357 lines
12 KiB
OCaml
357 lines
12 KiB
OCaml
(***********************************************************************)
|
|
(* *)
|
|
(* Objective Caml *)
|
|
(* *)
|
|
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
|
|
(* *)
|
|
(* Copyright 1996 Institut National de Recherche en Informatique et *)
|
|
(* en Automatique. All rights reserved. This file is distributed *)
|
|
(* under the terms of the Q Public License version 1.0. *)
|
|
(* *)
|
|
(***********************************************************************)
|
|
|
|
(* $Id$ *)
|
|
|
|
(**** Typing of type definitions ****)
|
|
|
|
open Misc
|
|
open Parsetree
|
|
open Types
|
|
open Typedtree
|
|
open Typetexp
|
|
|
|
type error =
|
|
Repeated_parameter
|
|
| Duplicate_constructor of string
|
|
| Too_many_constructors
|
|
| Duplicate_label of string
|
|
| Recursive_abbrev of string
|
|
| Definition_mismatch of type_expr
|
|
| Unconsistent_constraint
|
|
| Type_clash of (type_expr * type_expr) list
|
|
| Null_arity_external
|
|
| Unbound_type_var
|
|
|
|
exception Error of Location.t * error
|
|
|
|
(* Enter all declared types in the environment as abstract types *)
|
|
|
|
let rec enter_types env = function
|
|
([], []) ->
|
|
(env, [])
|
|
| ((name, sdecl) :: srem, id :: irem) ->
|
|
let decl =
|
|
{ type_params = List.map (fun _ -> Ctype.newvar ()) sdecl.ptype_params;
|
|
type_arity = List.length sdecl.ptype_params;
|
|
type_kind = Type_abstract;
|
|
type_manifest =
|
|
match sdecl.ptype_manifest with
|
|
None -> None
|
|
| Some _ -> Some (Ctype.newvar ()) }
|
|
in
|
|
let extenv = Env.add_type id decl env in
|
|
let (ext_env, decl_rem) = enter_types extenv (srem, irem) in
|
|
(ext_env, (id, decl) :: decl_rem)
|
|
| _ ->
|
|
fatal_error "Typedecl.enter_types"
|
|
|
|
(* Translate one type declaration *)
|
|
|
|
module StringSet =
|
|
Set.Make(struct
|
|
type t = string
|
|
let compare = compare
|
|
end)
|
|
|
|
(* First pass: parameters, constraints and expansion *)
|
|
let transl_declaration env (name, sdecl) (id, decl) =
|
|
reset_type_variables();
|
|
begin try
|
|
List.iter2
|
|
(fun ty sty -> Ctype.unify env ty (enter_type_variable true sty))
|
|
decl.type_params sdecl.ptype_params
|
|
with Already_bound ->
|
|
raise(Error(sdecl.ptype_loc, Repeated_parameter))
|
|
end;
|
|
|
|
begin match sdecl.ptype_manifest with
|
|
None ->
|
|
()
|
|
| Some sty ->
|
|
let ty = transl_simple_type env true sty in
|
|
if Ctype.cyclic_abbrev env id ty then
|
|
raise(Error(sdecl.ptype_loc, Recursive_abbrev name));
|
|
begin try
|
|
Ctype.unify env ty (Ctype.newconstr (Path.Pident id) decl.type_params)
|
|
with Ctype.Unify trace ->
|
|
raise(Error(sdecl.ptype_loc, Type_clash trace))
|
|
end
|
|
end;
|
|
|
|
List.iter
|
|
(function (sty, sty', loc) ->
|
|
try
|
|
Ctype.unify env (transl_simple_type env false sty)
|
|
(transl_simple_type env false sty')
|
|
with Ctype.Unify _ ->
|
|
raise(Error(loc, Unconsistent_constraint)))
|
|
sdecl.ptype_cstrs;
|
|
|
|
(id, decl)
|
|
|
|
(* Second pass: representation *)
|
|
let transl_declaration2 env (name, sdecl) (id, decl) =
|
|
let (params, typ) =
|
|
match decl.type_manifest with
|
|
None -> (Ctype.instance_list decl.type_params, None)
|
|
| Some typ ->
|
|
let (params, typ) =
|
|
Ctype.instance_parameterized_type decl.type_params typ
|
|
in
|
|
(params, Some typ)
|
|
in
|
|
|
|
(* Bind type parameters *)
|
|
reset_type_variables();
|
|
List.iter2
|
|
(fun ty sty -> Ctype.unify env ty (enter_type_variable true sty))
|
|
params sdecl.ptype_params;
|
|
|
|
let decl' =
|
|
{ type_params = params;
|
|
type_arity = decl.type_arity;
|
|
type_kind =
|
|
begin match sdecl.ptype_kind with
|
|
Ptype_abstract ->
|
|
Type_abstract
|
|
| Ptype_variant cstrs ->
|
|
let all_constrs = ref StringSet.empty in
|
|
List.iter
|
|
(fun (name, args) ->
|
|
if StringSet.mem name !all_constrs then
|
|
raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
|
|
all_constrs := StringSet.add name !all_constrs)
|
|
cstrs;
|
|
if List.length cstrs > Config.max_tag then
|
|
raise(Error(sdecl.ptype_loc, Too_many_constructors));
|
|
Type_variant(List.map
|
|
(fun (name, args) ->
|
|
(name, List.map (transl_simple_type env true) args))
|
|
cstrs)
|
|
| Ptype_record lbls ->
|
|
let all_labels = ref StringSet.empty in
|
|
List.iter
|
|
(fun (name, mut, arg) ->
|
|
if StringSet.mem name !all_labels then
|
|
raise(Error(sdecl.ptype_loc, Duplicate_label name));
|
|
all_labels := StringSet.add name !all_labels)
|
|
lbls;
|
|
Type_record(List.map
|
|
(fun (name, mut, arg) ->
|
|
(name, mut, transl_simple_type env true arg))
|
|
lbls)
|
|
end;
|
|
type_manifest = typ } in
|
|
(id, decl')
|
|
|
|
(* Generalize a type declaration *)
|
|
|
|
let generalize_decl decl =
|
|
List.iter Ctype.generalize decl.type_params;
|
|
begin match decl.type_kind with
|
|
Type_abstract ->
|
|
()
|
|
| Type_variant v ->
|
|
List.iter (fun (_, tyl) -> List.iter Ctype.generalize tyl) v
|
|
| Type_record r ->
|
|
List.iter (fun (_, _, ty) -> Ctype.generalize ty) r
|
|
end;
|
|
begin match decl.type_manifest with
|
|
None -> ()
|
|
| Some ty -> Ctype.generalize ty
|
|
end
|
|
|
|
(*
|
|
If both a variant/record definition and a type equation are given,
|
|
need to check that the equation refers to a type of the same kind
|
|
with the same constructors and labels.
|
|
*)
|
|
let check_abbrev env (_, sdecl) (id, decl) =
|
|
match decl with
|
|
{type_kind = (Type_variant _ | Type_record _); type_manifest = Some ty} ->
|
|
begin match (Ctype.repr ty).desc with
|
|
Tconstr(path, args, _) ->
|
|
begin try
|
|
let decl' = Env.find_type path env in
|
|
if List.length args = List.length decl.type_params
|
|
&& Ctype.equal env false args decl.type_params
|
|
&& Includecore.type_declarations env id
|
|
decl'
|
|
(Subst.type_declaration (Subst.add_type id path Subst.identity)
|
|
decl)
|
|
then ()
|
|
else raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
|
|
with Not_found ->
|
|
raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
|
|
end
|
|
| _ -> raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
|
|
end
|
|
| _ -> ()
|
|
|
|
(* Check for ill-defined abbrevs *)
|
|
|
|
(* Occur check *)
|
|
let check_recursive_abbrev env (name, sdecl) (id, decl) =
|
|
match decl.type_manifest with
|
|
Some ty ->
|
|
begin try Ctype.correct_abbrev env id decl.type_params ty with
|
|
Ctype.Recursive_abbrev ->
|
|
raise(Error(sdecl.ptype_loc, Recursive_abbrev name))
|
|
end
|
|
| _ ->
|
|
()
|
|
|
|
(* Translate a set of mutually recursive type declarations *)
|
|
let transl_type_decl env name_sdecl_list =
|
|
(* Create identifiers. *)
|
|
let id_list =
|
|
List.map (fun (name, _) -> Ident.create name) name_sdecl_list
|
|
in
|
|
(*
|
|
Since we've introduced fresh idents, make sure the definition
|
|
level is at least the binding time of these events. Otherwise,
|
|
passing one of the recursively-defined type constrs as argument
|
|
to an abbreviation may fail.
|
|
*)
|
|
Ctype.init_def(Ident.current_time());
|
|
Ctype.begin_def();
|
|
(* Enter types. *)
|
|
let (temp_env, temp_decl) = enter_types env (name_sdecl_list, id_list) in
|
|
(* Translate each declaration. *)
|
|
let decls =
|
|
List.map2 (transl_declaration temp_env) name_sdecl_list temp_decl in
|
|
(* Generalize intermediate type declarations. *)
|
|
Ctype.end_def();
|
|
List.iter (function (_, decl) -> generalize_decl decl) decls;
|
|
(* Build an env. containing type expansions *)
|
|
let temp_env =
|
|
List.fold_right
|
|
(fun (id, decl) env -> Env.add_type id decl env)
|
|
decls env
|
|
in
|
|
(* Check for recursive abbrevs *)
|
|
List.iter2 (check_recursive_abbrev temp_env) name_sdecl_list decls;
|
|
Ctype.begin_def();
|
|
let decls =
|
|
List.map2 (transl_declaration2 temp_env) name_sdecl_list decls in
|
|
(* Generalize final type declarations. *)
|
|
Ctype.end_def();
|
|
List.iter (function (_, decl) -> generalize_decl decl) decls;
|
|
(* Build the final env. *)
|
|
let newenv =
|
|
List.fold_right
|
|
(fun (id, decl) env -> Env.add_type id decl env)
|
|
decls env
|
|
in
|
|
(* Check that all type variable are closed *)
|
|
List.iter2
|
|
(fun (_, sdecl) (id, decl) ->
|
|
match Ctype.closed_type_decl decl with
|
|
Some _ -> raise(Error(sdecl.ptype_loc, Unbound_type_var))
|
|
| None -> ())
|
|
name_sdecl_list decls;
|
|
(* Check re-exportation *)
|
|
List.iter2 (check_abbrev newenv) name_sdecl_list decls;
|
|
(* Done *)
|
|
(decls, newenv)
|
|
|
|
(* Translate an exception declaration *)
|
|
let transl_exception env excdecl =
|
|
reset_type_variables();
|
|
Ctype.begin_def();
|
|
let types = List.map (transl_simple_type env true) excdecl in
|
|
Ctype.end_def();
|
|
List.iter Ctype.generalize types;
|
|
types
|
|
|
|
(* Translate a value declaration *)
|
|
let transl_value_decl env valdecl =
|
|
let ty = Typetexp.transl_type_scheme env valdecl.pval_type in
|
|
match valdecl.pval_prim with
|
|
[] ->
|
|
{ val_type = ty; val_kind = Val_reg }
|
|
| decl ->
|
|
let arity = Ctype.arity ty in
|
|
if arity = 0 then
|
|
raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
|
|
let prim = Primitive.parse_declaration arity decl in
|
|
{ val_type = ty; val_kind = Val_prim prim }
|
|
|
|
(* Translate a "with" constraint -- much simplified version of
|
|
transl_type_decl. *)
|
|
let transl_with_constraint env sdecl =
|
|
reset_type_variables();
|
|
Ctype.begin_def();
|
|
let params =
|
|
try
|
|
List.map (enter_type_variable true) sdecl.ptype_params
|
|
with Already_bound ->
|
|
raise(Error(sdecl.ptype_loc, Repeated_parameter)) in
|
|
List.iter
|
|
(function (ty, ty', loc) ->
|
|
try
|
|
Ctype.unify env (transl_simple_type env false ty)
|
|
(transl_simple_type env false ty')
|
|
with Ctype.Unify _ ->
|
|
raise(Error(loc, Unconsistent_constraint)))
|
|
sdecl.ptype_cstrs;
|
|
let decl =
|
|
{ type_params = params;
|
|
type_arity = List.length params;
|
|
type_kind = Type_abstract;
|
|
type_manifest =
|
|
begin match sdecl.ptype_manifest with
|
|
None -> None
|
|
| Some sty -> Some(transl_simple_type env true sty)
|
|
end }
|
|
in
|
|
Ctype.end_def();
|
|
generalize_decl decl;
|
|
decl
|
|
|
|
(**** Error report ****)
|
|
|
|
open Formatmsg
|
|
|
|
let report_error = function
|
|
Repeated_parameter ->
|
|
print_string "A type parameter occurs several times"
|
|
| Duplicate_constructor s ->
|
|
print_string "Two constructors are named "; print_string s
|
|
| Too_many_constructors ->
|
|
print_string "Too many constructors -- maximum is ";
|
|
print_int Config.max_tag; print_string " constructors"
|
|
| Duplicate_label s ->
|
|
print_string "Two labels are named "; print_string s
|
|
| Recursive_abbrev s ->
|
|
print_string "The type abbreviation "; print_string s;
|
|
print_string " is cyclic" (* " expands to itself" *)
|
|
| Definition_mismatch ty ->
|
|
Printtyp.reset ();
|
|
Printtyp.mark_loops ty;
|
|
print_string
|
|
"The variant or record definition does not match that of type";
|
|
print_space(); Printtyp.type_expr ty
|
|
| Unconsistent_constraint ->
|
|
print_string "The type constraints are not consistent"
|
|
| Type_clash trace ->
|
|
Printtyp.unification_error true trace
|
|
(function () ->
|
|
print_string "This type constructor expands to type")
|
|
(function () ->
|
|
print_string "but is here used with type")
|
|
| Null_arity_external ->
|
|
print_string "External identifiers must be functions"
|
|
| Unbound_type_var ->
|
|
print_string "A type variable is unbound in this type declaration";
|