSet.empty
else StateSet.add (ToAction act) StateSet.empty) in
let mem_key = env_to_class env in
{kstate = state_key ; kmem = mem_key}
let key_compare k1 k2 = match StateSet.compare k1.kstate k2.kstate with
| 0 -> MemKey.compare k1.kmem k2.kmem
| r -> r
(* Association dfa_state -> state_num *)
module StateMap =
Map.Make(struct type t = dfa_key let compare = key_compare end)
let state_map = ref (StateMap.empty : int StateMap.t)
let todo = Stack.create()
let next_state_num = ref 0
let next_mem_cell = ref 0
let temp_pending = ref false
let tag_cells = Hashtbl.create 17
let state_table = Table.create dfa_state_empty
(* Initial reset of state *)
let reset_state () =
Stack.clear todo;
next_state_num := 0 ;
let _ = Table.trim state_table in
()
(* Reset state before processing a given automata.
We clear both the memory mapping and
the state mapping, as state sharing beetween different
automata may lead to incorret estimation of the cell memory size
BUG ID 0004517 *)
let reset_state_partial ntags =
next_mem_cell := ntags ;
Hashtbl.clear tag_cells ;
temp_pending := false ;
state_map := StateMap.empty
let do_alloc_temp () =
temp_pending := true ;
let n = !next_mem_cell in
n
let do_alloc_cell used t =
let available =
try Hashtbl.find tag_cells t with Not_found -> Ints.empty in
try
Ints.choose (Ints.diff available used)
with
| Not_found ->
temp_pending := false ;
let n = !next_mem_cell in
if n >= 255 then raise Memory_overflow ;
Hashtbl.replace tag_cells t (Ints.add n available) ;
incr next_mem_cell ;
n
let is_old_addr a = a >= 0
and is_new_addr a = a < 0
let old_in_map m r =
TagMap.fold
(fun _ addr r ->
if is_old_addr addr then
Ints.add addr r
else
r)
m r
let alloc_map used m mvs =
TagMap.fold
(fun tag a (r,mvs) ->
let a,mvs =
if is_new_addr a then
let a = do_alloc_cell used tag in
a,Ints.add a mvs
else a,mvs in
TagMap.add tag a r,mvs)
m (TagMap.empty,mvs)
let create_new_state {final=(act,(_,m_act)) ; others=o} =
let used =
MemMap.fold (fun _ (_,m) r -> old_in_map m r)
o (old_in_map m_act Ints.empty) in
let new_m_act,mvs = alloc_map used m_act Ints.empty in
let new_o,mvs =
MemMap.fold (fun k (x,m) (r,mvs) ->
let m,mvs = alloc_map used m mvs in
MemMap.add k (x,m) r,mvs)
o (MemMap.empty,mvs) in
{final=(act,(0,new_m_act)) ; others=new_o},
Ints.fold (fun x r -> Set x::r) mvs []
type new_addr_gen = {mutable count : int ; mutable env : int TagMap.t}
let create_new_addr_gen () = {count = -1 ; env = TagMap.empty}
let alloc_new_addr tag r =
try
TagMap.find tag r.env
with
| Not_found ->
let a = r.count in
r.count <- a-1 ;
r.env <- TagMap.add tag a r.env ;
a
let create_mem_map tags gen =
Tags.fold
(fun tag r -> TagMap.add tag (alloc_new_addr tag gen) r)
tags TagMap.empty
let create_init_state pos =
let gen = create_new_addr_gen () in
let st =
TransSet.fold
(fun (t,tags) st ->
match t with
| ToAction n ->
let on,otags = st.final in
if n < on then
{st with final = (n, (0,create_mem_map tags gen))}
else
st
| OnChars n ->
try
let _ = MemMap.find n st.others in assert false
with
| Not_found ->
{st with others =
MemMap.add n (0,create_mem_map tags gen) st.others})
pos dfa_state_empty in
st
let get_map t st = match t with
| ToAction _ -> let _,(_,m) = st.final in m
| OnChars n ->
let (_,m) = MemMap.find n st.others in
m
let dest = function | Copy (d,_) | Set d -> d
and orig = function | Copy (_,o) -> o | Set _ -> -1
let pmv oc mv = fprintf oc "%d <- %d" (dest mv) (orig mv)
let pmvs oc mvs =
List.iter (fun mv -> fprintf oc "%a " pmv mv) mvs ;
output_char oc '\n' ; flush oc
(* Topological sort << a la louche >> *)
let sort_mvs mvs =
let rec do_rec r mvs = match mvs with
| [] -> r
| _ ->
let dests =
List.fold_left
(fun r mv -> Ints.add (dest mv) r)
Ints.empty mvs in
let rem,here =
List.partition
(fun mv -> Ints.mem (orig mv) dests)
mvs in
match here with
| [] ->
begin match rem with
| Copy (d,_)::_ ->
let d' = do_alloc_temp () in
Copy (d',d)::
do_rec r
(List.map
(fun mv ->
if orig mv = d then
Copy (dest mv,d')
else
mv)
rem)
| _ -> assert false
end
| _ -> do_rec (here@r) rem in
do_rec [] mvs
let move_to mem_key src tgt =
let mvs =
MemKey.fold
(fun {tag=tag ; equiv=m} r ->
StateSetSet.fold
(fun s r ->
try
let t = StateSet.choose s in
let src = TagMap.find tag (get_map t src)
and tgt = TagMap.find tag (get_map t tgt) in
if src <> tgt then begin
if is_new_addr src then
Set tgt::r
else
Copy (tgt, src)::r
end else
r
with
| Not_found -> assert false)
m r)
mem_key [] in
(* Moves are topologically sorted *)
sort_mvs mvs
let get_state st =
let key = get_key st in
try
let num = StateMap.find key !state_map in
num,move_to key.kmem st (Table.get state_table num)
with Not_found ->
let num = !next_state_num in
incr next_state_num;
let st,mvs = create_new_state st in
Table.emit state_table st ;
state_map := StateMap.add key num !state_map;
Stack.push (st, num) todo;
num,mvs
let map_on_all_states f old_res =
let res = ref old_res in
begin try
while true do
let (st, i) = Stack.pop todo in
let r = f st in
res := (r, i) :: !res
done
with Stack.Empty -> ()
end;
!res
let goto_state st =
if
dfa_state_is_empty st
then
Backtrack,[]
else
let n,moves = get_state st in
Goto n,moves
(****************************)
(* compute reachable states *)
(****************************)
let add_tags_to_map gen tags m =
Tags.fold
(fun tag m ->
let m = TagMap.remove tag m in
TagMap.add tag (alloc_new_addr tag gen) m)
tags m
let apply_transition gen r pri m = function
| ToAction n,tags ->
let on,(opri,_) = r.final in
if n < on || (on=n && pri < opri) then
let m = add_tags_to_map gen tags m in
{r with final=n,(pri,m)}
else r
| OnChars n,tags ->
try
let (opri,_) = MemMap.find n r.others in
if pri < opri then
let m = add_tags_to_map gen tags m in
{r with others=MemMap.add n (pri,m) (MemMap.remove n r.others)}
else
r
with
| Not_found ->
let m = add_tags_to_map gen tags m in
{r with others=MemMap.add n (pri,m) r.others}
(* add transitions ts to new state r
transitions in ts start from state pri and memory map m
*)
let apply_transitions gen r pri m ts =
TransSet.fold
(fun t r -> apply_transition gen r pri m t)
ts r
(* For a given nfa_state pos, refine char partition *)
let rec split_env gen follow pos m s = function
| [] -> (* Can occur ! because of non-matching regexp ([^'\000'-'\255']) *)
[]
| (s1,st1) as p::rem ->
let here = Cset.inter s s1 in
if Cset.is_empty here then
p::split_env gen follow pos m s rem
else
let rest = Cset.diff s here in
let rem =
if Cset.is_empty rest then
rem
else
split_env gen follow pos m rest rem
and new_st = apply_transitions gen st1 pos m follow in
let stay = Cset.diff s1 here in
if Cset.is_empty stay then
(here, new_st)::rem
else
(stay, st1)::(here, new_st)::rem
(* For all nfa_state pos in a dfa state st *)
let comp_shift gen chars follow st =
MemMap.fold
(fun pos (_,m) env -> split_env gen follow.(pos) pos m chars.(pos) env)
st [Cset.all_chars_eof,dfa_state_empty]
let reachs chars follow st =
let gen = create_new_addr_gen () in
(* build a association list (char set -> new state) *)
let env = comp_shift gen chars follow st in
(* change it into (char set -> new state_num) *)
let env =
List.map
(fun (s,dfa_state) -> s,goto_state dfa_state) env in
(* finally build the char indexed array -> new state num *)
let shift = Cset.env_to_array env in
shift
let get_tag_mem n env t =
try
TagMap.find t env.(n)
with
| Not_found -> assert false
let do_tag_actions n env m =
let used,r =
TagMap.fold (fun t m (used,r) ->
let a = get_tag_mem n env t in
Ints.add a used,SetTag (a,m)::r) m (Ints.empty,[]) in
let _,r =
TagMap.fold
(fun tag m (used,r) ->
if not (Ints.mem m used) && tag.start then
Ints.add m used, EraseTag m::r
else
used,r)
env.(n) (used,r) in
r
let translate_state shortest_match tags chars follow st =
let (n,(_,m)) = st.final in
if MemMap.empty = st.others then
Perform (n,do_tag_actions n tags m)
else if shortest_match then begin
if n=no_action then
Shift (No_remember,reachs chars follow st.others)
else
Perform(n, do_tag_actions n tags m)
end else begin
Shift (
(if n = no_action then
No_remember
else
Remember (n,do_tag_actions n tags m)),
reachs chars follow st.others)
end
let dtags chan tags =
Tags.iter
(fun t -> fprintf chan " %a" dtag t)
tags
let dtransset s =
TransSet.iter
(fun trans -> match trans with
| OnChars i,tags ->
eprintf " (-> %d,%a)" i dtags tags
| ToAction i,tags ->
eprintf " ([%d],%a)" i dtags tags)
s
let dfollow t =
eprintf "follow=[" ;
for i = 0 to Array.length t-1 do
eprintf "%d:" i ;
dtransset t.(i)
done ;
prerr_endline "]"
let make_tag_entry id start act a r = match a with
| Sum (Mem m,0) ->
TagMap.add {id=id ; start=start ; action=act} m r
| _ -> r
let extract_tags l =
let envs = Array.create (List.length l) TagMap.empty in
List.iter
(fun (act,m,_) ->
envs.(act) <-
List.fold_right
(fun ((name,_),v) r -> match v with
| Ident_char (_,t) -> make_tag_entry name true act t r
| Ident_string (_,t1,t2) ->
make_tag_entry name true act t1
(make_tag_entry name false act t2 r))
m TagMap.empty)
l ;
envs
let make_dfa lexdef =
let (chars, entry_list) = encode_lexdef lexdef in
let follow = followpos (Array.length chars) entry_list in
(*
dfollow follow ;
*)
reset_state () ;
let r_states = ref [] in
let initial_states =
List.map
(fun (le,args,shortest) ->
let tags = extract_tags le.lex_actions in
reset_state_partial le.lex_mem_tags ;
let pos_set = firstpos le.lex_regexp in
(*
prerr_string "trans={" ; dtransset pos_set ; prerr_endline "}" ;
*)
let init_state = create_init_state pos_set in
let init_num = get_state init_state in
r_states :=
map_on_all_states
(translate_state shortest tags chars follow) !r_states ;
{ auto_name = le.lex_name;
auto_args = args ;
auto_mem_size =
(if !temp_pending then !next_mem_cell+1 else !next_mem_cell) ;
auto_initial_state = init_num ;
auto_actions = le.lex_actions })
entry_list in
let states = !r_states in
(*
prerr_endline "** states **" ;
for i = 0 to !next_state_num-1 do
eprintf "+++ %d +++\n" i ;
dstate (Table.get state_table i) ;
prerr_endline ""
done ;
eprintf "%d states\n" !next_state_num ;
*)
let actions = Array.create !next_state_num (Perform (0,[])) in
List.iter (fun (act, i) -> actions.(i) <- act) states;
(* Useless state reset, so as to restrict GC roots *)
reset_state () ;
reset_state_partial 0 ;
(initial_states, actions)