ocaml/typing/env.ml

2679 lines
84 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Environment handling *)
open Cmi_format
open Config
open Misc
open Asttypes
open Longident
open Path
open Types
open Btype
module String = Misc.Stdlib.String
let add_delayed_check_forward = ref (fun _ -> assert false)
let value_declarations : ((string * Location.t), (unit -> unit)) Hashtbl.t =
Hashtbl.create 16
(* This table is used to usage of value declarations. A declaration is
identified with its name and location. The callback attached to a
declaration is called whenever the value is used explicitly
(lookup_value) or implicitly (inclusion test between signatures,
cf Includemod.value_descriptions). *)
let type_declarations = Hashtbl.create 16
let module_declarations = Hashtbl.create 16
type constructor_usage = Positive | Pattern | Privatize
type constructor_usages =
{
mutable cu_positive: bool;
mutable cu_pattern: bool;
mutable cu_privatize: bool;
}
let add_constructor_usage cu = function
| Positive -> cu.cu_positive <- true
| Pattern -> cu.cu_pattern <- true
| Privatize -> cu.cu_privatize <- true
let constructor_usages () =
{cu_positive = false; cu_pattern = false; cu_privatize = false}
let used_constructors :
(string * Location.t * string, (constructor_usage -> unit)) Hashtbl.t
= Hashtbl.create 16
let prefixed_sg = Hashtbl.create 113
type error =
| Illegal_renaming of string * string * string
| Inconsistent_import of string * string * string
| Need_recursive_types of string * string
| Depend_on_unsafe_string_unit of string * string
| Missing_module of Location.t * Path.t * Path.t
| Illegal_value_name of Location.t * string
exception Error of error
let error err = raise (Error err)
module EnvLazy : sig
type ('a,'b) t
type log
val force : ('a -> 'b) -> ('a,'b) t -> 'b
val create : 'a -> ('a,'b) t
val get_arg : ('a,'b) t -> 'a option
val create_forced : 'b -> ('a, 'b) t
val create_failed : exn -> ('a, 'b) t
(* [force_logged log f t] is equivalent to [force f t] but if [f] returns
[None] then [t] is recorded in [log]. [backtrack log] will then reset all
the recorded [t]s back to their original state. *)
val log : unit -> log
val force_logged : log -> ('a -> 'b option) -> ('a,'b option) t -> 'b option
val backtrack : log -> unit
end = struct
type ('a,'b) t = ('a,'b) eval ref
and ('a,'b) eval =
| Done of 'b
| Raise of exn
| Thunk of 'a
type undo =
| Nil
| Cons : ('a, 'b) t * 'a * undo -> undo
type log = undo ref
let force f x =
match !x with
| Done x -> x
| Raise e -> raise e
| Thunk e ->
match f e with
| y ->
x := Done y;
y
| exception e ->
x := Raise e;
raise e
let get_arg x =
match !x with Thunk a -> Some a | _ -> None
let create x =
ref (Thunk x)
let create_forced y =
ref (Done y)
let create_failed e =
ref (Raise e)
let log () =
ref Nil
let force_logged log f x =
match !x with
| Done x -> x
| Raise e -> raise e
| Thunk e ->
match f e with
| None ->
x := Done None;
log := Cons(x, e, !log);
None
| Some _ as y ->
x := Done y;
y
| exception e ->
x := Raise e;
raise e
let backtrack log =
let rec loop = function
| Nil -> ()
| Cons(x, e, rest) ->
x := Thunk e;
loop rest
in
loop !log
end
(** Map indexed by the name of module components. *)
module NameMap = String.Map
type summary =
Env_empty
| Env_value of summary * Ident.t * value_description
| Env_type of summary * Ident.t * type_declaration
| Env_extension of summary * Ident.t * extension_constructor
| Env_module of summary * Ident.t * module_presence * module_declaration
| Env_modtype of summary * Ident.t * modtype_declaration
| Env_class of summary * Ident.t * class_declaration
| Env_cltype of summary * Ident.t * class_type_declaration
| Env_open of summary * String.Set.t * Path.t
| Env_functor_arg of summary * Ident.t
| Env_constraints of summary * type_declaration Path.Map.t
| Env_copy_types of summary * string list
type address =
| Aident of Ident.t
| Adot of address * int
module TycompTbl =
struct
(** This module is used to store components of types (i.e. labels
and constructors). We keep a representation of each nested
"open" and the set of local bindings between each of them. *)
type 'a t = {
current: 'a Ident.tbl;
(** Local bindings since the last open. *)
opened: 'a opened option;
(** Symbolic representation of the last (innermost) open, if any. *)
}
and 'a opened = {
components: ('a list) NameMap.t;
(** Components from the opened module. We keep a list of
bindings for each name, as in comp_labels and
comp_constrs. *)
using: (string -> ('a * 'a) option -> unit) option;
(** A callback to be applied when a component is used from this
"open". This is used to detect unused "opens". The
arguments are used to detect shadowing. *)
next: 'a t;
(** The table before opening the module. *)
}
let empty = { current = Ident.empty; opened = None }
let add id x tbl =
{tbl with current = Ident.add id x tbl.current}
let add_open slot wrap components next =
let using =
match slot with
| None -> None
| Some f -> Some (fun s x -> f s (wrap x))
in
{
current = Ident.empty;
opened = Some {using; components; next};
}
let rec find_same id tbl =
try Ident.find_same id tbl.current
with Not_found as exn ->
begin match tbl.opened with
| Some {next; _} -> find_same id next
| None -> raise exn
end
let nothing = fun () -> ()
let mk_callback rest name desc = function
| None -> nothing
| Some f ->
(fun () ->
match rest with
| [] -> f name None
| (hidden, _) :: _ -> f name (Some (desc, hidden))
)
let rec find_all name tbl =
List.map (fun (_id, desc) -> desc, nothing)
(Ident.find_all name tbl.current) @
match tbl.opened with
| None -> []
| Some {using; next; components} ->
let rest = find_all name next in
match NameMap.find name components with
| exception Not_found -> rest
| opened ->
List.map
(fun desc -> desc, mk_callback rest name desc using)
opened
@ rest
let rec fold_name f tbl acc =
let acc = Ident.fold_name (fun _id d -> f d) tbl.current acc in
match tbl.opened with
| Some {using = _; next; components} ->
acc
|> NameMap.fold
(fun _name -> List.fold_right f)
components
|> fold_name f next
| None ->
acc
let rec local_keys tbl acc =
let acc = Ident.fold_all (fun k _ accu -> k::accu) tbl.current acc in
match tbl.opened with
| Some o -> local_keys o.next acc
| None -> acc
let diff_keys is_local tbl1 tbl2 =
let keys2 = local_keys tbl2 [] in
List.filter
(fun id ->
is_local (find_same id tbl2) &&
try ignore (find_same id tbl1); false
with Not_found -> true)
keys2
end
module IdTbl =
struct
(** This module is used to store all kinds of components except
(labels and constructors) in environments. We keep a
representation of each nested "open" and the set of local
bindings between each of them. *)
type 'a t = {
current: 'a Ident.tbl;
(** Local bindings since the last open *)
opened: 'a opened option;
(** Symbolic representation of the last (innermost) open, if any. *)
}
and 'a opened = {
root: Path.t;
(** The path of the opened module, to be prefixed in front of
its local names to produce a valid path in the current
environment. *)
components: 'a NameMap.t;
(** Components from the opened module. *)
using: (string -> ('a * 'a) option -> unit) option;
(** A callback to be applied when a component is used from this
"open". This is used to detect unused "opens". The
arguments are used to detect shadowing. *)
next: 'a t;
(** The table before opening the module. *)
}
let empty = { current = Ident.empty; opened = None }
let add id x tbl =
{tbl with current = Ident.add id x tbl.current}
let add_open slot wrap root components next =
let using =
match slot with
| None -> None
| Some f -> Some (fun s x -> f s (wrap x))
in
{
current = Ident.empty;
opened = Some {using; root; components; next};
}
let rec find_same id tbl =
try Ident.find_same id tbl.current
with Not_found as exn ->
begin match tbl.opened with
| Some {next; _} -> find_same id next
| None -> raise exn
end
let rec find_name ~mark name tbl =
try
let (id, desc) = Ident.find_name name tbl.current in
Pident id, desc
with Not_found as exn ->
begin match tbl.opened with
| Some {using; root; next; components} ->
begin try
let descr = NameMap.find name components in
let res = Pdot (root, name), descr in
if mark then begin match using with
| None -> ()
| Some f -> begin
match find_name ~mark:false name next with
| exception Not_found -> f name None
| _, descr' -> f name (Some (descr', descr))
end
end;
res
with Not_found ->
find_name ~mark name next
end
| None ->
raise exn
end
let rec update name f tbl =
try
let (id, desc) = Ident.find_name name tbl.current in
let new_desc = f desc in
{tbl with current = Ident.add id new_desc tbl.current}
with Not_found ->
begin match tbl.opened with
| Some {root; using; next; components} ->
begin try
let desc = NameMap.find name components in
let new_desc = f desc in
let components = NameMap.add name new_desc components in
{tbl with opened = Some {root; using; next; components}}
with Not_found ->
let next = update name f next in
{tbl with opened = Some {root; using; next; components}}
end
| None ->
tbl
end
let rec find_all name tbl =
List.map
(fun (id, desc) -> Pident id, desc)
(Ident.find_all name tbl.current) @
match tbl.opened with
| None -> []
| Some {root; using = _; next; components} ->
try
let desc = NameMap.find name components in
(Pdot (root, name), desc) :: find_all name next
with Not_found ->
find_all name next
let rec fold_name f tbl acc =
let acc =
Ident.fold_name
(fun id d -> f (Ident.name id) (Pident id, d))
tbl.current acc
in
match tbl.opened with
| Some {root; using = _; next; components} ->
acc
|> NameMap.fold
(fun name desc -> f name (Pdot (root, name), desc))
components
|> fold_name f next
| None ->
acc
let rec local_keys tbl acc =
let acc = Ident.fold_all (fun k _ accu -> k::accu) tbl.current acc in
match tbl.opened with
| Some o -> local_keys o.next acc
| None -> acc
let rec iter f tbl =
Ident.iter (fun id desc -> f id (Pident id, desc)) tbl.current;
match tbl.opened with
| Some {root; using = _; next; components} ->
NameMap.iter
(fun s x ->
let root_scope = Path.scope root in
f (Ident.create_scoped ~scope:root_scope s)
(Pdot (root, s), x))
components;
iter f next
| None -> ()
let diff_keys tbl1 tbl2 =
let keys2 = local_keys tbl2 [] in
List.filter
(fun id ->
try ignore (find_same id tbl1); false
with Not_found -> true)
keys2
end
type type_descriptions =
constructor_description list * label_description list
let in_signature_flag = 0x01
type t = {
values: (value_description * address_lazy) IdTbl.t;
constrs: (constructor_description * address_lazy option) TycompTbl.t;
labels: label_description TycompTbl.t;
types: (type_declaration * type_descriptions) IdTbl.t;
modules: (module_declaration_lazy * address_lazy) IdTbl.t;
modtypes: modtype_declaration IdTbl.t;
components: (module_components * address_lazy) IdTbl.t;
classes: (class_declaration * address_lazy) IdTbl.t;
cltypes: class_type_declaration IdTbl.t;
functor_args: unit Ident.tbl;
summary: summary;
local_constraints: type_declaration Path.Map.t;
flags: int;
}
and module_declaration_lazy =
(Subst.t * module_declaration, module_declaration) EnvLazy.t
and module_components =
{
alerts: string Misc.Stdlib.String.Map.t;
loc: Location.t;
comps:
(t * Subst.t * Path.t * address_lazy * Types.module_type,
module_components_repr option)
EnvLazy.t;
}
and module_components_repr =
Structure_comps of structure_components
| Functor_comps of functor_components
and structure_components = {
mutable comp_values: (value_description * address_lazy) NameMap.t;
mutable comp_constrs:
((constructor_description * address_lazy option) list) NameMap.t;
mutable comp_labels: label_description list NameMap.t;
mutable comp_types: (type_declaration * type_descriptions) NameMap.t;
mutable comp_modules: (module_declaration_lazy * address_lazy) NameMap.t;
mutable comp_modtypes: modtype_declaration NameMap.t;
mutable comp_components: (module_components * address_lazy) NameMap.t;
mutable comp_classes: (class_declaration * address_lazy) NameMap.t;
mutable comp_cltypes: class_type_declaration NameMap.t;
}
and functor_components = {
fcomp_param: Ident.t; (* Formal parameter *)
fcomp_arg: module_type option; (* Argument signature *)
fcomp_res: module_type; (* Result signature *)
fcomp_cache: (Path.t, module_components) Hashtbl.t; (* For memoization *)
fcomp_subst_cache: (Path.t, module_type) Hashtbl.t
}
and address_unforced =
| Projection of { parent : address_lazy; pos : int; }
| ModAlias of { env : t; path : Path.t; }
and address_lazy = (address_unforced, address) EnvLazy.t
let copy_local ~from env =
{ env with
local_constraints = from.local_constraints;
flags = from.flags }
let same_constr = ref (fun _ _ _ -> assert false)
let check_well_formed_module = ref (fun _ -> assert false)
(* Helper to decide whether to report an identifier shadowing
by some 'open'. For labels and constructors, we do not report
if the two elements are from the same re-exported declaration.
Later, one could also interpret some attributes on value and
type declarations to silence the shadowing warnings. *)
let check_shadowing env = function
| `Constructor (Some ((c1, _), (c2, _)))
when not (!same_constr env c1.cstr_res c2.cstr_res) ->
Some "constructor"
| `Label (Some (l1, l2))
when not (!same_constr env l1.lbl_res l2.lbl_res) ->
Some "label"
| `Value (Some _) -> Some "value"
| `Type (Some _) -> Some "type"
| `Module (Some _) | `Component (Some _) -> Some "module"
| `Module_type (Some _) -> Some "module type"
| `Class (Some _) -> Some "class"
| `Class_type (Some _) -> Some "class type"
| `Constructor _ | `Label _
| `Value None | `Type None | `Module None | `Module_type None
| `Class None | `Class_type None | `Component None ->
None
let subst_modtype_maker (subst, md) =
if subst == Subst.identity then md
else {md with md_type = Subst.modtype subst md.md_type}
let empty = {
values = IdTbl.empty; constrs = TycompTbl.empty;
labels = TycompTbl.empty; types = IdTbl.empty;
modules = IdTbl.empty; modtypes = IdTbl.empty;
components = IdTbl.empty; classes = IdTbl.empty;
cltypes = IdTbl.empty;
summary = Env_empty; local_constraints = Path.Map.empty;
flags = 0;
functor_args = Ident.empty;
}
let in_signature b env =
let flags =
if b then env.flags lor in_signature_flag
else env.flags land (lnot in_signature_flag)
in
{env with flags}
let is_in_signature env = env.flags land in_signature_flag <> 0
let is_ident = function
Pident _ -> true
| Pdot _ | Papply _ -> false
let is_local_ext = function
| {cstr_tag = Cstr_extension(p, _)}, _ -> is_ident p
| _ -> false
let diff env1 env2 =
IdTbl.diff_keys env1.values env2.values @
TycompTbl.diff_keys is_local_ext env1.constrs env2.constrs @
IdTbl.diff_keys env1.modules env2.modules @
IdTbl.diff_keys env1.classes env2.classes
type can_load_cmis =
| Can_load_cmis
| Cannot_load_cmis of EnvLazy.log
let can_load_cmis = ref Can_load_cmis
let without_cmis f x =
let log = EnvLazy.log () in
let res =
Misc.(protect_refs
[R (can_load_cmis, Cannot_load_cmis log)]
(fun () -> f x))
in
EnvLazy.backtrack log;
res
(* Forward declarations *)
let components_of_module' =
ref ((fun ~alerts:_ ~loc:_ _env _sub _path _addr _mty -> assert false) :
alerts:string Misc.Stdlib.String.Map.t -> loc:Location.t -> t ->
Subst.t -> Path.t -> address_lazy -> module_type ->
module_components)
let components_of_module_maker' =
ref ((fun (_env, _sub, _path, _addr, _mty) -> assert false) :
t * Subst.t * Path.t * address_lazy * module_type ->
module_components_repr option)
let components_of_functor_appl' =
ref ((fun _f _env _p1 _p2 -> assert false) :
functor_components -> t -> Path.t -> Path.t -> module_components)
let check_modtype_inclusion =
(* to be filled with Includemod.check_modtype_inclusion *)
ref ((fun ~loc:_ _env _mty1 _path1 _mty2 -> assert false) :
loc:Location.t -> t -> module_type -> Path.t -> module_type -> unit)
let strengthen =
(* to be filled with Mtype.strengthen *)
ref ((fun ~aliasable:_ _env _mty _path -> assert false) :
aliasable:bool -> t -> module_type -> Path.t -> module_type)
let md md_type =
{md_type; md_attributes=[]; md_loc=Location.none}
let get_components_opt c =
match !can_load_cmis with
| Can_load_cmis ->
EnvLazy.force !components_of_module_maker' c.comps
| Cannot_load_cmis log ->
EnvLazy.force_logged log !components_of_module_maker' c.comps
let empty_structure =
Structure_comps {
comp_values = NameMap.empty;
comp_constrs = NameMap.empty;
comp_labels = NameMap.empty;
comp_types = NameMap.empty;
comp_modules = NameMap.empty; comp_modtypes = NameMap.empty;
comp_components = NameMap.empty; comp_classes = NameMap.empty;
comp_cltypes = NameMap.empty }
let get_components c =
match get_components_opt c with
| None -> empty_structure
| Some c -> c
(* Print addresses *)
let rec print_address ppf = function
| Aident id -> Format.fprintf ppf "%s" (Ident.name id)
| Adot(a, pos) -> Format.fprintf ppf "%a.[%i]" print_address a pos
(* The name of the compilation unit currently compiled.
"" if outside a compilation unit. *)
let current_unit = ref ""
(* Persistent structure descriptions *)
type pers_struct =
{ ps_name: string;
ps_sig: signature Lazy.t;
ps_comps: module_components;
ps_crcs: (string * Digest.t option) list;
ps_filename: string;
ps_flags: pers_flags list }
let persistent_structures =
(Hashtbl.create 17 : (string, pers_struct option) Hashtbl.t)
(* Consistency between persistent structures *)
let crc_units = Consistbl.create()
let imported_units = ref String.Set.empty
let add_import s =
imported_units := String.Set.add s !imported_units
let imported_opaque_units = ref String.Set.empty
let add_imported_opaque s =
imported_opaque_units := String.Set.add s !imported_opaque_units
let clear_imports () =
Consistbl.clear crc_units;
imported_units := String.Set.empty;
imported_opaque_units := String.Set.empty
let check_consistency ps =
try
List.iter
(fun (name, crco) ->
match crco with
None -> ()
| Some crc ->
add_import name;
Consistbl.check crc_units name crc ps.ps_filename)
ps.ps_crcs;
with Consistbl.Inconsistency(name, source, auth) ->
error (Inconsistent_import(name, auth, source))
(* Reading persistent structures from .cmi files *)
let save_pers_struct crc ps =
let modname = ps.ps_name in
Hashtbl.add persistent_structures modname (Some ps);
List.iter
(function
| Rectypes -> ()
| Alerts _ -> ()
| Unsafe_string -> ()
| Opaque -> add_imported_opaque modname)
ps.ps_flags;
Consistbl.set crc_units modname crc ps.ps_filename;
add_import modname
module Persistent_signature = struct
type t =
{ filename : string;
cmi : Cmi_format.cmi_infos }
let load = ref (fun ~unit_name ->
match find_in_path_uncap !load_path (unit_name ^ ".cmi") with
| filename -> Some { filename; cmi = read_cmi filename }
| exception Not_found -> None)
end
let acknowledge_pers_struct check modname
{ Persistent_signature.filename; cmi } =
let name = cmi.cmi_name in
let sign = cmi.cmi_sign in
let crcs = cmi.cmi_crcs in
let flags = cmi.cmi_flags in
let alerts =
List.fold_left (fun acc -> function Alerts s -> s | _ -> acc)
Misc.Stdlib.String.Map.empty
flags
in
let id = Ident.create_persistent name in
let path = Pident id in
let addr = EnvLazy.create_forced (Aident id) in
let comps =
!components_of_module' ~alerts ~loc:Location.none
empty Subst.identity path addr (Mty_signature sign)
in
let ps = { ps_name = name;
ps_sig = lazy (Subst.signature Subst.identity sign);
ps_comps = comps;
ps_crcs = crcs;
ps_filename = filename;
ps_flags = flags;
} in
if ps.ps_name <> modname then
error (Illegal_renaming(modname, ps.ps_name, filename));
List.iter
(function
| Rectypes ->
if not !Clflags.recursive_types then
error (Need_recursive_types(ps.ps_name, !current_unit))
| Unsafe_string ->
if Config.safe_string then
error (Depend_on_unsafe_string_unit (ps.ps_name, !current_unit));
| Alerts _ -> ()
| Opaque -> add_imported_opaque modname)
ps.ps_flags;
if check then check_consistency ps;
Hashtbl.add persistent_structures modname (Some ps);
ps
let read_pers_struct check modname filename =
add_import modname;
let cmi = read_cmi filename in
acknowledge_pers_struct check modname
{ Persistent_signature.filename; cmi }
let find_pers_struct check name =
if name = "*predef*" then raise Not_found;
match Hashtbl.find persistent_structures name with
| Some ps -> ps
| None -> raise Not_found
| exception Not_found ->
match !can_load_cmis with
| Cannot_load_cmis _ -> raise Not_found
| Can_load_cmis ->
let ps =
match !Persistent_signature.load ~unit_name:name with
| Some ps -> ps
| None ->
Hashtbl.add persistent_structures name None;
raise Not_found
in
add_import name;
acknowledge_pers_struct check name ps
(* Emits a warning if there is no valid cmi for name *)
let check_pers_struct ~loc name =
try
ignore (find_pers_struct false name)
with
| Not_found ->
let warn = Warnings.No_cmi_file(name, None) in
Location.prerr_warning loc warn
| Cmi_format.Error err ->
let msg = Format.asprintf "%a" Cmi_format.report_error err in
let warn = Warnings.No_cmi_file(name, Some msg) in
Location.prerr_warning loc warn
| Error err ->
let msg =
match err with
| Illegal_renaming(name, ps_name, filename) ->
Format.asprintf
" %a@ contains the compiled interface for @ \
%s when %s was expected"
Location.print_filename filename ps_name name
| Inconsistent_import _ -> assert false
| Need_recursive_types(name, _) ->
Format.sprintf
"%s uses recursive types"
name
| Depend_on_unsafe_string_unit (name, _) ->
Printf.sprintf "%s uses -unsafe-string"
name
| Missing_module _ -> assert false
| Illegal_value_name _ -> assert false
in
let warn = Warnings.No_cmi_file(name, Some msg) in
Location.prerr_warning loc warn
let read_pers_struct modname filename =
read_pers_struct true modname filename
let find_pers_struct name =
find_pers_struct true name
let check_pers_struct ~loc name =
if not (Hashtbl.mem persistent_structures name) then begin
(* PR#6843: record the weak dependency ([add_import]) regardless of
whether the check succeeds, to help make builds more
deterministic. *)
add_import name;
if (Warnings.is_active (Warnings.No_cmi_file("", None))) then
!add_delayed_check_forward
(fun () -> check_pers_struct ~loc name)
end
let reset_cache () =
current_unit := "";
Hashtbl.clear persistent_structures;
clear_imports ();
Hashtbl.clear value_declarations;
Hashtbl.clear type_declarations;
Hashtbl.clear module_declarations;
Hashtbl.clear used_constructors;
Hashtbl.clear prefixed_sg
let reset_cache_toplevel () =
(* Delete 'missing cmi' entries from the cache. *)
let l =
Hashtbl.fold
(fun name r acc -> if r = None then name :: acc else acc)
persistent_structures []
in
List.iter (Hashtbl.remove persistent_structures) l;
Hashtbl.clear value_declarations;
Hashtbl.clear type_declarations;
Hashtbl.clear module_declarations;
Hashtbl.clear used_constructors;
Hashtbl.clear prefixed_sg
let set_unit_name name =
current_unit := name
let get_unit_name () =
!current_unit
(* Lookup by identifier *)
let rec find_module_descr path env =
match path with
Pident id ->
begin try
fst (IdTbl.find_same id env.components)
with Not_found ->
if Ident.persistent id && not (Ident.name id = !current_unit)
then (find_pers_struct (Ident.name id)).ps_comps
else raise Not_found
end
| Pdot(p, s) ->
begin match get_components (find_module_descr p env) with
Structure_comps c ->
fst (NameMap.find s c.comp_components)
| Functor_comps _ ->
raise Not_found
end
| Papply(p1, p2) ->
begin match get_components (find_module_descr p1 env) with
Functor_comps f ->
!components_of_functor_appl' f env p1 p2
| Structure_comps _ ->
raise Not_found
end
let find proj1 proj2 path env =
match path with
Pident id -> IdTbl.find_same id (proj1 env)
| Pdot(p, s) ->
begin match get_components (find_module_descr p env) with
Structure_comps c -> NameMap.find s (proj2 c)
| Functor_comps _ ->
raise Not_found
end
| Papply _ ->
raise Not_found
let find_value_full =
find (fun env -> env.values) (fun sc -> sc.comp_values)
and find_type_full =
find (fun env -> env.types) (fun sc -> sc.comp_types)
and find_modtype =
find (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes)
and find_class_full =
find (fun env -> env.classes) (fun sc -> sc.comp_classes)
and find_cltype =
find (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes)
let find_value p env =
fst (find_value_full p env)
let find_class p env =
fst (find_class_full p env)
let type_of_cstr path = function
| {cstr_inlined = Some d; _} ->
(d, ([], List.map snd (Datarepr.labels_of_type path d)))
| _ ->
assert false
let find_type_full path env =
match Path.constructor_typath path with
| Regular p ->
(try (Path.Map.find p env.local_constraints, ([], []))
with Not_found -> find_type_full p env)
| Cstr (ty_path, s) ->
let (_, (cstrs, _)) =
try find_type_full ty_path env
with Not_found -> assert false
in
let cstr =
try List.find (fun cstr -> cstr.cstr_name = s) cstrs
with Not_found -> assert false
in
type_of_cstr path cstr
| LocalExt id ->
let cstr =
try fst (TycompTbl.find_same id env.constrs)
with Not_found -> assert false
in
type_of_cstr path cstr
| Ext (mod_path, s) ->
let comps =
try find_module_descr mod_path env
with Not_found -> assert false
in
let comps =
match get_components comps with
| Structure_comps c -> c
| Functor_comps _ -> assert false
in
let exts =
List.filter
(function ({cstr_tag=Cstr_extension _}, _) -> true | _ -> false)
(try NameMap.find s comps.comp_constrs
with Not_found -> assert false)
in
match exts with
| [(cstr, _)] -> type_of_cstr path cstr
| _ -> assert false
let find_type p env =
fst (find_type_full p env)
let find_type_descrs p env =
snd (find_type_full p env)
let find_module ~alias path env =
match path with
Pident id ->
begin try
let data, _ = IdTbl.find_same id env.modules in
EnvLazy.force subst_modtype_maker data
with Not_found ->
if Ident.persistent id && not (Ident.name id = !current_unit) then
let ps = find_pers_struct (Ident.name id) in
md (Mty_signature(Lazy.force ps.ps_sig))
else raise Not_found
end
| Pdot(p, s) ->
begin match get_components (find_module_descr p env) with
Structure_comps c ->
let data, _ = NameMap.find s c.comp_modules in
EnvLazy.force subst_modtype_maker data
| Functor_comps _ ->
raise Not_found
end
| Papply(p1, p2) ->
let desc1 = find_module_descr p1 env in
begin match get_components desc1 with
Functor_comps f ->
let mty =
match f.fcomp_res with
| Mty_alias _ as mty -> mty
| mty ->
if alias then mty else
try
Hashtbl.find f.fcomp_subst_cache p2
with Not_found ->
let mty =
Subst.modtype
(Subst.add_module f.fcomp_param p2 Subst.identity)
f.fcomp_res in
Hashtbl.add f.fcomp_subst_cache p2 mty;
mty
in
md mty
| Structure_comps _ ->
raise Not_found
end
let rec find_module_address path env =
match path with
| Pident id ->
begin try
let _, addr = IdTbl.find_same id env.modules in
get_address addr
with Not_found ->
if Ident.persistent id && not (Ident.name id = !current_unit) then
Aident id
else raise Not_found
end
| Pdot(p, s) -> begin
match get_components (find_module_descr p env) with
| Structure_comps c ->
let _, addr = NameMap.find s c.comp_modules in
get_address addr
| Functor_comps _ ->
raise Not_found
end
| Papply _ -> raise Not_found
and force_address = function
| Projection { parent; pos } -> Adot(get_address parent, pos)
| ModAlias { env; path } -> find_module_address path env
and get_address a =
EnvLazy.force force_address a
let find_value_address p env =
get_address (snd (find_value_full p env))
let find_class_address p env =
get_address (snd (find_class_full p env))
let rec get_constrs_address = function
| [] -> raise Not_found
| (_, None) :: rest -> get_constrs_address rest
| (_, Some a) :: _ -> get_address a
let find_constructor_address path env =
match path with
| Pident id -> begin
match TycompTbl.find_same id env.constrs with
| _, None -> raise Not_found
| _, Some addr -> get_address addr
end
| Pdot(p, s) -> begin
match get_components (find_module_descr p env) with
| Structure_comps c ->
get_constrs_address (NameMap.find s c.comp_constrs)
| Functor_comps _ ->
raise Not_found
end
| Papply _ ->
raise Not_found
let required_globals = ref []
let reset_required_globals () = required_globals := []
let get_required_globals () = !required_globals
let add_required_global id =
if Ident.global id && not !Clflags.transparent_modules
&& not (List.exists (Ident.same id) !required_globals)
then required_globals := id :: !required_globals
let rec normalize_module_path lax env = function
| Pident id as path when lax && Ident.persistent id ->
path (* fast path (avoids lookup) *)
| Pdot (p, s) as path ->
let p' = normalize_module_path lax env p in
if p == p' then expand_module_path lax env path
else expand_module_path lax env (Pdot(p', s))
| Papply (p1, p2) as path ->
let p1' = normalize_module_path lax env p1 in
let p2' = normalize_module_path true env p2 in
if p1 == p1' && p2 == p2' then expand_module_path lax env path
else expand_module_path lax env (Papply(p1', p2'))
| Pident _ as path ->
expand_module_path lax env path
and expand_module_path lax env path =
try match find_module ~alias:true path env with
{md_type=Mty_alias path1} ->
let path' = normalize_module_path lax env path1 in
if lax || !Clflags.transparent_modules then path' else
let id = Path.head path in
if Ident.global id && not (Ident.same id (Path.head path'))
then add_required_global id;
path'
| _ -> path
with Not_found when lax
|| (match path with Pident id -> not (Ident.persistent id) | _ -> true) ->
path
let normalize_module_path oloc env path =
try normalize_module_path (oloc = None) env path
with Not_found ->
match oloc with None -> assert false
| Some loc ->
raise (Error(Missing_module(loc, path,
normalize_module_path true env path)))
let normalize_path_prefix oloc env path =
match path with
Pdot(p, s) ->
let p2 = normalize_module_path oloc env p in
if p == p2 then path else Pdot(p2, s)
| Pident _ ->
path
| Papply _ ->
assert false
let is_uident s =
match s.[0] with
| 'A'..'Z' -> true
| _ -> false
let normalize_type_path oloc env path =
(* Inlined version of Path.is_constructor_typath:
constructor type paths (i.e. path pointing to an inline
record argument of a constructpr) are built as a regular
type path followed by a capitalized constructor name. *)
match path with
| Pident _ ->
path
| Pdot(p, s) ->
let p2 =
if is_uident s && not (is_uident (Path.last p)) then
(* Cstr M.t.C *)
normalize_path_prefix oloc env p
else
(* Regular M.t, Ext M.C *)
normalize_module_path oloc env p
in
if p == p2 then path else Pdot (p2, s)
| Papply _ ->
assert false
let find_module path env =
find_module ~alias:false path env
(* Find the manifest type associated to a type when appropriate:
- the type should be public or should have a private row,
- the type should have an associated manifest type. *)
let find_type_expansion path env =
let decl = find_type path env in
match decl.type_manifest with
| Some body when decl.type_private = Public
|| decl.type_kind <> Type_abstract
|| Btype.has_constr_row body ->
(decl.type_params, body, decl.type_expansion_scope)
(* The manifest type of Private abstract data types without
private row are still considered unknown to the type system.
Hence, this case is caught by the following clause that also handles
purely abstract data types without manifest type definition. *)
| _ -> raise Not_found
(* Find the manifest type information associated to a type, i.e.
the necessary information for the compiler's type-based optimisations.
In particular, the manifest type associated to a private abstract type
is revealed for the sake of compiler's type-based optimisations. *)
let find_type_expansion_opt path env =
let decl = find_type path env in
match decl.type_manifest with
(* The manifest type of Private abstract data types can still get
an approximation using their manifest type. *)
| Some body ->
(decl.type_params, body, decl.type_expansion_scope)
| _ -> raise Not_found
let find_modtype_expansion path env =
match (find_modtype path env).mtd_type with
| None -> raise Not_found
| Some mty -> mty
let rec is_functor_arg path env =
match path with
Pident id ->
begin try Ident.find_same id env.functor_args; true
with Not_found -> false
end
| Pdot (p, _s) -> is_functor_arg p env
| Papply _ -> true
(* Lookup by name *)
exception Recmodule
let report_alerts ?loc p alerts =
match loc with
| Some loc ->
Misc.Stdlib.String.Map.iter
(fun kind message ->
let message = if message = "" then "" else "\n" ^ message in
Location.alert ~kind loc
(Printf.sprintf "module %s%s" (Path.name p) message)
)
alerts
| _ -> ()
let mark_module_used name loc =
try Hashtbl.find module_declarations (name, loc) ()
with Not_found -> ()
let rec lookup_module_descr_aux ?loc ~mark lid env =
match lid with
Lident s ->
begin try
let path, (comp, _) = IdTbl.find_name ~mark s env.components in
path, comp
with Not_found ->
if s = !current_unit then raise Not_found;
let ps = find_pers_struct s in
(Pident(Ident.create_persistent s), ps.ps_comps)
end
| Ldot(l, s) ->
let (p, descr) = lookup_module_descr ?loc ~mark l env in
begin match get_components descr with
Structure_comps c ->
let (descr, _addr) = NameMap.find s c.comp_components in
(Pdot(p, s), descr)
| Functor_comps _ ->
raise Not_found
end
| Lapply(l1, l2) ->
let (p1, desc1) = lookup_module_descr ?loc ~mark l1 env in
let p2 = lookup_module ~load:true ~mark ?loc l2 env in
let {md_type=mty2} = find_module p2 env in
begin match get_components desc1 with
Functor_comps f ->
let loc = match loc with Some l -> l | None -> Location.none in
(match f.fcomp_arg with
| None -> raise Not_found (* PR#7611 *)
| Some arg -> !check_modtype_inclusion ~loc env mty2 p2 arg);
(Papply(p1, p2), !components_of_functor_appl' f env p1 p2)
| Structure_comps _ ->
raise Not_found
end
and lookup_module_descr ?loc ~mark lid env =
let (p, comps) as res = lookup_module_descr_aux ?loc ~mark lid env in
if mark then mark_module_used (Path.last p) comps.loc;
(*
Format.printf "USE module %s at %a@." (Path.last p)
Location.print comps.loc;
*)
report_alerts ?loc p comps.alerts;
res
and lookup_module ~load ?loc ~mark lid env : Path.t =
match lid with
Lident s ->
begin try
let p, (data, _) = IdTbl.find_name ~mark s env.modules in
let {md_loc; md_attributes; md_type} =
EnvLazy.force subst_modtype_maker data
in
if mark then mark_module_used s md_loc;
begin match md_type with
| Mty_ident (Path.Pident id) when Ident.name id = "#recmod#" ->
(* see #5965 *)
raise Recmodule
| _ -> ()
end;
report_alerts ?loc p
(Builtin_attributes.alerts_of_attrs md_attributes);
p
with Not_found ->
if s = !current_unit then raise Not_found;
let p = Pident(Ident.create_persistent s) in
if !Clflags.transparent_modules && not load
then
let loc = match loc with Some l -> l | None -> Location.none in
check_pers_struct ~loc s
else begin
let ps = find_pers_struct s in
report_alerts ?loc p ps.ps_comps.alerts
end;
p
end
| Ldot(l, s) ->
let (p, descr) = lookup_module_descr ?loc ~mark l env in
begin match get_components descr with
Structure_comps c ->
let (comps, _) = NameMap.find s c.comp_components in
if mark then mark_module_used s comps.loc;
let p = Pdot(p, s) in
report_alerts ?loc p comps.alerts;
p
| Functor_comps _ ->
raise Not_found
end
| Lapply(l1, l2) ->
let (p1, desc1) = lookup_module_descr ?loc ~mark l1 env in
let p2 = lookup_module ~load:true ?loc ~mark l2 env in
let {md_type=mty2} = find_module p2 env in
let p = Papply(p1, p2) in
begin match get_components desc1 with
Functor_comps f ->
let loc = match loc with Some l -> l | None -> Location.none in
(match f.fcomp_arg with
| None -> raise Not_found (* PR#7611 *)
| Some arg -> (!check_modtype_inclusion ~loc env mty2 p2) arg);
p
| Structure_comps _ ->
raise Not_found
end
let lookup proj1 proj2 ?loc ~mark lid env =
match lid with
| Lident s -> IdTbl.find_name ~mark s (proj1 env)
| Ldot(l, s) ->
let path, desc = lookup_module_descr ?loc ~mark l env in
begin match get_components desc with
Structure_comps c ->
let data = NameMap.find s (proj2 c) in
(Pdot(path, s), data)
| Functor_comps _ ->
raise Not_found
end
| Lapply _ ->
raise Not_found
let lookup_all_simple proj1 proj2 shadow ?loc ~mark lid env =
match lid with
Lident s ->
let xl = TycompTbl.find_all s (proj1 env) in
let rec do_shadow =
function
| [] -> []
| ((x, f) :: xs) ->
(x, f) ::
(do_shadow (List.filter (fun (y, _) -> not (shadow x y)) xs))
in
do_shadow xl
| Ldot(l, s) ->
let (_p, desc) = lookup_module_descr ?loc ~mark l env in
begin match get_components desc with
Structure_comps c ->
let comps =
try NameMap.find s (proj2 c) with Not_found -> []
in
List.map
(fun data -> (data, (fun () -> ())))
comps
| Functor_comps _ ->
raise Not_found
end
| Lapply _ ->
raise Not_found
let has_local_constraints env = not (Path.Map.is_empty env.local_constraints)
let cstr_shadow (cstr1, _) (cstr2, _) =
match cstr1.cstr_tag, cstr2.cstr_tag with
| Cstr_extension _, Cstr_extension _ -> true
| _ -> false
let lbl_shadow _lbl1 _lbl2 = false
let ignore_address (path, (desc, _addr)) = (path, desc)
let lookup_value ?loc ~mark lid env =
ignore_address
(lookup (fun env -> env.values) (fun sc -> sc.comp_values)
?loc ~mark lid env)
let lookup_all_constructors ?loc ~mark lid env =
lookup_all_simple (fun env -> env.constrs) (fun sc -> sc.comp_constrs)
cstr_shadow ?loc ~mark lid env
let lookup_all_labels ?loc ~mark lid env =
lookup_all_simple (fun env -> env.labels) (fun sc -> sc.comp_labels)
lbl_shadow ?loc ~mark lid env
let lookup_type ?loc ~mark lid env=
lookup (fun env -> env.types) (fun sc -> sc.comp_types)
?loc ~mark lid env
let lookup_modtype ?loc ~mark lid env =
lookup (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes)
?loc ~mark lid env
let lookup_class ?loc ~mark lid env =
ignore_address
(lookup (fun env -> env.classes) (fun sc -> sc.comp_classes)
?loc ~mark lid env)
let lookup_cltype ?loc ~mark lid env =
lookup (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes)
?loc ~mark lid env
type copy_of_types = {
to_copy: string list;
initial_values: (value_description * address_lazy) IdTbl.t;
new_values: (value_description * address_lazy) IdTbl.t;
}
let make_copy_of_types l env : copy_of_types =
let f (desc, addr) =
{desc with val_type = Subst.type_expr Subst.identity desc.val_type}, addr
in
let values =
List.fold_left (fun env s -> IdTbl.update s f env) env.values l
in
{to_copy = l; initial_values = env.values; new_values = values}
let do_copy_types { to_copy = l; initial_values; new_values = values } env =
if initial_values != env.values then fatal_error "Env.do_copy_types";
{env with values; summary = Env_copy_types (env.summary, l)}
let mark_value_used name vd =
try Hashtbl.find value_declarations (name, vd.val_loc) ()
with Not_found -> ()
let mark_type_used name vd =
try Hashtbl.find type_declarations (name, vd.type_loc) ()
with Not_found -> ()
let mark_constructor_used usage name vd constr =
try Hashtbl.find used_constructors (name, vd.type_loc, constr) usage
with Not_found -> ()
let mark_extension_used usage ext name =
let ty_name = Path.last ext.ext_type_path in
try Hashtbl.find used_constructors (ty_name, ext.ext_loc, name) usage
with Not_found -> ()
let set_value_used_callback name vd callback =
let key = (name, vd.val_loc) in
try
let old = Hashtbl.find value_declarations key in
Hashtbl.replace value_declarations key (fun () -> old (); callback ())
(* this is to support cases like:
let x = let x = 1 in x in x
where the two declarations have the same location
(e.g. resulting from Camlp4 expansion of grammar entries) *)
with Not_found ->
Hashtbl.add value_declarations key callback
let set_type_used_callback name td callback =
let loc = td.type_loc in
if loc.Location.loc_ghost then ()
else let key = (name, loc) in
let old =
try Hashtbl.find type_declarations key
with Not_found -> ignore
in
Hashtbl.replace type_declarations key (fun () -> callback old)
let lookup_value ?loc ?(mark = true) lid env =
let (_, desc) as r = lookup_value ?loc ~mark lid env in
if mark then mark_value_used (Longident.last lid) desc;
r
let lookup_type ?loc ?(mark = true) lid env =
let (path, (decl, _)) = lookup_type ?loc ~mark lid env in
if mark then mark_type_used (Longident.last lid) decl;
path
let mark_type_path env path =
try
let decl = find_type path env in
mark_type_used (Path.last path) decl
with Not_found -> ()
let ty_path t =
match repr t with
| {desc=Tconstr(path, _, _)} -> path
| _ -> assert false
let lookup_constructor ?loc ?(mark = true) lid env =
match lookup_all_constructors ?loc ~mark lid env with
[] -> raise Not_found
| ((desc, _), use) :: _ ->
if mark then begin
mark_type_path env (ty_path desc.cstr_res);
use ()
end;
desc
let is_lident = function
Lident _ -> true
| _ -> false
let lookup_all_constructors ?loc ?(mark = true) lid env =
try
let cstrs = lookup_all_constructors ?loc ~mark lid env in
let wrap_use desc use () =
if mark then begin
mark_type_path env (ty_path desc.cstr_res);
use ()
end
in
List.map (fun ((cstr, _), use) -> (cstr, wrap_use cstr use)) cstrs
with
Not_found when is_lident lid -> []
let mark_constructor usage env name desc =
match desc.cstr_tag with
| Cstr_extension _ ->
begin
let ty_path = ty_path desc.cstr_res in
let ty_name = Path.last ty_path in
try Hashtbl.find used_constructors (ty_name, desc.cstr_loc, name) usage
with Not_found -> ()
end
| _ ->
let ty_path = ty_path desc.cstr_res in
let ty_decl = try find_type ty_path env with Not_found -> assert false in
let ty_name = Path.last ty_path in
mark_constructor_used usage ty_name ty_decl name
let lookup_label ?loc ?(mark = true) lid env =
match lookup_all_labels ?loc ~mark lid env with
[] -> raise Not_found
| (desc, use) :: _ ->
if mark then begin
mark_type_path env (ty_path desc.lbl_res);
use ()
end;
desc
let lookup_all_labels ?loc ?(mark = true) lid env =
try
let lbls = lookup_all_labels ?loc ~mark lid env in
let wrap_use desc use () =
if mark then begin
mark_type_path env (ty_path desc.lbl_res);
use ()
end
in
List.map (fun (lbl, use) -> (lbl, wrap_use lbl use)) lbls
with
Not_found when is_lident lid -> []
let lookup_module ~load ?loc ?(mark = true) lid env =
lookup_module ~load ?loc ~mark lid env
let lookup_modtype ?loc ?(mark = true) lid env =
lookup_modtype ?loc ~mark lid env
let lookup_class ?loc ?(mark = true) lid env =
let (_, desc) as r = lookup_class ?loc ~mark lid env in
(* special support for Typeclass.unbound_class *)
if Path.name desc.cty_path = "" then ignore (lookup_type ?loc ~mark lid env)
else if mark then mark_type_path env desc.cty_path;
r
let lookup_cltype ?loc ?(mark = true) lid env =
let (_, desc) as r = lookup_cltype ?loc ~mark lid env in
if Path.name desc.clty_path = "" then ignore (lookup_type ?loc lid env)
else mark_type_path env desc.clty_path;
mark_type_path env desc.clty_path;
r
(* Iter on an environment (ignoring the body of functors and
not yet evaluated structures) *)
type iter_cont = unit -> unit
let iter_env_cont = ref []
let rec scrape_alias_for_visit env mty =
match mty with
| Mty_alias (Pident id)
when Ident.persistent id
&& not (Hashtbl.mem persistent_structures (Ident.name id)) -> false
| Mty_alias path -> (* PR#6600: find_module may raise Not_found *)
begin try scrape_alias_for_visit env (find_module path env).md_type
with Not_found -> false
end
| _ -> true
let iter_env proj1 proj2 f env () =
IdTbl.iter (fun id x -> f (Pident id) x) (proj1 env);
let rec iter_components path path' mcomps =
let cont () =
let visit =
match EnvLazy.get_arg mcomps.comps with
| None -> true
| Some (env, _sub, _path, _addr, mty) ->
scrape_alias_for_visit env mty
in
if not visit then () else
match get_components mcomps with
Structure_comps comps ->
NameMap.iter
(fun s d -> f (Pdot (path, s)) (Pdot (path', s), d))
(proj2 comps);
NameMap.iter
(fun s (c, _) ->
iter_components (Pdot (path, s)) (Pdot (path', s)) c)
comps.comp_components
| Functor_comps _ -> ()
in iter_env_cont := (path, cont) :: !iter_env_cont
in
Hashtbl.iter
(fun s pso ->
match pso with None -> ()
| Some ps ->
let id = Pident (Ident.create_persistent s) in
iter_components id id ps.ps_comps)
persistent_structures;
IdTbl.iter
(fun id (path, (comps, _)) -> iter_components (Pident id) path comps)
env.components
let run_iter_cont l =
iter_env_cont := [];
List.iter (fun c -> c ()) l;
let cont = List.rev !iter_env_cont in
iter_env_cont := [];
cont
let iter_types f = iter_env (fun env -> env.types) (fun sc -> sc.comp_types) f
let same_types env1 env2 =
env1.types == env2.types && env1.components == env2.components
let used_persistent () =
let r = ref Concr.empty in
Hashtbl.iter (fun s pso -> if pso != None then r := Concr.add s !r)
persistent_structures;
!r
let find_all_comps proj s (p,(mcomps, _)) =
match get_components mcomps with
Functor_comps _ -> []
| Structure_comps comps ->
try
let c = NameMap.find s (proj comps) in
[Pdot(p,s), c]
with Not_found -> []
let rec find_shadowed_comps path env =
match path with
Pident id ->
IdTbl.find_all (Ident.name id) env.components
| Pdot (p, s) ->
let l = find_shadowed_comps p env in
let l' =
List.map (find_all_comps (fun comps -> comps.comp_components) s) l
in
List.flatten l'
| Papply _ -> []
let find_shadowed proj1 proj2 path env =
match path with
Pident id ->
IdTbl.find_all (Ident.name id) (proj1 env)
| Pdot (p, s) ->
let l = find_shadowed_comps p env in
let l' = List.map (find_all_comps proj2 s) l in
List.flatten l'
| Papply _ -> []
let find_shadowed_types path env =
List.map fst
(find_shadowed
(fun env -> env.types) (fun comps -> comps.comp_types) path env)
(* Expand manifest module type names at the top of the given module type *)
let rec scrape_alias env ?path mty =
match mty, path with
Mty_ident p, _ ->
begin try
scrape_alias env (find_modtype_expansion p env) ?path
with Not_found ->
mty
end
| Mty_alias path, _ ->
begin try
scrape_alias env (find_module path env).md_type ~path
with Not_found ->
(*Location.prerr_warning Location.none
(Warnings.No_cmi_file (Path.name path));*)
mty
end
| mty, Some path ->
!strengthen ~aliasable:true env mty path
| _ -> mty
let scrape_alias env mty = scrape_alias env mty
(* Given a signature and a root path, prefix all idents in the signature
by the root path and build the corresponding substitution. *)
let rec prefix_idents root sub = function
[] -> ([], sub)
| Sig_value(id, _, _) :: rem ->
let p = Pdot(root, Ident.name id) in
let (pl, final_sub) = prefix_idents root sub rem in
(p::pl, final_sub)
| Sig_type(id, _, _, _) :: rem ->
let p = Pdot(root, Ident.name id) in
let (pl, final_sub) =
prefix_idents root (Subst.add_type id p sub) rem
in
(p::pl, final_sub)
| Sig_typext(id, _, _, _) :: rem ->
let p = Pdot(root, Ident.name id) in
(* we extend the substitution in case of an inlined record *)
let (pl, final_sub) =
prefix_idents root (Subst.add_type id p sub) rem
in
(p::pl, final_sub)
| Sig_module(id, _, _, _, _) :: rem ->
let p = Pdot(root, Ident.name id) in
let (pl, final_sub) =
prefix_idents root (Subst.add_module id p sub) rem
in
(p::pl, final_sub)
| Sig_modtype(id, _, _) :: rem ->
let p = Pdot(root, Ident.name id) in
let (pl, final_sub) =
prefix_idents root (Subst.add_modtype id (Mty_ident p) sub) rem
in
(p::pl, final_sub)
| Sig_class(id, _, _, _) :: rem ->
(* pretend this is a type, cf. PR#6650 *)
let p = Pdot(root, Ident.name id) in
let (pl, final_sub) =
prefix_idents root (Subst.add_type id p sub) rem
in
(p::pl, final_sub)
| Sig_class_type(id, _, _, _) :: rem ->
let p = Pdot(root, Ident.name id) in
let (pl, final_sub) =
prefix_idents root (Subst.add_type id p sub) rem
in
(p::pl, final_sub)
let prefix_idents root sub sg =
if sub = Subst.identity then
let sgs =
try
Hashtbl.find prefixed_sg root
with Not_found ->
let sgs = ref [] in
Hashtbl.add prefixed_sg root sgs;
sgs
in
try
List.assq sg !sgs
with Not_found ->
let r = prefix_idents root sub sg in
sgs := (sg, r) :: !sgs;
r
else
prefix_idents root sub sg
(* Compute structure descriptions *)
let add_to_tbl id decl tbl =
let decls = try NameMap.find id tbl with Not_found -> [] in
NameMap.add id (decl :: decls) tbl
let value_declaration_address (_ : t) id decl =
match decl.val_kind with
| Val_prim _ -> EnvLazy.create_failed Not_found
| _ -> EnvLazy.create_forced (Aident id)
let extension_declaration_address (_ : t) id (_ : extension_constructor) =
EnvLazy.create_forced (Aident id)
let class_declaration_address (_ : t) id (_ : class_declaration) =
EnvLazy.create_forced (Aident id)
let module_declaration_address env id presence md =
match presence with
| Mp_absent -> begin
match md.md_type with
| Mty_alias path -> EnvLazy.create (ModAlias {env; path})
| _ -> assert false
end
| Mp_present ->
EnvLazy.create_forced (Aident id)
let rec components_of_module ~alerts ~loc env sub path addr mty =
{
alerts;
loc;
comps = EnvLazy.create (env, sub, path, addr, mty)
}
and components_of_module_maker (env, sub, path, addr, mty) =
match scrape_alias env mty with
Mty_signature sg ->
let c =
{ comp_values = NameMap.empty;
comp_constrs = NameMap.empty;
comp_labels = NameMap.empty; comp_types = NameMap.empty;
comp_modules = NameMap.empty; comp_modtypes = NameMap.empty;
comp_components = NameMap.empty; comp_classes = NameMap.empty;
comp_cltypes = NameMap.empty } in
let pl, sub = prefix_idents path sub sg in
let env = ref env in
let pos = ref 0 in
let next_address () =
let addr : address_unforced =
Projection { parent = addr; pos = !pos }
in
incr pos;
EnvLazy.create addr
in
List.iter2 (fun item path ->
match item with
Sig_value(id, decl, _) ->
let decl' = Subst.value_description sub decl in
let addr =
match decl.val_kind with
| Val_prim _ -> EnvLazy.create_failed Not_found
| _ -> next_address ()
in
c.comp_values <-
NameMap.add (Ident.name id) (decl', addr) c.comp_values;
| Sig_type(id, decl, _, _) ->
let decl' = Subst.type_declaration sub decl in
Datarepr.set_row_name decl' (Subst.type_path sub (Path.Pident id));
let constructors =
List.map snd (Datarepr.constructors_of_type path decl') in
let labels =
List.map snd (Datarepr.labels_of_type path decl') in
c.comp_types <-
NameMap.add (Ident.name id)
(decl', (constructors, labels))
c.comp_types;
List.iter
(fun descr ->
c.comp_constrs <-
add_to_tbl descr.cstr_name (descr, None) c.comp_constrs)
constructors;
List.iter
(fun descr ->
c.comp_labels <-
add_to_tbl descr.lbl_name descr c.comp_labels)
labels;
env := store_type_infos id decl !env
| Sig_typext(id, ext, _, _) ->
let ext' = Subst.extension_constructor sub ext in
let descr = Datarepr.extension_descr path ext' in
let addr = next_address () in
c.comp_constrs <-
add_to_tbl (Ident.name id) (descr, Some addr) c.comp_constrs
| Sig_module(id, pres, md, _, _) ->
let md' = EnvLazy.create (sub, md) in
let addr =
match pres with
| Mp_absent -> begin
match md.md_type with
| Mty_alias path ->
EnvLazy.create (ModAlias {env = !env; path})
| _ -> assert false
end
| Mp_present -> next_address ()
in
c.comp_modules <-
NameMap.add (Ident.name id) (md', addr) c.comp_modules;
let alerts =
Builtin_attributes.alerts_of_attrs md.md_attributes
in
let comps =
components_of_module ~alerts ~loc:md.md_loc !env sub path
addr md.md_type
in
c.comp_components <-
NameMap.add (Ident.name id) (comps, addr) c.comp_components;
env := store_module ~check:false id addr pres md !env
| Sig_modtype(id, decl, _) ->
let decl' = Subst.modtype_declaration sub decl in
c.comp_modtypes <-
NameMap.add (Ident.name id) decl' c.comp_modtypes;
env := store_modtype id decl !env
| Sig_class(id, decl, _, _) ->
let decl' = Subst.class_declaration sub decl in
c.comp_classes <-
NameMap.add (Ident.name id) (decl', next_address ())
c.comp_classes
| Sig_class_type(id, decl, _, _) ->
let decl' = Subst.cltype_declaration sub decl in
c.comp_cltypes <-
NameMap.add (Ident.name id) decl' c.comp_cltypes)
sg pl;
Some (Structure_comps c)
| Mty_functor(param, ty_arg, ty_res) ->
Some (Functor_comps {
fcomp_param = param;
(* fcomp_arg and fcomp_res must be prefixed eagerly, because
they are interpreted in the outer environment *)
fcomp_arg = may_map (Subst.modtype sub) ty_arg;
fcomp_res = Subst.modtype sub ty_res;
fcomp_cache = Hashtbl.create 17;
fcomp_subst_cache = Hashtbl.create 17 })
| Mty_ident _
| Mty_alias _ -> None
(* Insertion of bindings by identifier + path *)
and check_usage loc id warn tbl =
if not loc.Location.loc_ghost && Warnings.is_active (warn "") then begin
let name = Ident.name id in
let key = (name, loc) in
if Hashtbl.mem tbl key then ()
else let used = ref false in
Hashtbl.add tbl key (fun () -> used := true);
if not (name = "" || name.[0] = '_' || name.[0] = '#')
then
!add_delayed_check_forward
(fun () -> if not !used then Location.prerr_warning loc (warn name))
end;
and check_value_name name loc =
(* Note: we could also check here general validity of the
identifier, to protect against bad identifiers forged by -pp or
-ppx preprocessors. *)
if String.length name > 0 && (name.[0] = '#') then
for i = 1 to String.length name - 1 do
if name.[i] = '#' then
raise (Error(Illegal_value_name(loc, name)))
done
and store_value ?check id addr decl env =
check_value_name (Ident.name id) decl.val_loc;
may (fun f -> check_usage decl.val_loc id f value_declarations) check;
{ env with
values = IdTbl.add id (decl, addr) env.values;
summary = Env_value(env.summary, id, decl) }
and store_type ~check id info env =
let loc = info.type_loc in
if check then
check_usage loc id (fun s -> Warnings.Unused_type_declaration s)
type_declarations;
let path = Pident id in
let constructors = Datarepr.constructors_of_type path info in
let labels = Datarepr.labels_of_type path info in
let descrs = (List.map snd constructors, List.map snd labels) in
if check && not loc.Location.loc_ghost &&
Warnings.is_active (Warnings.Unused_constructor ("", false, false))
then begin
let ty = Ident.name id in
List.iter
begin fun (_, {cstr_name = c; _}) ->
let k = (ty, loc, c) in
if not (Hashtbl.mem used_constructors k) then
let used = constructor_usages () in
Hashtbl.add used_constructors k (add_constructor_usage used);
if not (ty = "" || ty.[0] = '_')
then !add_delayed_check_forward
(fun () ->
if not (is_in_signature env) && not used.cu_positive then
Location.prerr_warning loc
(Warnings.Unused_constructor
(c, used.cu_pattern, used.cu_privatize)))
end
constructors
end;
{ env with
constrs =
List.fold_right
(fun (id, descr) constrs -> TycompTbl.add id (descr, None) constrs)
constructors
env.constrs;
labels =
List.fold_right
(fun (id, descr) labels -> TycompTbl.add id descr labels)
labels
env.labels;
types = IdTbl.add id (info, descrs) env.types;
summary = Env_type(env.summary, id, info) }
and store_type_infos id info env =
(* Simplified version of store_type that doesn't compute and store
constructor and label infos, but simply record the arity and
manifest-ness of the type. Used in components_of_module to
keep track of type abbreviations (e.g. type t = float) in the
computation of label representations. *)
{ env with
types = IdTbl.add id (info,([],[])) env.types;
summary = Env_type(env.summary, id, info) }
and store_extension ~check id addr ext env =
let loc = ext.ext_loc in
if check && not loc.Location.loc_ghost &&
Warnings.is_active (Warnings.Unused_extension ("", false, false, false))
then begin
let is_exception = Path.same ext.ext_type_path Predef.path_exn in
let ty = Path.last ext.ext_type_path in
let n = Ident.name id in
let k = (ty, loc, n) in
if not (Hashtbl.mem used_constructors k) then begin
let used = constructor_usages () in
Hashtbl.add used_constructors k (add_constructor_usage used);
!add_delayed_check_forward
(fun () ->
if not (is_in_signature env) && not used.cu_positive then
Location.prerr_warning loc
(Warnings.Unused_extension
(n, is_exception, used.cu_pattern, used.cu_privatize)
)
)
end;
end;
let desc = Datarepr.extension_descr (Pident id) ext in
{ env with
constrs = TycompTbl.add id (desc, Some addr) env.constrs;
summary = Env_extension(env.summary, id, ext) }
and store_module ~check id addr presence md env =
let loc = md.md_loc in
if check then
check_usage loc id (fun s -> Warnings.Unused_module s)
module_declarations;
let alerts = Builtin_attributes.alerts_of_attrs md.md_attributes in
{ env with
modules =
IdTbl.add id (EnvLazy.create (Subst.identity, md), addr) env.modules;
components =
IdTbl.add id
(components_of_module ~alerts ~loc:md.md_loc
env Subst.identity (Pident id) addr md.md_type, addr)
env.components;
summary = Env_module(env.summary, id, presence, md) }
and store_modtype id info env =
{ env with
modtypes = IdTbl.add id info env.modtypes;
summary = Env_modtype(env.summary, id, info) }
and store_class id addr desc env =
{ env with
classes = IdTbl.add id (desc, addr) env.classes;
summary = Env_class(env.summary, id, desc) }
and store_cltype id desc env =
{ env with
cltypes = IdTbl.add id desc env.cltypes;
summary = Env_cltype(env.summary, id, desc) }
(* Compute the components of a functor application in a path. *)
let components_of_functor_appl f env p1 p2 =
try
Hashtbl.find f.fcomp_cache p2
with Not_found ->
let p = Papply(p1, p2) in
let sub = Subst.add_module f.fcomp_param p2 Subst.identity in
let mty = Subst.modtype sub f.fcomp_res in
let addr = EnvLazy.create_failed Not_found in
!check_well_formed_module env Location.(in_file !input_name)
("the signature of " ^ Path.name p) mty;
let comps =
components_of_module ~alerts:Misc.Stdlib.String.Map.empty
~loc:Location.none
(*???*)
env Subst.identity p addr mty
in
Hashtbl.add f.fcomp_cache p2 comps;
comps
(* Define forward functions *)
let _ =
components_of_module' := components_of_module;
components_of_functor_appl' := components_of_functor_appl;
components_of_module_maker' := components_of_module_maker
(* Insertion of bindings by identifier *)
let add_functor_arg id env =
{env with
functor_args = Ident.add id () env.functor_args;
summary = Env_functor_arg (env.summary, id)}
let add_value ?check id desc env =
let addr = value_declaration_address env id desc in
store_value ?check id addr desc env
let add_type ~check id info env =
store_type ~check id info env
and add_extension ~check id ext env =
let addr = extension_declaration_address env id ext in
store_extension ~check id addr ext env
and add_module_declaration ?(arg=false) ~check id presence md env =
let addr = module_declaration_address env id presence md in
let env = store_module ~check id addr presence md env in
if arg then add_functor_arg id env else env
and add_modtype id info env =
store_modtype id info env
and add_class id ty env =
let addr = class_declaration_address env id ty in
store_class id addr ty env
and add_cltype id ty env =
store_cltype id ty env
let add_module ?arg id presence mty env =
add_module_declaration ~check:false ?arg id presence (md mty) env
let add_local_type path info env =
{ env with
local_constraints = Path.Map.add path info env.local_constraints }
(* Insertion of bindings by name *)
let enter_value ?check name desc env =
let id = Ident.create_local name in
let addr = value_declaration_address env id desc in
let env = store_value ?check id addr desc env in
(id, env)
let enter_type ~scope name info env =
let id = Ident.create_scoped ~scope name in
let env = store_type ~check:true id info env in
(id, env)
let enter_extension ~scope name ext env =
let id = Ident.create_scoped ~scope name in
let addr = extension_declaration_address env id ext in
let env = store_extension ~check:true id addr ext env in
(id, env)
let enter_module_declaration ?arg id presence md env =
add_module_declaration ?arg ~check:true id presence md env
let enter_modtype ~scope name mtd env =
let id = Ident.create_scoped ~scope name in
let env = store_modtype id mtd env in
(id, env)
let enter_class ~scope name desc env =
let id = Ident.create_scoped ~scope name in
let addr = class_declaration_address env id desc in
let env = store_class id addr desc env in
(id, env)
let enter_cltype ~scope name desc env =
let id = Ident.create_scoped ~scope name in
let env = store_cltype id desc env in
(id, env)
let enter_module ~scope ?arg s presence mty env =
let id = Ident.create_scoped ~scope s in
let env = enter_module_declaration ?arg id presence (md mty) env in
(id, env)
(* Insertion of all components of a signature *)
let add_item comp env =
match comp with
Sig_value(id, decl, _) -> add_value id decl env
| Sig_type(id, decl, _, _) -> add_type ~check:false id decl env
| Sig_typext(id, ext, _, _) -> add_extension ~check:false id ext env
| Sig_module(id, presence, md, _, _) ->
add_module_declaration ~check:false id presence md env
| Sig_modtype(id, decl, _) -> add_modtype id decl env
| Sig_class(id, decl, _, _) -> add_class id decl env
| Sig_class_type(id, decl, _, _) -> add_cltype id decl env
let rec add_signature sg env =
match sg with
[] -> env
| comp :: rem -> add_signature rem (add_item comp env)
let refresh_signature ~scope sg =
let rec refresh_bound_idents s sg =
let open Subst in
function
[] -> sg, s
| Sig_type(id, td, rs, vis) :: rest ->
let id' = Ident.create_scoped ~scope (Ident.name id) in
refresh_bound_idents
(add_type id (Pident id') s)
(Sig_type(id', td, rs, vis) :: sg)
rest
| Sig_module(id, pres, md, rs, vis) :: rest ->
let id' = Ident.create_scoped ~scope (Ident.name id) in
refresh_bound_idents
(add_module id (Pident id') s)
(Sig_module (id', pres, md, rs, vis) :: sg)
rest
| Sig_modtype(id, mtd, vis) :: rest ->
let id' = Ident.create_scoped ~scope (Ident.name id) in
refresh_bound_idents
(add_modtype id (Mty_ident(Pident id')) s)
(Sig_modtype(id', mtd, vis) :: sg)
rest
| Sig_class(id, cd, rs, vis) :: rest ->
(* cheat and pretend they are types cf. PR#6650 *)
let id' = Ident.create_scoped ~scope (Ident.name id) in
refresh_bound_idents
(add_type id (Pident id') s)
(Sig_class(id', cd, rs, vis) :: sg)
rest
| Sig_class_type(id, ctd, rs, vis) :: rest ->
(* cheat and pretend they are types cf. PR#6650 *)
let id' = Ident.create_scoped ~scope (Ident.name id) in
refresh_bound_idents
(add_type id (Pident id') s)
(Sig_class_type(id', ctd, rs, vis) :: sg)
rest
| Sig_value(id, vd, vis) :: rest ->
let id' = Ident.create_local (Ident.name id) in
refresh_bound_idents s (Sig_value(id', vd, vis) :: sg) rest
| Sig_typext(id, ec, es, vis) :: rest ->
let id' = Ident.create_scoped ~scope (Ident.name id) in
refresh_bound_idents s (Sig_typext(id',ec,es,vis) :: sg) rest
in
let (sg', s') = refresh_bound_idents Subst.identity [] sg in
List.rev_map (Subst.signature_item s') sg'
let enter_signature ~scope sg env =
let sg = refresh_signature ~scope sg in
sg, add_signature sg env
(* Open a signature path *)
let add_components ?filter_modules slot root env0 comps =
let add_l w comps env0 =
TycompTbl.add_open slot w comps env0
in
let add w comps env0 = IdTbl.add_open slot w root comps env0 in
let skipped_modules = ref String.Set.empty in
let filter tbl env0_tbl =
match filter_modules with
| None -> tbl
| Some f ->
NameMap.fold (fun m x acc ->
if f m then
NameMap.add m x acc
else begin
assert
(match IdTbl.find_name m env0_tbl~mark:false with
| (_ : _ * _) -> false
| exception _ -> true);
skipped_modules := String.Set.add m !skipped_modules;
acc
end)
tbl NameMap.empty
in
let filter_and_add w comps env0 =
let comps = filter comps env0 in
add w comps env0
in
let constrs =
add_l (fun x -> `Constructor x) comps.comp_constrs env0.constrs
in
let labels =
add_l (fun x -> `Label x) comps.comp_labels env0.labels
in
let values =
add (fun x -> `Value x) comps.comp_values env0.values
in
let types =
add (fun x -> `Type x) comps.comp_types env0.types
in
let modtypes =
add (fun x -> `Module_type x) comps.comp_modtypes env0.modtypes
in
let classes =
add (fun x -> `Class x) comps.comp_classes env0.classes
in
let cltypes =
add (fun x -> `Class_type x) comps.comp_cltypes env0.cltypes
in
let components =
filter_and_add (fun x -> `Component x) comps.comp_components env0.components
in
let modules =
filter_and_add (fun x -> `Module x) comps.comp_modules env0.modules
in
{ env0 with
summary = Env_open(env0.summary, !skipped_modules, root);
constrs;
labels;
values;
types;
modtypes;
classes;
cltypes;
components;
modules;
}
let open_signature ?filter_modules slot root env0 =
match get_components (find_module_descr root env0) with
| Functor_comps _ -> None
| Structure_comps comps ->
Some (add_components ?filter_modules slot root env0 comps)
(* Open a signature from a file *)
let open_pers_signature name env =
match open_signature None (Pident(Ident.create_persistent name)) env with
| Some env -> env
| None -> assert false (* a compilation unit cannot refer to a functor *)
let open_signature_of_initially_opened_module root env =
let load_path = !Config.load_path in
let filter_modules m =
match Misc.find_in_path_uncap load_path (m ^ ".cmi") with
| (_ : string) -> false
| exception Not_found -> true
in
open_signature None root env ~filter_modules
let open_signature_from_env_summary root env ~hidden_submodules =
let filter_modules =
if String.Set.is_empty hidden_submodules then
None
else
Some (fun m -> not (String.Set.mem m hidden_submodules))
in
open_signature None root env ?filter_modules
let open_signature
?(used_slot = ref false)
?(loc = Location.none) ?(toplevel = false)
ovf root env =
let unused =
match ovf with
| Asttypes.Fresh -> Warnings.Unused_open (Path.name root)
| Asttypes.Override -> Warnings.Unused_open_bang (Path.name root)
in
let warn_unused =
Warnings.is_active unused
and warn_shadow_id =
Warnings.is_active (Warnings.Open_shadow_identifier ("", ""))
and warn_shadow_lc =
Warnings.is_active (Warnings.Open_shadow_label_constructor ("",""))
in
if not toplevel && not loc.Location.loc_ghost
&& (warn_unused || warn_shadow_id || warn_shadow_lc)
then begin
let used = used_slot in
if warn_unused then
!add_delayed_check_forward
(fun () ->
if not !used then begin
used := true;
Location.prerr_warning loc unused
end
);
let shadowed = ref [] in
let slot s b =
begin match check_shadowing env b with
| Some kind when
ovf = Asttypes.Fresh && not (List.mem (kind, s) !shadowed) ->
shadowed := (kind, s) :: !shadowed;
let w =
match kind with
| "label" | "constructor" ->
Warnings.Open_shadow_label_constructor (kind, s)
| _ -> Warnings.Open_shadow_identifier (kind, s)
in
Location.prerr_warning loc w
| _ -> ()
end;
used := true
in
open_signature (Some slot) root env
end
else open_signature None root env
(* Read a signature from a file *)
let read_signature modname filename =
let ps = read_pers_struct modname filename in
Lazy.force ps.ps_sig
(* Return the CRC of the interface of the given compilation unit *)
let crc_of_unit name =
let ps = find_pers_struct name in
let crco =
try
List.assoc name ps.ps_crcs
with Not_found ->
assert false
in
match crco with
None -> assert false
| Some crc -> crc
(* Return the list of imported interfaces with their CRCs *)
let imports () =
Consistbl.extract (String.Set.elements !imported_units) crc_units
(* Returns true if [s] is an opaque imported module *)
let is_imported_opaque s =
String.Set.mem s !imported_opaque_units
(* Save a signature to a file *)
let save_signature_with_imports ~alerts sg modname filename imports =
(*prerr_endline filename;
List.iter (fun (name, crc) -> prerr_endline name) imports;*)
Btype.cleanup_abbrev ();
Subst.reset_for_saving ();
let sg = Subst.signature (Subst.for_saving Subst.identity) sg in
let flags =
List.concat [
if !Clflags.recursive_types then [Cmi_format.Rectypes] else [];
if !Clflags.opaque then [Cmi_format.Opaque] else [];
(if !Clflags.unsafe_string then [Cmi_format.Unsafe_string] else []);
[Alerts alerts];
]
in
Misc.try_finally (fun () ->
let cmi = {
cmi_name = modname;
cmi_sign = sg;
cmi_crcs = imports;
cmi_flags = flags;
} in
let crc =
output_to_file_via_temporary (* see MPR#7472, MPR#4991 *)
~mode: [Open_binary] filename
(fun temp_filename oc -> output_cmi temp_filename oc cmi) in
(* Enter signature in persistent table so that imported_unit()
will also return its crc *)
let id = Ident.create_persistent modname in
let path = Pident id in
let addr = EnvLazy.create_forced (Aident id) in
let comps =
components_of_module ~alerts ~loc:Location.none
empty Subst.identity path addr (Mty_signature sg)
in
let ps =
{ ps_name = modname;
ps_sig = lazy (Subst.signature Subst.identity sg);
ps_comps = comps;
ps_crcs = (cmi.cmi_name, Some crc) :: imports;
ps_filename = filename;
ps_flags = cmi.cmi_flags;
} in
save_pers_struct crc ps;
cmi
)
~exceptionally:(fun () -> remove_file filename)
let save_signature ~alerts sg modname filename =
save_signature_with_imports ~alerts sg modname filename (imports())
(* Folding on environments *)
let find_all proj1 proj2 f lid env acc =
match lid with
| None ->
IdTbl.fold_name
(fun name (p, data) acc -> f name p data acc)
(proj1 env) acc
| Some l ->
let p, desc = lookup_module_descr ~mark:true l env in
begin match get_components desc with
Structure_comps c ->
NameMap.fold
(fun s data acc -> f s (Pdot (p, s)) data acc)
(proj2 c) acc
| Functor_comps _ ->
acc
end
let find_all_simple_list proj1 proj2 f lid env acc =
match lid with
| None ->
TycompTbl.fold_name
(fun data acc -> f data acc)
(proj1 env) acc
| Some l ->
let (_p, desc) = lookup_module_descr ~mark:true l env in
begin match get_components desc with
Structure_comps c ->
NameMap.fold
(fun _s comps acc ->
match comps with
| [] -> acc
| data :: _ -> f data acc)
(proj2 c) acc
| Functor_comps _ ->
acc
end
let fold_modules f lid env acc =
match lid with
| None ->
let acc =
IdTbl.fold_name
(fun name (p, (data, _)) acc ->
let data = EnvLazy.force subst_modtype_maker data in
f name p data acc
)
env.modules
acc
in
Hashtbl.fold
(fun name ps acc ->
match ps with
None -> acc
| Some ps ->
f name (Pident(Ident.create_persistent name))
(md (Mty_signature (Lazy.force ps.ps_sig))) acc)
persistent_structures
acc
| Some l ->
let p, desc = lookup_module_descr ~mark:true l env in
begin match get_components desc with
Structure_comps c ->
NameMap.fold
(fun s (data, _) acc ->
f s (Pdot (p, s))
(EnvLazy.force subst_modtype_maker data) acc)
c.comp_modules
acc
| Functor_comps _ ->
acc
end
let fold_values f =
find_all (fun env -> env.values) (fun sc -> sc.comp_values)
(fun k p (vd, _) acc -> f k p vd acc)
and fold_constructors f =
find_all_simple_list (fun env -> env.constrs) (fun sc -> sc.comp_constrs)
(fun (cd, _) acc -> f cd acc)
and fold_labels f =
find_all_simple_list (fun env -> env.labels) (fun sc -> sc.comp_labels) f
and fold_types f =
find_all (fun env -> env.types) (fun sc -> sc.comp_types) f
and fold_modtypes f =
find_all (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes) f
and fold_classes f =
find_all (fun env -> env.classes) (fun sc -> sc.comp_classes)
(fun k p (vd, _) acc -> f k p vd acc)
and fold_cltypes f =
find_all (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes) f
(* Make the initial environment *)
let (initial_safe_string, initial_unsafe_string) =
Predef.build_initial_env
(add_type ~check:false)
(add_extension ~check:false)
empty
(* Return the environment summary *)
let summary env =
if Path.Map.is_empty env.local_constraints then env.summary
else Env_constraints (env.summary, env.local_constraints)
let last_env = ref empty
let last_reduced_env = ref empty
let keep_only_summary env =
if !last_env == env then !last_reduced_env
else begin
let new_env =
{
empty with
summary = env.summary;
local_constraints = env.local_constraints;
flags = env.flags;
}
in
last_env := env;
last_reduced_env := new_env;
new_env
end
let env_of_only_summary env_from_summary env =
let new_env = env_from_summary env.summary Subst.identity in
{ new_env with
local_constraints = env.local_constraints;
flags = env.flags;
}
(* Error report *)
open Format
let report_error ppf = function
| Illegal_renaming(modname, ps_name, filename) -> fprintf ppf
"Wrong file naming: %a@ contains the compiled interface for @ \
%s when %s was expected"
Location.print_filename filename ps_name modname
| Inconsistent_import(name, source1, source2) -> fprintf ppf
"@[<hov>The files %a@ and %a@ \
make inconsistent assumptions@ over interface %s@]"
Location.print_filename source1 Location.print_filename source2 name
| Need_recursive_types(import, export) ->
fprintf ppf
"@[<hov>Unit %s imports from %s, which uses recursive types.@ %s@]"
export import "The compilation flag -rectypes is required"
| Depend_on_unsafe_string_unit(import, export) ->
fprintf ppf
"@[<hov>Unit %s imports from %s, compiled with -unsafe-string.@ %s@]"
export import "This compiler has been configured in strict \
safe-string mode (-force-safe-string)"
| Missing_module(_, path1, path2) ->
fprintf ppf "@[@[<hov>";
if Path.same path1 path2 then
fprintf ppf "Internal path@ %s@ is dangling." (Path.name path1)
else
fprintf ppf "Internal path@ %s@ expands to@ %s@ which is dangling."
(Path.name path1) (Path.name path2);
fprintf ppf "@]@ @[%s@ %s@ %s.@]@]"
"The compiled interface for module" (Ident.name (Path.head path2))
"was not found"
| Illegal_value_name(_loc, name) ->
fprintf ppf "'%s' is not a valid value identifier."
name
let () =
Location.register_error_of_exn
(function
| Error (Missing_module (loc, _, _)
| Illegal_value_name (loc, _)
as err) when loc <> Location.none ->
Some (Location.error_of_printer ~loc report_error err)
| Error err -> Some (Location.error_of_printer_file report_error err)
| _ -> None
)