ocaml/asmrun/signals.c

482 lines
13 KiB
C

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../LICENSE. */
/* */
/***********************************************************************/
/* $Id$ */
#if defined(TARGET_amd64) && defined (SYS_linux)
#define _GNU_SOURCE
#endif
#include <signal.h>
#include <stdio.h>
#include "alloc.h"
#include "callback.h"
#include "memory.h"
#include "minor_gc.h"
#include "misc.h"
#include "mlvalues.h"
#include "fail.h"
#include "osdeps.h"
#include "signals.h"
#include "signals_machdep.h"
#include "signals_osdep.h"
#include "stack.h"
#include "sys.h"
#ifdef HAS_STACK_OVERFLOW_DETECTION
#include <sys/time.h>
#include <sys/resource.h>
#endif
#ifndef NSIG
#define NSIG 64
#endif
#ifdef _WIN32
typedef void (*sighandler)(int sig);
extern sighandler caml_win32_signal(int sig, sighandler action);
#define signal(sig,act) caml_win32_signal(sig,act)
#endif
extern char * caml_code_area_start, * caml_code_area_end;
#define In_code_area(pc) \
((char *)(pc) >= caml_code_area_start && \
(char *)(pc) <= caml_code_area_end)
intnat volatile caml_signals_are_pending = 0;
volatile intnat caml_pending_signals[NSIG];
volatile int caml_force_major_slice = 0;
value caml_signal_handlers = 0;
static void caml_process_pending_signals(void)
{
int i;
if (caml_signals_are_pending) {
caml_signals_are_pending = 0;
for (i = 0; i < NSIG; i++) {
if (caml_pending_signals[i]) {
caml_pending_signals[i] = 0;
caml_execute_signal(i, 0);
}
}
}
}
static intnat volatile caml_async_signal_mode = 0;
static void caml_enter_blocking_section_default(void)
{
Assert (caml_async_signal_mode == 0);
caml_async_signal_mode = 1;
}
static void caml_leave_blocking_section_default(void)
{
Assert (caml_async_signal_mode == 1);
caml_async_signal_mode = 0;
}
static int caml_try_leave_blocking_section_default(void)
{
intnat res;
Read_and_clear(res, caml_async_signal_mode);
return res;
}
CAMLexport void (*caml_enter_blocking_section_hook)(void) =
caml_enter_blocking_section_default;
CAMLexport void (*caml_leave_blocking_section_hook)(void) =
caml_leave_blocking_section_default;
CAMLexport int (*caml_try_leave_blocking_section_hook)(void) =
caml_try_leave_blocking_section_default;
int caml_rev_convert_signal_number(int signo);
/* Execute a signal handler immediately. */
void caml_execute_signal(int signal_number, int in_signal_handler)
{
value res;
#ifdef POSIX_SIGNALS
sigset_t sigs;
/* Block the signal before executing the handler, and record in sigs
the original signal mask */
sigemptyset(&sigs);
sigaddset(&sigs, signal_number);
sigprocmask(SIG_BLOCK, &sigs, &sigs);
#endif
res = caml_callback_exn(
Field(caml_signal_handlers, signal_number),
Val_int(caml_rev_convert_signal_number(signal_number)));
#ifdef POSIX_SIGNALS
if (! in_signal_handler) {
/* Restore the original signal mask */
sigprocmask(SIG_SETMASK, &sigs, NULL);
} else if (Is_exception_result(res)) {
/* Restore the original signal mask and unblock the signal itself */
sigdelset(&sigs, signal_number);
sigprocmask(SIG_SETMASK, &sigs, NULL);
}
#endif
if (Is_exception_result(res)) caml_raise(Extract_exception(res));
}
/* Record the delivery of a signal and play with the allocation limit
so that the next allocation will trigger a garbage collection. */
void caml_record_signal(int signal_number)
{
caml_pending_signals[signal_number] = 1;
caml_signals_are_pending = 1;
caml_young_limit = caml_young_end;
}
/* This routine is the common entry point for garbage collection
and signal handling. It can trigger a callback to Caml code.
With system threads, this callback can cause a context switch.
Hence [caml_garbage_collection] must not be called from regular C code
(e.g. the [caml_alloc] function) because the context of the call
(e.g. [intern_val]) may not allow context switching.
Only generated assembly code can call [caml_garbage_collection],
via the caml_call_gc assembly stubs. */
void caml_garbage_collection(void)
{
caml_young_limit = caml_young_start;
if (caml_young_ptr < caml_young_start || caml_force_major_slice) {
caml_minor_collection();
}
caml_process_pending_signals();
}
/* Trigger a garbage collection as soon as possible */
void caml_urge_major_slice (void)
{
caml_force_major_slice = 1;
caml_young_limit = caml_young_end;
/* This is only moderately effective on ports that cache [caml_young_limit]
in a register, since [caml_modify] is called directly, not through
[caml_c_call], so it may take a while before the register is reloaded
from [caml_young_limit]. */
}
void caml_enter_blocking_section(void)
{
while (1){
/* Process all pending signals now */
caml_process_pending_signals();
caml_enter_blocking_section_hook ();
/* Check again for pending signals.
If none, done; otherwise, try again */
if (! caml_signals_are_pending) break;
caml_leave_blocking_section_hook ();
}
}
CAMLexport void caml_leave_blocking_section(void)
{
caml_leave_blocking_section_hook ();
caml_process_pending_signals();
}
DECLARE_SIGNAL_HANDLER(handle_signal)
{
#if !defined(POSIX_SIGNALS) && !defined(BSD_SIGNALS)
signal(sig, handle_signal);
#endif
if (sig < 0 || sig >= NSIG) return;
if (caml_try_leave_blocking_section_hook ()) {
caml_execute_signal(sig, 1);
caml_enter_blocking_section_hook();
} else {
caml_record_signal(sig);
/* Some ports cache [caml_young_limit] in a register.
Use the signal context to modify that register too, but only if
we are inside Caml code (not inside C code). */
#if defined(CONTEXT_PC) && defined(CONTEXT_YOUNG_LIMIT)
if (In_code_area(CONTEXT_PC))
CONTEXT_YOUNG_LIMIT = (context_reg) caml_young_limit;
#endif
}
}
#ifndef SIGABRT
#define SIGABRT -1
#endif
#ifndef SIGALRM
#define SIGALRM -1
#endif
#ifndef SIGFPE
#define SIGFPE -1
#endif
#ifndef SIGHUP
#define SIGHUP -1
#endif
#ifndef SIGILL
#define SIGILL -1
#endif
#ifndef SIGINT
#define SIGINT -1
#endif
#ifndef SIGKILL
#define SIGKILL -1
#endif
#ifndef SIGPIPE
#define SIGPIPE -1
#endif
#ifndef SIGQUIT
#define SIGQUIT -1
#endif
#ifndef SIGSEGV
#define SIGSEGV -1
#endif
#ifndef SIGTERM
#define SIGTERM -1
#endif
#ifndef SIGUSR1
#define SIGUSR1 -1
#endif
#ifndef SIGUSR2
#define SIGUSR2 -1
#endif
#ifndef SIGCHLD
#define SIGCHLD -1
#endif
#ifndef SIGCONT
#define SIGCONT -1
#endif
#ifndef SIGSTOP
#define SIGSTOP -1
#endif
#ifndef SIGTSTP
#define SIGTSTP -1
#endif
#ifndef SIGTTIN
#define SIGTTIN -1
#endif
#ifndef SIGTTOU
#define SIGTTOU -1
#endif
#ifndef SIGVTALRM
#define SIGVTALRM -1
#endif
#ifndef SIGPROF
#define SIGPROF -1
#endif
static int posix_signals[] = {
SIGABRT, SIGALRM, SIGFPE, SIGHUP, SIGILL, SIGINT, SIGKILL, SIGPIPE,
SIGQUIT, SIGSEGV, SIGTERM, SIGUSR1, SIGUSR2, SIGCHLD, SIGCONT,
SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, SIGVTALRM, SIGPROF
};
int caml_convert_signal_number(int signo)
{
if (signo < 0 && signo >= -(sizeof(posix_signals) / sizeof(int)))
return posix_signals[-signo-1];
else
return signo;
}
int caml_rev_convert_signal_number(int signo)
{
int i;
for (i = 0; i < sizeof(posix_signals) / sizeof(int); i++)
if (signo == posix_signals[i]) return -i - 1;
return signo;
}
typedef void (*signal_handler)(int signo);
value caml_install_signal_handler(value signal_number, value action) /* ML */
{
CAMLparam2 (signal_number, action);
int sig;
signal_handler oldact;
#ifdef POSIX_SIGNALS
struct sigaction sigact, oldsigact;
#else
signal_handler act;
#endif
CAMLlocal1 (res);
sig = caml_convert_signal_number(Int_val(signal_number));
if (sig < 0 || sig >= NSIG)
caml_invalid_argument("Sys.signal: unavailable signal");
#ifdef POSIX_SIGNALS
switch(action) {
case Val_int(0): /* Signal_default */
sigact.sa_handler = SIG_DFL;
sigact.sa_flags = 0;
break;
case Val_int(1): /* Signal_ignore */
sigact.sa_handler = SIG_IGN;
sigact.sa_flags = 0;
break;
default: /* Signal_handle */
SET_SIGACT(sigact, handle_signal);
break;
}
sigemptyset(&sigact.sa_mask);
if (sigaction(sig, &sigact, &oldsigact) == -1) caml_sys_error(NO_ARG);
oldact = oldsigact.sa_handler;
#else
switch(action) {
case Val_int(0): /* Signal_default */
act = SIG_DFL;
break;
case Val_int(1): /* Signal_ignore */
act = SIG_IGN;
break;
default: /* Signal_handle */
act = handle_signal;
break;
}
oldact = signal(sig, act);
if (oldact == SIG_ERR) caml_sys_error(NO_ARG);
#endif
if (oldact == (signal_handler) handle_signal) {
res = caml_alloc_small(1, 0); /* Signal_handle */
Field(res, 0) = Field(caml_signal_handlers, sig);
}
else if (oldact == SIG_IGN)
res = Val_int(1); /* Signal_ignore */
else
res = Val_int(0); /* Signal_default */
if (Is_block(action)) {
if (caml_signal_handlers == 0) {
caml_signal_handlers = caml_alloc(NSIG, 0);
caml_register_global_root(&caml_signal_handlers);
}
caml_modify(&Field(caml_signal_handlers, sig), Field(action, 0));
}
caml_process_pending_signals();
CAMLreturn (res);
}
/* Machine- and OS-dependent handling of bound check trap */
#if defined(TARGET_power) || (defined(TARGET_sparc) && defined(SYS_solaris))
DECLARE_SIGNAL_HANDLER(trap_handler)
{
#if defined(SYS_solaris)
if (info->si_code != ILL_ILLTRP) {
/* Deactivate our exception handler and return. */
struct sigaction act;
act.sa_handler = SIG_DFL;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
sigaction(sig, &act, NULL);
return;
}
#endif
#if defined(SYS_rhapsody)
/* Unblock SIGTRAP */
{ sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGTRAP);
sigprocmask(SIG_UNBLOCK, &mask, NULL);
}
#endif
caml_exception_pointer = (char *) CONTEXT_EXCEPTION_POINTER;
caml_young_ptr = (char *) CONTEXT_YOUNG_PTR;
caml_array_bound_error();
}
#endif
/* Machine- and OS-dependent handling of stack overflow */
#ifdef HAS_STACK_OVERFLOW_DETECTION
static char * system_stack_top;
static char sig_alt_stack[SIGSTKSZ];
DECLARE_SIGNAL_HANDLER(segv_handler)
{
struct rlimit limit;
struct sigaction act;
char * fault_addr;
/* Sanity checks:
- faulting address is word-aligned
- faulting address is within the stack
- we are in Caml code */
fault_addr = CONTEXT_FAULTING_ADDRESS;
if (((uintnat) fault_addr & (sizeof(intnat) - 1)) == 0
&& getrlimit(RLIMIT_STACK, &limit) == 0
&& fault_addr < system_stack_top
&& fault_addr >= system_stack_top - limit.rlim_cur - 0x2000
#ifdef CONTEXT_PC
&& In_code_area(CONTEXT_PC)
#endif
) {
/* Turn this into a Stack_overflow exception */
#if defined(CONTEXT_YOUNG_PTR) && defined(CONTEXT_EXCEPTION_POINTER)
caml_exception_pointer = (char *) CONTEXT_EXCEPTION_POINTER;
caml_young_ptr = (char *) CONTEXT_YOUNG_PTR;
#endif
caml_raise_stack_overflow();
}
/* Otherwise, deactivate our exception handler and return,
causing fatal signal to be generated at point of error. */
act.sa_handler = SIG_DFL;
act.sa_flags = 0;
sigemptyset(&act.sa_mask);
sigaction(SIGSEGV, &act, NULL);
}
#endif
/* Initialization of signal stuff */
void caml_init_signals(void)
{
/* Bound-check trap handling */
#if defined(TARGET_sparc) && defined(SYS_solaris)
{ struct sigaction act;
sigemptyset(&act.sa_mask);
SET_SIGACT(act, trap_handler);
act.sa_flags |= SA_NODEFER;
sigaction(SIGILL, &act, NULL);
}
#endif
#if defined(TARGET_power)
{ struct sigaction act;
sigemptyset(&act.sa_mask);
SET_SIGACT(act, trap_handler);
#if !defined(SYS_rhapsody)
act.sa_flags |= SA_NODEFER;
#endif
sigaction(SIGTRAP, &act, NULL);
}
#endif
/* Stack overflow handling */
#ifdef HAS_STACK_OVERFLOW_DETECTION
{
struct sigaltstack stk;
struct sigaction act;
stk.ss_sp = sig_alt_stack;
stk.ss_size = SIGSTKSZ;
stk.ss_flags = 0;
SET_SIGACT(act, segv_handler);
act.sa_flags |= SA_ONSTACK | SA_NODEFER;
sigemptyset(&act.sa_mask);
system_stack_top = (char *) &act;
if (sigaltstack(&stk, NULL) == 0) { sigaction(SIGSEGV, &act, NULL); }
}
#endif
}